l Hypergeometric functions & Multiple Series: '
l reduction, s-expansion, Feynman Diagrams '

Mikhail Kalmykov

II. Institut fur Theoretische Physik

Universitat Hamburg

group of Prof. Dr. Bernd Kniehl

@7 April 2010, Worlitz Loops and Legs 2010, Mikhail Kalmykov)




Motivation
Any dimensionally-regularized multiloop Feynman diagram with propaga-
tors 1/(p? — m?) can be written in the form of a finite sum of multiple

Mellin-Barnes integrals obtained via a Feynman-parameter or “a’ represen-
tation:
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Formally,this integral can be expressed in terms of a sum of residues of the
integrated expression
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Algebraic Reduction of Gauss hypergeometric function:

P|(A, B, B, 2) 2F1<
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As is known, for any three contiguous Gauss hypergeometric functions there
1s a contiguous relation, which is a linear relation with coeflicients being
rational functions in the parameters A, B, C' and argument z.
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Any Gauss hypergeometric function with arbitrary parameters is reduced to
the linear combination of two (our basis):

P(a,b,c,z)oF(a+ 11,0+ Is;c + I3; 2)

= Q1(a,b,c,z2)9F 1 (a+ 1,b+ 1;c+ 1;2)+Q9(a, b, c, z)9F1(a, b, c; z) |
where a, b, ¢, are any fixed numbers, P, ()1, ()7 are polynomial in parameters
a,b,c and argument z, and Iy, Io, ]3 any integer numbers.
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['-functions: s-expansion
The starting point of e-expansion is the Taylor expansion of the I' function.
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In particular, for p = 0, we have
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where Sg(7) is the harmonic sum defined as Sq(j) = izl %
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(GGauss hypergeometric functions: s-expansion
Algebraic Reduction
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(Gauss hupergeometric function: s-expansion
In particular, the first few coefficients of the € expansion read:
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Subclass of multiple sums

There is an important subclass of multiple inverse rational sums, which are
defined as

sl eyt (1-4), (G=1)Suy(G=1) - SugG—1)
al, ay —c—\*) = J¢ (1 p—|—j) aj\J as\J ap\J )
j=1 —

where aq,- -+ ,ap, c are arbitrary positive integers. The number w = c+ 1+
ai + - -+ + ay is called the weight d = k the depth of the sums.

@7 April 2010, Worlitz Loops and Legs 2010, Mikhail Kalmykov)




Comments
The series representation is an intensively studied approach. Particularly
impressive results were derived in the framework of the nested-sum approach
for hypergeometric functions with a balanced set of parameters by
Moch,Uwer,Weinzierl,2002; Weinzierl,2004;
Computer realizations of nested sums approach to expansion of hypergeo-
metric functions are given in
Weinzierl, 2002; Moch & Uwer, 2006;
Huber & Maitre, 2006, 2008

Generating-function approach have been applied to construction of e-
expansion for hypergeometric functions with one unbalanced set of parame-
ters

M.K..Davydychev,2004; M.K. Ward,Yost,2007; M.K., Kniehl,2008
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Generating Function Approach
Let us rewrite the multiple sum in the form

©.0
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Difference Equation:
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System of Differential Equations
Starting Equation:

1 d 1p d \ lp.g] 4]
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New variable

New system:
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Iterated integral
The iterated integral is defined as
dt

ya
I(z;ap, a1+ ,a1) = / I(t;ap_1, -+ ,a1)
0 t—ay

B /2’ di}, /tk dty._4 /t2 dty
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where we put that all a;. ¢ 0. In early consideration by Kummer, Poincare,
Lappo-Danilevky this integral was called as hyperlogarithms One of the prop-
erty of hyperlogarithms is the scaling invariance:

](Z;CLl,“' 7a]€):](17ﬂ7 7%) .
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A special case of this integral,
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Multiple polylogarithms (MPL)
By definition, the multiple polylogarithm is defined by power series

O $m1$m2 ZCmn
Li (x1,x9, + ,Tp) = Z 1 72 . ..In
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where weight £ = k1 + ko + - - - + ky, and depth is equal to n.
[t is defined for |zy,| < 1 and admit an analytical continuation.

The MZV corresponds to x1 =--- =x, = 1.

