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Outline

• Thermodynamic surfaces, reduced density matrices and convex sets

– Phase transitions, ruled surfaces, frustration 

• Statistical Mechanics as tensor networks

– Diagonalizing matrix product operators to calculate free energies: MPS 
algorithms

– Diagonalizing projected entangled pair operators to calculate free 
energies: PEPS algorithms

• Examples: 

– Hard square constant

– Residual entropy of spin ice



Collective phenomena

• Interesting collective phenomena occur if there is also some type of frustration or 
competition between different quantities which leads to correlations. This can be 
obtained in at least 3 different ways:

• Add fluctuations to the picture by working at finite temperature

– Battle of entropy vs. energy (free energy F=E-TS)
– Leads to phase transitions, critical phenomena, …

• Add frustration: e.g. triangular or Kagome lattices  -> THIS TALK

• Add non-commuting terms to the Hamiltonian:

– A ground state cannot be a joint eigenstate of all terms, and a big 
compromise will have to be made how to spread its quantum 
correlations such as to minimize the energy



Maxwell’s thermodynamic surfaces 

Energy vs Entropy vs Volume
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Classical Ising in 2D at finite temperature

• Convex set of all possible expectation values of energy density, entropy 
density, and magnetization w.r.t. any probability distribution

Zauner et al. ‘16



Quantum Ising with transverse magnetic field in 1D

• Convex set of all possible expectation values of <XX>, <Z> and 
spontaneous magnetization <X> w.r.t. any quantum state  

Zauner et al.



Convex set of q-state Potts

• Red (J=-1,h=0): no equal neighbor spins (cfr. chromatic polynomial)

– Yields entropy of 2-D spin ice for q=3 (Lieb)

• Blue (J=-1,h=4): equivalent to Ising case / hard square cst (configurations 
with only spin q and q-1, while q-1 is surrounded by q)



Counting: hard square constants

• 1-dimension: 

– count number of configurations of bits such that a 1 is surrounded by 0’s

– Transfer matrix approach: evaluate following tensor network

– Number of configurations is: 



• 2 dimensions: contraction of 2D tensor network yields # configurations:



• Problem is reduced to finding leading eigenvalue of transfer matrix / MPO:

• Turns out to be non-integrable, but nevertheless Baxter (1999) calculated 
the free energy per site (“hard square constant”) using series expansions 
of corner transfer matrix:

f=1.503048082475332264322066329475553689385781

• Can we do better using matrix product state techniques?



Variational uniform matrix product state algorithm

• Make use of left/right canonical forms to 
reduce optimization to a sequence of 
effective eigenvalue problems:

• Essence: enforce that residual of MPO 
applied to MPS is orthogonal to tangent 
space of MPS manifold; this leads to a 
Lanczos-type version of CTM

• Great thing: optimization gives direct access 
to the free energy and hence of entropy of 
the stat. mech. Model without need of 
integration such as in MC

Zauner et al., Phys. Rev. B 97, 045145 (2018)



arXiv:1611.08519



Hard Hexagons

• Any statistical mechanics model with a local Hamiltonian can trivially be 
written as a tensor network 

• Hard hexagons are Integrable (Baxter), which is reflected by matrix 
product operator symmetries

– Becomes critical when adding fugacity

– Is this reflected in additional symmetries on the microscopic level, as 
lattice manifestations of the conformal symmetry? This would be the 
analogue of a duality defect in Ising model

• Turns out that formalism of tensor networks is very useful for finding such 
matrix product operator symmetries

– Strategy: 1. start with frustration free string net exhibiting topological 
order represented as a PEPS

2. project that PEPS on a product state => yields Z













Ex: from Fibonacci string net to critical hard hexagons





Ex: from Fibonacci string net to critical hard hexagons

Van Hove et al., PRL ‘18



3D frustration: Residual entropy of ice
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Tensor network for spin ice

Diamond Ice: repeat the PEPO            shifted by 1 sublattice shift
Hexagonal Ice Ih : multiply                with its transpose 

