Five-Loop Anomalous Dimension of Twist-Two Operators

Adam Rej

in collaboration with Tomasz Łukowski and Vitaly Velizhanin, arXiv:0912.1624

Theoretical Physics Group
Imperial College London

Loops and Legs in Quantum Field Theory 2010, Wörlitz
27.04.2010

Overview

- The $\mathcal{N}=4$ SYM and asymptotic integrability
- Twist operators and the five-loop result
- Tests
- Conclusions

Overview

- The $\mathcal{N}=4$ SYM and asymptotic integrability
- Twist operators and the five-loop result
- Tests
- Conclusions

Overview

- The $\mathcal{N}=4$ SYM and asymptotic integrability
- Twist operators and the five-loop result
- Tests
- Conclusions

Overview

- The $\mathcal{N}=4$ SYM and asymptotic integrability
- Twist operators and the five-loop result
- Tests
- Conclusions

The $\mathcal{N}=4$ SYM and asymptotic integrability

- The $\mathcal{N}=4$ SYM is a four-dimensional gauge theory with four different supersymmetry generators.
- Beta function vanishes, superconformal symmetry at the quantum level. The symmetry algebra gets extended $\mathfrak{s o}(1,3) \oplus \mathfrak{s o}(6) \rightarrow \mathfrak{p s u}(2,2 \mid 4)$.
- No asymptotic distances and thus no asymptotic states.

Correlation functions are well defined. Interesting observables are ADs of the composite operators

which receive quantum contributions $\Delta(g)=\Delta_{0}+\gamma(g)$

- The full dimensions are eigenvalues of the dilatation onerator

The $\mathcal{N}=4$ SYM and asymptotic integrability

- The $\mathcal{N}=4 \mathrm{SYM}$ is a four-dimensional gauge theory with four different supersymmetry generators.
- Beta function vanishes, superconformal symmetry at the quantum level. The symmetry algebra gets extended $\mathfrak{s o}(1,3) \oplus \mathfrak{s o}(6) \rightarrow \mathfrak{p s u}(2,2 \mid 4)$.
- No asymptotic distances and thus no asymptotic states.

Correlation functions are well defined. Interesting observables are ADs of the composite operators

which receive quantum contributions $\Delta(g)=\Delta_{0}+\gamma(g)$

- The full dimensions are eiaenvalues of the dilatation operator

The $\mathcal{N}=4$ SYM and asymptotic integrability

- The $\mathcal{N}=4$ SYM is a four-dimensional gauge theory with four different supersymmetry generators.
- Beta function vanishes, superconformal symmetry at the quantum level. The symmetry algebra gets extended
$\mathfrak{s o}(1,3) \oplus \mathfrak{s o}(6) \rightarrow \mathfrak{p s u}(2,2 \mid 4)$.
- No asymptotic distances and thus no asymptotic states.

Correlation functions are well defined. Interesting observables are ADs of the composite operators

$$
\mathcal{O}(x)=\operatorname{Tr}(\underbrace{\Phi \psi * \ldots}_{L}),
$$

which receive quantum contributions $\Delta(g)=\Delta_{0}+\gamma(g)$.

The $\mathcal{N}=4$ SYM and asymptotic integrability

- The $\mathcal{N}=4$ SYM is a four-dimensional gauge theory with four different supersymmetry generators.
- Beta function vanishes, superconformal symmetry at the quantum level. The symmetry algebra gets extended
$\mathfrak{s o}(1,3) \oplus \mathfrak{s o}(6) \rightarrow \mathfrak{p s u}(2,2 \mid 4)$.
- No asymptotic distances and thus no asymptotic states.

Correlation functions are well defined. Interesting observables are ADs of the composite operators

$$
\mathcal{O}(x)=\operatorname{Tr}(\underbrace{\Phi \psi \ldots \ldots}_{L}),
$$

which receive quantum contributions $\Delta(g)=\Delta_{0}+\gamma(g)$.