The multiple polylogarithm is a special case of iterated integral:
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Particular case of MPL
A particular case of the multiple polylogarithm is the “generalized polylog-
arithm” defined by

0 Zmn
Li (2) = D
1k17k27"°7kn o ]Cl ]CQ ]Cn
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where |z| < 1 when all k; > 1, or |z| < 1 when k, < 2.
Another particular case is a “multiple polylogarithm of a square root of
unity,” defined as

mi
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where § = (s1,---sp) and ¢ = (oq, -+ ,0p) are multi-indices and oy be-
longs to the set of the square roots of unity, 0. = £1. This particular case
of multiple polylogarithms has been analyzed in detail by Remiddi and Ver-
maseren, 2000.
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Multiple Inverse Rational Sums: General case 1
M.K. & Kniehl, 2008
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where

p, q are arbitrary integers.
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Multiple Inverse Rational Sums: General case 11

i TGN (1-2)

=T (1+j—12)

ZC qu()\h —J2 )\Jz I 7)\gr—1_jr7)\gr€) (c>1)),
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.
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Multiple Rational Sums: General Case 1
M.K. & Kniehl, 2008
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Multiple Rational Sums: General Case 11

M.K. & Kniehl, 2008
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Lemma A

Differential form:

d\
(Ga-enes) “skd_@-chie

Integral form:

1 A\ b _[fdt g -
(u-eme) @0 [ 7m0, iz

Lemma A
If, for some integer j, the series Z[ }](5) is expressible in terms of hy-
perlogarithms with complex coeﬁiczents then this also holds for the sums

Egj,_qu ;&) with positive integers i.
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Proposition A
Proposition A
For ¢ = 0, the wverse rational sums are expressible in terms of multiple
polylogarithms of arguments being powers of g-roots of unity and the variable
§ with complex coefficients ¢, z times a factor &P as

.4 __ D
. ] _j ] _j j?”—l_jT jr
ey e (NN N )

T3
where the weights of the L.h.s. and the r.h.s. are equal, 1.€. s1+ -+ + S =

where
1/q
2 2 .
f_( ) : )\q—exp(z?>, 1< {im}<q.

z—1
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Corollary A
Substituting expression from Lemma A and performing a trivial splitting of
the denominator, we obtain

s [Pyd]
a’_’l’_ 2=2(§)
_ZZ)\ jp / LP(AJl ~d2 \2I L\ Ajrt)
Py 0 t— ! o
S
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Corollary A:
For ¢ > 1, the inverse rational sums are expressible in terms of multiple

polylogarithms of arguments being powers of q-roots of unity and the variable
& with complex coefficients d 7 05

_ dj’ngg ()\él_ﬂ) o ’)\ér—l_]rj )\érg) (C > 1
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Depth 0 sums

q dg o |
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Depth 1 sums
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Mathematical Induction I

e Let us assume that Proposition A is valid for multiple inverse rational
sums of depth £,

P,q : 11— Jr—1—Jr \J
221,-]--,%;—;0;—(@ =& Z Ci§L1§ ()‘gll ]27 S 7)‘qr T7)‘gf€) ’

e Then for ¢ > 1, Corollary A also holds for multiple inverse rational
sums of depth £,

Zgﬁg]ﬁak;—;a—(z) - Z Ay ghis ()\g]i—jz) o 7)\ér—1—jr’Agr€) -
s1<{jmy<q
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Mathematical Induction 11

e For the sum of depth k& + 1, the coefficients of the non-homogencous part
may be expressed as linear combinations of sums of depth 7 (7 = 0,--- | k)

go-p-1 2, T(1+5) (1-2)

d [p Q] (
a ,Q — f):_q Z]
de 1Ok I —&1 ; T (1—|—j_1_9)

Siy(G—=1)-+-S; (j—1)

1 P
8 Z Z pl(k+1—p)! jlorit ’

P=0 (i1, ig 1)

LIt epy1+-- 1541 = 2, the r.h.s. of this equation is expressible in terms
of multiple polylogarithms of weight £ with complex coefficients.