Free energy can then be obtained as an eigenvalue problem of the 2D transfer 
matrix of cubic lattice; both types of ice give rise to same variational problem if 
we assume Z2 invariance of PEPS by rotation over pi



PEPS: finding eigenvectors of 2-D transfer matrices

• Complication: system is critical (U(1)) with effective gauge degrees of 
freedom, …

• On a positive side: due to symmetries of PEPO, problem is variational



Numerical PEPS optimization

• We use gradient methods, where “channel” environments on virtual 
degrees of freedom allow to calculate gradients 

Vanderstraeten et al. ‘17





Variational PEPS results for spin ice

arXiv:1805.10598
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Coulomb phase description of spin ice

Extrapolated Stiffness:

K = 0.967



Entanglement spectrum of PEPS fixed point of spin ice 
transfer matrix

• Eigenvalues of boundary MPO which is fixed point of PEPS transfer matrix

• Typical dispersion relation for spin chains (entanglement Hamiltonian) 
with power-law decaying interactions



More U(1) models: dimer coverings on 3D cubic lattice

– In 2D: integrable transfer matrix and solvable by mapping to Pfaffians/ 
free fermions (Kasteleyn Fortuyn, Fisher, Lieb)

– In 3D: critical Coulomb phase

• Tensor network:

• Dimer entropy: 0,4498238   (D = 2)

0,44988448 (D = 3)

0,44988452 (D = 4)

• Again algebraic dipolar forms for the dimer-dimer correlations



nj(x) = 1 if there is a dimer on that 

site in the direction j

Extrapolated Stiffness: K = 4,861

Compatible with Huse, Krauth, Moessner, Sondhi, “Coulomb and liquid dimer models in three 
dimensions," Physical Review Letters 91, 167004 (‘03).



Conclusion

• MPS methods allow for the determination of convex sets à la 
Gibbs/Maxwell for spin systems

• Tensor networks provide a natural framework for studying frustrated many 
body systems

– Allow for the direct calculation of entropies without having to 
integrate over specific heat, in 2 and 3D

– Algorithms for achieving this are essentially equivalent to the ones 
used for Hamiltinion optimization

• Challenge: uncover symmetries in those tensor networks

– Nonlocal MPO/PEPO symmetries at critical points

– Topological sectors / conformal invariant boundary conditions /…. 



More frustrated models: convex set of q-state Potts

• Red (J=-1,h=0): no equal neighbor spins (cfr. chromatic polynomial)

– Yields entropy of 2-D spin ice for q=3 (Lieb)

• Blue (J=-1,h=4): equivalent to Ising case / hard square cst (configurations 
with only spin q and q-1, while q-1 is surrounded by q)



• In general: MPS methods well suited for calculating entropies directly

– More benchmark examples of residual entropies:

• What about 3D statistical mechanics counting problems?



Interludum: frustration and anyonic spin chains

• In the quantum setting, models on the edge of the blue plane correspond 
to ground states of anyonic spin chains such as the “golden chain”

• Those are the Hamiltonian versions of RSOS models of Baxter et al.



Russian Dolls for Quantum Ising



Ruled surfaces: symmetry breaking and frustration

• Ruled surfaces as extreme surfaces on those convex sets are of central 
interest: they demonstrate that phase transitions are a consequence of 
the geometric structure of set of all probability distributions / Hilbert 
space without the need of invoking Hamiltonians

– Hamiltonians are dual objects, defining tangent planes of constant 
free energy E-T.S 

– Gibbs state / quantum ground states are the extreme points of the 
convex sets

• This talk: what about zero-temperature extensive entropies?

– Ruled Surfaces parallel to the entropy axis, i.e. for T=0



Classical Ising on square lattice

• Tangent plane of blue surface defines Ising Hamiltonian with J=-1, h=4: all 
configurations satisfying hard square constraint are allowed; a spin down 
surrounded by 4 ups does not cost energy

• Redidual entropy: counting problem
Zauner et al.