- The full dimensions are eigenvalues of the dilatation operator

$$
D \mathcal{O}(x)=\Delta_{\mathcal{O}(x)}(g) \mathcal{O}(x) .
$$

- Huge mixing problem!
- Even more symmetries appear in the planar limit
$\left(N \rightarrow \infty, g^{2}=\frac{g_{Y M}^{2} N}{16 \pi^{2}}=\right.$ const $)$
[Minahan, Zarembo, 2002]

$$
\operatorname{psu}(2,2 \mid 4) \rightarrow \operatorname{psu}(2,2 \mid 4) \times u(1)^{\infty} .
$$

- More precisely, the dilatation operator is a member of an infinite family of commuting charges as long as $\ell<L$.
[N.Beisert '03], [N.Beisert, V.Dippel, M.Staudacher '04],[B.Zwiebel '05],
- The mixing problem for $\ell<L$
- The corresponding spin chain exhibits many novel features like long-rangeness of the interactions, length fluctuations, ...
- ... but it is still integrable and solvable by means of the Bethe ansatz:
- Huge mixing problem!
- Even more symmetries appear in the planar limit $\left(N \rightarrow \infty, g^{2}=\frac{g_{Y M}^{2} N}{16 \pi^{2}}=\right.$ const $)$

$$
\mathfrak{p s u}(2,2 \mid 4) \rightarrow \mathfrak{p s u}(2,2 \mid 4) \ltimes \mathfrak{u}(1)^{\infty} .
$$

- More precisely, the dilatation operator is a member of an infinite family of commuting charges as long as $\ell<L$.
[N.Beisert '03], [N.Beisert, V.Dippel, M.Staudacher '04], (B. Zwiebel 05],
- The mixing problem for $\ell<L$
- The corresponding spin chain exhibits many novel features like long-rangeness of the interactions, length fluctuations, but it is still integrable and solvable by means of the Bethe ansatz:
- Huge mixing problem!
- Even more symmetries appear in the planar limit

$$
\left(N \rightarrow \infty, g^{2}=\frac{g_{7 M}^{2} N}{16 \pi^{2}}=\text { const }\right)
$$

$$
\mathfrak{p s u}(2,2 \mid 4) \rightarrow \mathfrak{p s u}(2,2 \mid 4) \ltimes \mathfrak{u}(1)^{\infty} .
$$

- More precisely, the dilatation operator is a member of an infinite family of commuting charges as long as $\ell<L$.
[N.Beisert '03], [N.Beisert, V.Dippel, M.Staudacher '04],[B.Zwiebel '05], ...
- The mixing problem for $\ell<L$
- The corresponding spin chain exhibits many novel features like long-rangeness of the interactions, length fluctuations, ... but it is still integrable and solvable by means of the Bethe ansatz:
- Huge mixing problem!
- Even more symmetries appear in the planar limit

$$
\begin{aligned}
\left(N \rightarrow \infty, g^{2}=\right. & \left.\frac{g_{\mathfrak{k}}^{2} N}{16 \pi^{2}}=\text { const }\right) \\
& \mathfrak{p s u}(2,2 \mid 4) \rightarrow \mathfrak{p s u}(2,2 \mid 4) \ltimes \mathfrak{u}(1)^{\infty} .
\end{aligned}
$$

- More precisely, the dilatation operator is a member of an infinite family of commuting charges as long as $\ell<L$.
[N.Beisert '03], [N.Beisert, V.Dippel, M.Staudacher '04],[B.Zwiebel '05], ...
- The mixing problem for $\ell<L$
- The corresponding spin chain exhibits many novel features like long-rangeness of the interactions, length fluctuations, but it is still integrable and solvable by means of the Bethe ansatz:
- Huge mixing problem!
- Even more symmetries appear in the planar limit

$$
\begin{aligned}
\left(N \rightarrow \infty, g^{2}=\right. & \left.\frac{g_{\mathfrak{k}}^{2} N}{16 \pi^{2}}=\text { const }\right) \\
& \mathfrak{p s u}(2,2 \mid 4) \rightarrow \mathfrak{p s u}(2,2 \mid 4) \ltimes \mathfrak{u}(1)^{\infty} .
\end{aligned}
$$

