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The N = 4 SYM and asymptotic integrability

The N = 4 SYM is a four-dimensional gauge theory with four
different supersymmetry generators.

Beta function vanishes, superconformal symmetry at the quantum
level. The symmetry algebra gets extended
so(1,3)⊕ so(6)→ psu(2,2|4).

No asymptotic distances and thus no asymptotic states.
Correlation functions are well defined. Interesting observables are
ADs of the composite operators

O(x) = Tr

Φ Ψ ∗ . . .︸ ︷︷ ︸
L

 ,

which receive quantum contributions ∆(g) = ∆0 + γ(g) .
The full dimensions are eigenvalues of the dilatation operator

DO(x) = ∆O(x)(g)O(x) .
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Huge mixing problem!

Even more symmetries appear in the planar limit
(N →∞ ,g2 =

g2
YMN

16π2 = const) [Minahan, Zarembo, 2002]

psu(2,2|4)→ psu(2,2|4) n u(1)∞ .

More precisely, the dilatation operator is a member of an infinite
family of commuting charges as long as ` < L.

[N.Beisert ’03], [N.Beisert, V.Dippel, M.Staudacher ’04],[B.Zwiebel ’05], ...

The mixing problem for ` < L

dilatation operator of the planarN = 4 SYM = Hamiltonian of an integrable spin chain .

The corresponding spin chain exhibits many novel features like
long-rangeness of the interactions, length fluctuations, ...
... but it is still integrable and solvable by means of the Bethe
ansatz:
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The corresponding eigenvalue of the dilatation operator (D − D0)
is given by

γ(g) = 2 g2 Q2 =
i

r − 1

K4∑
j=1

(
1

(x+(uj ))
− 1

(x−(uj ))

)
.

These equations yield the AD of any local trace operator up to
order O(g2L).

Recently, adapting the techniques of the Thermodynamic Bethe
Ansatz a complete all-loop set of spectral equations for the planar
N = 4 has been formulated. [G. Arutyunov, S. Frolov, 2007], [G. Arutyunov, S. Frolov, 2009]

[D.Bombardielli, D. Fioravanti, R. Tateo ’09; N.Gromov, V.Kazakov, A.Kozak, P.Vieira ’09; G.Arutyunov, S.Frolov ’09]

It is a an infinite set of coupled non-linear integral equations.

The spectral problem seems to have been solved!

And thanks to AdS/CFT also the free string theory on AdS5 × S5!
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... but they are still a conjecture
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Twist operators and the five-loop result

A suitable testing ground at weak coupling provide twist operators.

The twist-two operators (in the sl(2) twist equals the length) are
the shortest operators in the theory

O = Tr
(
DMZ2

)
+ . . . .

Interestingly enough closed expressions (as function of M) of the
AD can be found to first few orders. At one-loop

γ(g) = 8 g2 S1(M) .

The harmonic sum S1 is the simplest of the so called nested
harmonic sums

Sa(M) =
M∑

i=1

(sgn(a))i

i |a|
,Sa1,...,an (M) =

M∑
i=1

(sgn(a1))i

i |a1|
Sa2,...,an (i) .
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[Kotikov, Lipatov, Velizhanin, 2003&2004]
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Up to this order one can calculate the AD using the asymptotic Bethe
equations and there is no need to refer to the full spectral equations...

... at higher orders ABE still "work", but a mismatch with field theory
computations is expected.
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Four-loop [A. Kotikov, L. Lipatov, A. R., M. Staudacher, V. Velizhanin, 2007]
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Five-loop [T. Łukowski, A. R., V. Velizhanin, ’09]
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The remaining contributions may be calculated by

Exploiting the putative spectral equations
Lüscher corrections adapted to AdS/CFT

[Lukowski, Janik, 2007], [Bajnok, Janik, 2008]
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Tedious algebra, computations with high precision (app. 1000
significant numbers) and EZ-Face allowed to find
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Tests

Adding up these two contributions should provide complete
answer. How to check its veracity?

The BFKL equation! It predicts the leading poles at M = −1 + ω at
any loop order

γ =
(

2 + 0ω +O(ω2)
)(
−4 g2

ω

)
−
(

0 + 0ω +O(ω2)
) (

−4 g2

ω

)2

+
(

0 + ζ(3)ω +O(ω2)
) (

−4 g2

ω

)3

−
(
4 ζ(3) + 5/4 ζ(4)ω +O(ω2)

) (−4 g2

ω

)4

−
(
0 +

(
2 ζ(2) ζ(3) + 16 ζ(5)

)
ω +O(ω2)

)(−4g2

ω

)5 ± . . .

Upon analytic continuation of the five-loop result to M = −1 + ω
we found perfect agreement!
Analytic and numerical analysis of the spectral equations
reproduce the above result. [Arutyunov, Frolov, Suzuki, 2010], [Bajnok, Hegedus, 2010]
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Tests

Adding up these two contributions should provide complete
answer. How to check its veracity?
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Conclusions

The recently proposed spectral equations for the planar N = 4
SYM theory, if supplemented by appropriate analytic properties,
provide the full solution to the spectral problem!

There is no need for Feynman diagram computations, as long as
the ADs are concerned.

Their veracity needs thus to be extensively tested!

Motivated by this we have calculated the five-loop anomalous
dimension of twist-two operators. It has been found to satisfy all
known constraints.
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