Optimization of Laser Wakefield Accelerators

by Ming Zeng

My history

2005 – 2009 B.Sc 2009 – 2015 PhD (plasma physics) at Shanghai Jiao Tong University 12.2015 – 8.2017 Postdoc at ELI-NP, Romania 9.2017 – now FLA, DESY

Research activities

Theoretical and numerical researches for laser and plasma wakefield accelerators Particle-in-cell simulations Optimization of ionization injection in laser wakefield accelerators

multiple injections.

color lasers

DESY. FH Fellow Meeting | 1 February 2019 | Ming Zeng

My former works

1. Self-truncation of ionization injections Self-focusing of laser beam can truncate the continuous

ionization injection.

Energy spread of output electron beams reduced from ~20% to ~5%.

2. Multiple injection of low energy spread e-beams by dual-

If a laser beam and its 3rd harmonic co-propagate in plasma,

the peak of E-field evolves periodically, which can produce

Each injection has low energy spread of $\sim 1\%$ or less.

Phys. Plasmas 21, 030701 (2014)

Phys. Rev. Lett. 114, 084801 (2015)

My Current Work

Number of petawatt laser projects increases rapidly in the world. Focusing petawatt level lasers to spot sizes suitable for laser wakefield accelerators requires large (>0.5 m) focusing mirrors, which are expensive and hard to replace. Focal length \propto laser peak power, which can be 10 ~ 1000 meter.

We have introduced a plasma lens for lasers (similar to an eyepiece in a telescope).

The effective focal spot size $w_2 > w_0$.

 w_0 is usually fixed, while w_2 is adjustable by changing *d*.

The focal length is reduced to the ratio of w_2/w_0 .

Main findings:

$$\frac{w_2}{w_0} = \sqrt{1 + \frac{d^2}{\zeta^2}}, \qquad \zeta \approx 0.95 z_R - 1.2k - 13,$$
$$l \approx 21.0 \frac{d}{w_0^{2.08}}.$$

(arXiv 1901.07974)

My Favorite Plots