- More precisely, the dilatation operator is a member of an infinite family of commuting charges as long as $\ell<L$.
[N.Beisert '03], [N.Beisert, V.Dippel, M.Staudacher '04],[B.Zwiebel '05], ...
- The mixing problem for $\ell<L$
- The corresponding spin chain exhibits many novel features like long-rangeness of the interactions, length fluctuations, ...

- Huge mixing problem!
- Even more symmetries appear in the planar limit

$$
\begin{aligned}
\left(N \rightarrow \infty, g^{2}=\right. & \left.\frac{g_{\mathfrak{p}}^{2} N}{16 \pi^{2}}=\text { const }\right) \\
& \mathfrak{p s u}(2,2 \mid 4) \rightarrow \mathfrak{p s u}(2,2 \mid 4) \ltimes \mathfrak{u}(1)^{\infty} .
\end{aligned}
$$

- More precisely, the dilatation operator is a member of an infinite family of commuting charges as long as $\ell<L$.
[N.Beisert '03], [N.Beisert, V.Dippel, M.Staudacher '04],[B.Zwiebel '05], ...
- The mixing problem for $\ell<L$
- The corresponding spin chain exhibits many novel features like long-rangeness of the interactions, length fluctuations, ...
- ... but it is still integrable and solvable by means of the Bethe ansatz:

Asymptotic All-Loop Bethe Equations

$$
\begin{aligned}
& 1=\prod_{j=1}^{K_{2}} \frac{u_{1, k}-u_{2, j}+\frac{i}{2}}{u_{1, k}-u_{2, j}-\frac{i}{2}} \prod_{j=1}^{K_{4}} \frac{1-g^{2} / x_{1, k^{x}}{ }_{4, j}^{+}}{1-g^{2} / x_{1, k^{x}} \overline{4}, j}, \\
& 1=\prod_{\substack{j=1 \\
j \neq k}}^{K_{2}} \frac{u_{2, k}-u_{2, j}-i}{u_{2, k}-u_{2, j}+i} \prod_{j=1}^{K_{3}} \frac{u_{2, k}-u_{3, j}+\frac{i}{2}}{u_{2, k}-u_{3, j}-\frac{i}{2}} \prod_{j=1}^{K_{1}} \frac{u_{2, k}-u_{1, j}+\frac{i}{2}}{u_{2, k}-u_{1, j}-\frac{i}{2}}, \\
& 1=\prod_{j=1}^{K_{2}} \frac{u_{3, k}-u_{2, j}+\frac{i}{2}}{u_{3, k}-u_{2, j}-\frac{i}{2}} \prod_{j=1}^{K_{4}} \frac{x_{3, k}-x_{4, j}^{+}}{x_{3, k}-x_{4, j}^{-}}, \\
& 1=\left(\frac{x_{4, k}^{-}}{x_{4, k}^{+}}\right)^{L} \prod_{\substack{j=1 \\
j \neq k}}^{K_{4}}\left(\frac{u_{4, k}-u_{4, j}+i}{u_{4, k}-u_{4, j}-i} \sigma^{2}\left(x_{4, k}, x_{4, j}\right)\right) \\
& \times \prod_{j=1}^{K_{1}} \frac{1-g^{2} / x_{4, k^{-}}^{-} x_{1, j}}{1-g^{2} / x_{4, k}^{+} x_{1, j}} \prod_{j=1}^{K_{3}} \frac{x_{4, k}^{-}-x_{3, j}}{x_{4, k}^{+}-x_{3, j}} \prod_{j=1}^{K_{5}} \frac{x_{4, k}^{-}-x_{5, j}}{x_{4, k}^{+}-x_{5, j}} \prod_{j=1}^{K_{7}} \frac{1-g^{2} / x_{4, k^{x}}^{-}{ }_{7, j}}{1-g^{2} / x_{4, k}^{+} x_{7, j}}, \\
& 1=\prod_{j=1}^{K_{6}} \frac{u_{5, k}-u_{6, j}+\frac{i}{2}}{u_{5, k}-u_{6, j}-\frac{i}{2}} \prod_{j=1}^{K_{4}} \frac{x_{5, k}-x_{4, j}^{+}}{x_{5, k}-x_{4, j}^{-}}, \\
& 1=\prod_{\substack{j=1 \\
j \neq k}}^{K_{6}} \frac{u_{6, k}-u_{6, j}-i}{u_{6, k}-u_{6, j}+i} \prod_{j=1}^{K_{5}} \frac{u_{6, k}-u_{5, j}+\frac{i}{2}}{u_{6, k}-u_{5, j}-\frac{i}{2}} \prod_{j=1}^{K_{7}} \frac{u_{6, k}-u_{7, j}+\frac{i}{2}}{u_{6, k}-u_{7, j}-\frac{i}{2}}, \\
& 1=\prod_{j=1}^{K_{6}} \frac{u_{7, k}-u_{6, j}+\frac{i}{2}}{u_{7, k}-u_{6, j}-\frac{i}{2}} \prod_{j=1}^{K_{4}} \frac{1-g^{2} / x_{7, k^{x}}^{x_{4, j}^{+}}}{1-g^{2} / x_{7, k^{x}} x_{4, j}},
\end{aligned}
$$