2. 14y 1+ ipy1 = 1, the r.his. of this equation is expressible in terms
of multiple polylogarithms of weight & with a common factor &P.
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Multiple Inverse Binomial Sums: ¢ = 2

> 2]) p —1)... _
7=1 (] u:—(l_yy>2
-y
=—=Y ¢, 2InPyLi -
|+ y &= PS5 Y (%) (y)
p,S
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— 5p7§11’lp yLi(@) (y) , C > 2
p.§ i
where Sq(j — 1) = :Z:_ll Zia , is harmonic sum
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Multiple Binomial Sums: ¢ = 2

where Sg(j — 1) =

X
T2
1)
X
N2
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Special Values of Argument
[t is evident that some (or all, if the basis is complete) of the alternating
or non-alternating multiple Euler-Zagier sums (or multiple zeta values) can
be written in terms of multiple (inverse) binomial sums of special values
of arguments. Two arguments where such a representation is possible are
trivially obtained by setting the arguments of the harmonic polylogarithms
y,x to =1

—1

u=4, y=-1,
1
-, x=1.

u =
4 Y
Another such point is “golden ratio”,
3-5
2

has been discussed intensively in the context of Apéry-like expressions for
Riemann zeta functions. For two other points

’U,:—l, Y

1 (-ﬂ-)
u = = X 11—
Y y p 3 Y

u=2. yYy==1.



Zeta Function and Inverse Binomial Sums: Borwein et al, 2005

nooC (_1>k+1
dn + 3) = Cq VR
9 =323 T >
1=0 k=1 k n|= p
where @ is multi index, @ = ay,a9,..., a1+as+...=n—j and cz are
rational numbers.
n oo 1 k—1 |
_ N
=3 e 3

where r + Zi\il a; = n + 1 and ¢; are rational numbers.
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Conclusion

e The generating function approach is quite general, however demand an
extra analysis of many different sums.

e The analytical results for more general (arbitrary) sums can be deduced
from consideration of Horm-type hypergeometric functions and their e-
expansion via proper differential equations.
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Horn-type Hypergeometric Functions: Horn-type series
[n accordance with Horn definition, a formal (Laurent) power series in r

variables,
@(f) — ZC(%)fm — Z C(m17m27-.. 7mr>x71/nl...$77;n7“7
1,19, My
is called hypergeometric if for each 2 =1, --- ,r the ratio

C(T?L + 6]) B P](T?L)
C(m) Q;(m)
is a rational function in the index of summation: m = (mq, - -- , my), where
€; = (0,---,0,1,0,---,0), is unit vector with unity in the jth place.
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Horn-type Hypergeometric Functions: Solution
Ore[1930], Sato[1990] found the general form of coefficients

[ T (i (7 )+vj>>
Y T (vg(m) +0g) )

where N, M > 0, Aj,04,v; € C are arbitrary complex numbers, p;, vy, :
7" — 7. are arbitrary integer-valued linear maps, and R is an arbitrary
rational function.

The Horn type hypergeometric function satisfies the following system of
equation

C(m) = C(m) = 117 1Amz1~z(m)<

r
0
r) = P; — | O(2) .
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Horn-type Hypergeometric Functions: Differential Reduction
Let us consider the series

K
o = 2 - I (>ot=1 Hjama + ;) mi -
my,ma, my=0 \' k=1 (> b=1 Vb + o7)
The sequences ¥ = (y1,- -+ ,vg)and @ = (oy, - , o) are called upper and

lower parameters of the hypergeometric function, respectively. Two functions
with sets of parameters shifted by a unit, &(7 + é¢; 7; &) and &(7; 7; X), are
related by a linear differential operator:

a=1
. 0
O(Y,6 — ) = | » VebThn —+ 0c | D(F: 7 7)
b=1
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Horn-type Hypergeometric Functions: Takayama
The inverse differential operators can be constructed:

O(Y — €16, %) = »  Sal, 0p)P(7: 7 )
a

O(Y;5 + € @) = Y Ly(T, 0,)0(F: 6, ) .
b

In this way, the Horn-type structure provides an opportunity to reduce hy-
pergeometric functions to a set of basis functions with parameters differing
from the original values by integer shifts:

—

o T T O\ L
PyB) QY+ kiG+1E) = > Py i (T) (87?) O(7,0:7) ,

mi,--- ,mp=0

where Py(Z) and Pp, ... ;m,(T) are polynomials with respect to 7,0 and &

and /Z, [ are lists of integers.
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Differential Reduction of Hypergeometric Functions
Consider the ring

R =C(xq, - xn)0/0x1,---,0/0xy]

of linear partial differential operators and it maximal left-ideal 1)
parametrized by complex number A. Denote by Sy the collection of func-
tions annihilated by I}.

Theorem (Takayama):

If we have step-up operators,

H;\_ : S)\ — S)\—l-l 3
then the step-down operators

B}T : S)\—I-l — S)\ )
could be constructed by solving the equation

B)THH;\FEl (mod 1))
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