- The corresponding eigenvalue of the dilatation operator $\left(D-D_{0}\right)$ is given by

$$
\gamma(g)=2 g^{2} Q_{2}=\frac{i}{r-1} \sum_{j=1}^{K_{4}}\left(\frac{1}{\left(x^{+}\left(u_{j}\right)\right)}-\frac{1}{\left(x^{-}\left(u_{j}\right)\right)}\right) .
$$

- These equations yield the AD of any local trace operator up to order $\mathcal{O}\left(g^{2 L}\right)$.
- Recently, adapting the techniques of the Thermodynamic Bethe Ansatz a complete all-loop set of spectral equations for the planar $\mathcal{N}=4$ has been formulated.
- It is a an infinite set of coupled non-linear integral equations.
- The spectral problem seems to have been solved!
- And thanks to AdS/CFT also the free string theory on $A d S_{5} \times S^{5}$!
- The corresponding eigenvalue of the dilatation operator $\left(D-D_{0}\right)$ is given by

$$
\gamma(g)=2 g^{2} Q_{2}=\frac{i}{r-1} \sum_{j=1}^{K_{4}}\left(\frac{1}{\left(x^{+}\left(u_{j}\right)\right)}-\frac{1}{\left(x^{-}\left(u_{j}\right)\right)}\right)
$$

- These equations yield the AD of any local trace operator up to order $\mathcal{O}\left(g^{2 L}\right)$.
- Recently, adapting the techniques of the Thermodynamic Bethe Ansatz a complete all-loop set of spectral equations for the planar

- It is a an infinite set of coupled non-linear integral equations.
- The spectral problem seems to have been solved!
- And thanks to AdS/CFT also the free string theory on $A d S_{5} \times S^{5}$!
- The corresponding eigenvalue of the dilatation operator $\left(D-D_{0}\right)$ is given by

$$
\gamma(g)=2 g^{2} Q_{2}=\frac{i}{r-1} \sum_{j=1}^{K_{4}}\left(\frac{1}{\left(x^{+}\left(u_{j}\right)\right)}-\frac{1}{\left(x^{-}\left(u_{j}\right)\right)}\right)
$$

- These equations yield the AD of any local trace operator up to order $\mathcal{O}\left(g^{2 L}\right)$.
- Recently, adapting the techniques of the Thermodynamic Bethe Ansatz a complete all-loop set of spectral equations for the planar $\mathcal{N}=4$ has been formulated. [G. Arutyunov, S. Frolov, 2007], [G. Arutyunov, S. Frolov, 2009]
[D.Bombardielli, D. Fioravanti, R. Tateo '09; N.Gromov, V.Kazakov, A.Kozak, P.Vieira '09; G.Arutyunov, S.Frolov '09]
- It is a an infinite set of coupled non-linear integral equations.
- The spectral problem seems to have been solved!
- And thanks to AdS/CFT also the free string theory on $A d S_{5} \times S^{5}$.
- The corresponding eigenvalue of the dilatation operator $\left(D-D_{0}\right)$ is given by

$$
\gamma(g)=2 g^{2} Q_{2}=\frac{i}{r-1} \sum_{j=1}^{K_{4}}\left(\frac{1}{\left(x^{+}\left(u_{j}\right)\right)}-\frac{1}{\left(x^{-}\left(u_{j}\right)\right)}\right) .
$$

- These equations yield the AD of any local trace operator up to order $\mathcal{O}\left(g^{2 L}\right)$.
- Recently, adapting the techniques of the Thermodynamic Bethe Ansatz a complete all-loop set of spectral equations for the planar $\mathcal{N}=4$ has been formulated. [G. Arutyunv, s. Frolov, 2007], [G. Arutyunov, S. Frolov, 2009]
[D.Bombardielli, D. Fioravanti, R. Tateo '09; N.Gromov, V.Kazakov, A.Kozak, P.Vieira '09; G.Arutyunov, S.Frolov '09]
- It is a an infinite set of coupled non-linear integral equations.
- The spectral problem seems to have been solved!
- And thanks to AdS/CFT also the free string theory on $A d S_{5} \times S^{5}$!
- The corresponding eigenvalue of the dilatation operator $\left(D-D_{0}\right)$ is given by

$$
\gamma(g)=2 g^{2} Q_{2}=\frac{i}{r-1} \sum_{j=1}^{K_{4}}\left(\frac{1}{\left(x^{+}\left(u_{j}\right)\right)}-\frac{1}{\left(x^{-}\left(u_{j}\right)\right)}\right) .
$$

- These equations yield the AD of any local trace operator up to order $\mathcal{O}\left(g^{2 L}\right)$.
- Recently, adapting the techniques of the Thermodynamic Bethe Ansatz a complete all-loop set of spectral equations for the planar $\mathcal{N}=4$ has been formulated. [G. Arutyunv, s. Frolov, 2007], [G. Arutyunov, S. Frolov, 2009]
[D.Bombardielli, D. Fioravanti, R. Tateo '09; N.Gromov, V.Kazakov, A.Kozak, P.Vieira '09; G.Arutyunov, S.Frolov '09]
- It is a an infinite set of coupled non-linear integral equations.
- The spectral problem seems to have been solved!
- And thanks to AdS/CFT also the free string theory on $\mathrm{AdS}_{5} \times S^{5}$!
- The corresponding eigenvalue of the dilatation operator $\left(D-D_{0}\right)$ is given by

$$
\gamma(g)=2 g^{2} Q_{2}=\frac{i}{r-1} \sum_{j=1}^{K_{4}}\left(\frac{1}{\left(x^{+}\left(u_{j}\right)\right)}-\frac{1}{\left(x^{-}\left(u_{j}\right)\right)}\right) .
$$

- These equations yield the AD of any local trace operator up to order $\mathcal{O}\left(g^{2 L}\right)$.
- Recently, adapting the techniques of the Thermodynamic Bethe Ansatz a complete all-loop set of spectral equations for the planar $\mathcal{N}=4$ has been formulated. [G. Arutyunov, s. Frolov, 2007], [G. Arutyunov, S. Frolov, 2009]
[D.Bombardielli, D. Fioravanti, R. Tateo '09; N.Gromov, V.Kazakov, A.Kozak, P.Vieira '09; G.Arutyunov, S.Frolov '09]
- It is a an infinite set of coupled non-linear integral equations.
- The spectral problem seems to have been solved!
- And thanks to AdS/CFT also the free string theory on $\operatorname{AdS}_{5} \times S^{5}$!

... but they are still a conjecture

Twist operators and the five-loop result

- A suitable testing ground at weak coupling provide twist operators.
- The twist-two operators (in the $\mathfrak{s l}(2)$ twist equals the length) are the shortest operators in the theory

- Interestingly enough closed expressions (as function of M) of the AD can be found to first few orders. At one-loop

- The harmonic sum S_{1} is the simplest of the so called nested harmonic sums

Twist operators and the five-loop result

- A suitable testing ground at weak coupling provide twist operators.
- The twist-two operators (in the $\mathfrak{s l}(2)$ twist equals the length) are the shortest operators in the theory

$$
\mathcal{O}=\operatorname{Tr}\left(\mathcal{D}^{M} \mathcal{Z}^{2}\right)+\ldots
$$

- Interestingly enough closed expressions (as function of M) of the AD can be found to first few orders. At one-loop

$$
\gamma^{\prime}(g)=8 g^{2} S_{1}(M)
$$

- The harmonic sum S_{1} is the simplest of the so called nested harmonic sums

Twist operators and the five-loop result

- A suitable testing ground at weak coupling provide twist operators.
- The twist-two operators (in the $\mathfrak{s l}(2)$ twist equals the length) are the shortest operators in the theory

$$
\mathcal{O}=\operatorname{Tr}\left(\mathcal{D}^{M} \mathcal{Z}^{2}\right)+\ldots
$$

- Interestingly enough closed expressions (as function of M) of the AD can be found to first few orders. At one-loop

$$
\gamma(g)=8 g^{2} S_{1}(M) .
$$

- The harmonic sum S_{1} is the simplest of the so called nested harmonic sums

Twist operators and the five-loop result

- A suitable testing ground at weak coupling provide twist operators.
- The twist-two operators (in the $\mathfrak{s l}(2)$ twist equals the length) are the shortest operators in the theory

$$
\mathcal{O}=\operatorname{Tr}\left(\mathcal{D}^{M} \mathcal{Z}^{2}\right)+\ldots
$$

- Interestingly enough closed expressions (as function of M) of the AD can be found to first few orders. At one-loop

$$
\gamma(g)=8 g^{2} S_{1}(M) .
$$

- The harmonic sum S_{1} is the simplest of the so called nested harmonic sums

$$
S_{a}(M)=\sum_{i=1}^{M} \frac{(\operatorname{sgn}(a))^{i}}{i|a|}, S_{a_{1}, \ldots, a_{n}}(M)=\sum_{i=1}^{M} \frac{\left(\operatorname{sgn}\left(a_{1}\right)\right)^{i}}{i\left|a_{1}\right|} S_{a_{2}, \ldots, a_{n}}(i) .
$$

$$
\begin{gathered}
\frac{\gamma_{2}(M)}{4}=\mathbf{S}_{1}(M) \\
\frac{\gamma_{4}(M)}{4}=\mathbf{S}_{\mathbf{3}}+\mathbf{S}_{-\mathbf{3}}-2\left(S_{1,2}+S_{2,1}+S_{1,-2}\right) \\
\frac{\gamma_{6}(M)}{8}=\mathbf{2 S}_{\mathbf{5}}+\mathbf{2} \mathbf{S}_{-\mathbf{5}}-S_{-3,2}+2\left(S_{-2,-2,1}+S_{-2,1,-2}+S_{1,-2,-2}+S_{1,-2,2}\right. \\
\left.-S_{-3,-2}-S_{-2,-3}-S_{3,-2}\right)+4\left(S_{1,2,2}+S_{2,1,2}+S_{2,2,1}+S_{3,1,1}+S_{1,3,1}\right. \\
\left.+S_{1,1,3}+S_{1,2,-2}+S_{2,1,-2}-S_{1,4}-S_{4,1}-S_{-4,1}\right)-5\left(S_{2,3}+S_{3,2}\right) \\
+6 S_{2,-2,1}-8\left(S_{1,-4}+S_{1,1,-2,1}-S_{1,-3,1}\right)-9 S_{2,-3}+12 S_{1,1,-3}
\end{gathered}
$$

Up to this order one can calculate the AD using the asymptotic Bethe equations and there is no need to refer to the full spectral equations...
... at higher orders ABE still "work", but a mismatch with field theory computations is expected.

$$
\begin{aligned}
& 4 S_{-7}+6 S_{7}+2\left(S_{-3,1,3}+S_{-3,2,2}+S_{-3,3,1}+S_{-2,4,1}\right)+3\left(-S_{-2,5}\right. \\
& \left.+S_{-2,3,-2}\right)+4\left(S_{-2,1,4}-S_{-2,-2,-2,1}-S_{-2,1,2,-2}-S_{-2,2,1,-2}-S_{1,-2,1,3}\right. \\
& \left.-S_{1,-2,2,2}-S_{1,-2,3,1}\right)+5\left(-S_{-3,4}+S_{-2,-2,-3}\right)+6\left(-S_{5,-2}\right. \\
& \left.+S_{1,-2,4}-S_{-2,-2,1,-2}-S_{1,-2,-2,-2}\right)+7\left(-S_{-2,-5}+S_{-3,-2,-2}\right. \\
& \left.+S_{-2,-3,-2}+S_{-2,-2,3}\right)+8\left(S_{-4,1,2}+S_{-4,2,1}-S_{-5,-2}-S_{-4,3}\right. \\
& \left.-S_{-2,1,-2,-2}+S_{1,-2,1,1,-2}\right)+9 S_{3,-2,-2}-10 S_{1,-2,2,-2}+11 S_{-3,2,-2} \\
& +12\left(-S_{-6,1}+S_{-2,2,-3}+S_{1,4,-2}+S_{4,-2,1}+S_{4,1,-2}-S_{-3,1,1,-2}-S_{-2,2,-2,1}\right. \\
& -S_{1,1,2,3}-S_{1,1,3,-2}-S_{1,1,3,2}-S_{1,2,1,3}-S_{1,2,2,-2}-S_{1,2,2,2}-S_{1,2,3,1}-S_{1,3,1,-2} \\
& -S_{1,3,1,2}-S_{1,3,2,1}-S_{2,-2,1,2}-S_{2,-2,2,1}-S_{2,1,1,3}-S_{2,1,2,2,2}-S_{2,1,2,2} \\
& -S_{2,1,3,1}-S_{2,2,1,-2}-S_{2,2,1,2}-S_{2,2,2,1}-S_{2,3,1,1}-S_{3,1,1,-2}-S_{3,1,1,2}-S_{3,1,2,1} \\
& \left.-S_{3,2,1,1}\right)+13 S_{2,-2,3}-14 S_{2,-2,1,-2}+15\left(S_{2,3,-2}+S_{3,2,-2}\right) \\
& +16\left(S_{-4,1,-2}+S_{-2,1,-4}-S_{-2,-2,1,2}-S_{-2,-2,2,1}-S_{-2,1,-2,2}-S_{-2,1,1,-3}\right. \\
& -S_{1,-3,1,2}-S_{1,-3,2,1}-S_{1,-2,-2,2}-S_{2,-2,-2,1}+S_{-2,1,1,-2,1}+S_{1,1,-2,1,-2} \\
& \left.+S_{1,1,-2,1,2}+S_{1,1,-2,2,1}\right)-17 S_{-5,2}+18\left(-S_{4,-3}-S_{6,1}+S_{1,-3,3}\right) \\
& +20\left(-S_{1,-6}-S_{1,6}-S_{4,3}+S_{-5,1,1}+S_{-4,-2,1}+S_{-3,-2,2}+S_{-2,-4,1}\right. \\
& \left.+S_{-2,-3,2}+S_{1,3,3}+S_{3,1,3}+S_{3,3,1}-S_{1,1,-2,3}-S_{1,2,-2,-2}-S_{2,1,-2,-2}\right) \\
& -21 S_{3,4}+22\left(S_{1,-2,-4}+S_{2,2,3}+S_{2,3,2}+S_{3,-2,2}+S_{3,2,2}\right)+23\left(-S_{-3,-4}\right. \\
& \left.-S_{5,2}+S_{2,-2,-3}\right)+24\left(-S_{-4,-3}+S_{1,-4,-2}-S_{1,-3,1,-2}-S_{1,1,1,4}-S_{1,1,4,1}\right. \\
& -S_{1,3,-2,1}-S_{1,4,1,1}-S_{3,-2,1,1}-S_{3,1,-2,1}-S_{4,1,1,1}+S_{-2,-2,1,1,1}+S_{-2,1,-2,1,1} \\
& +S_{1,-2,-2,2,1}+S_{1,-2,1,-2,1}+S_{1,1,-2,-2,1}+S_{1,1,1,-2,-2}+S_{1,1,2,-2,1}+S_{1,2,1,-2,1} \\
& \left.+S_{2,1,1,-2,1}\right)+25 S_{2,-3,-2}+26\left(-S_{2,5}+S_{1,4,2}+S_{2,4,1}+S_{4,1,2}+S_{4,2,1}\right) \\
& +28\left(S_{1,2,4}+S_{2,1,4}-S_{-3,1,-2,1}-S_{-2,1,-3,1}-S_{1,-2,1,-3}\right)+30 S_{-3,1,-3} \\
& +32\left(S_{1,5,1}+S_{5,1,1}-S_{-3,-2,1,1}-S_{-2,-3,1,1}-S_{1,-3,-2,1}-S_{1,-2,-3,1}\right. \\
& \left.-S_{2,2,-2,1}+S_{1,2,-2,1,1}+S_{2,1,-2,1,1}-S_{1,1,1,-2,1,1}\right)+36\left(S_{1,1,5}+S_{1,3,-3}\right. \\
& +S_{3,1,-3}-S_{1,1,-3,-2}-S_{1,1,-2,-3}-S_{1,1,2,-3}-S_{1,2,-2,2}-S_{1,2,1,-3}-S_{2,1,-2,2} \\
& \left.-S_{2,1,1,-3}\right)+38 S_{-3,-3,1}+40\left(-S_{1,-4,1,1}-S_{2,-3,1,1}+S_{1,1,1,-2,2}\right) \\
& -41 S_{3,-4}+42\left(-S_{2,-5}+S_{1,-4,2}+S_{1,-3,-3}\right)+44\left(S_{1,-5,1}+S_{2,-3,2}+S_{3,-3,1}\right) \\
& +46 S_{2,2,-3}+48 S_{1,1,-3,1,1}+60\left(S_{1,1,-5}-S_{1,1,-3,2}\right)+62 S_{2,-4,1}+64 S_{1,1,1,-3,1} \\
& +68\left(S_{1,2,-4}+S_{2,1,-4}-S_{1,2,-3,1}-S_{2,1,-3,1}\right)-72 S_{1,1,1,-4}-80 S_{1,1,-4,1} \\
& -\zeta(3) S_{1}\left(S_{3}-S_{-3}+2 S_{-2,1}\right) \text {. }
\end{aligned}
$$

Five-loop [T.Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& \left(20480 S_{-5}-8192 S_{-3} S_{-2}+2048 S_{3}-20480 S_{-4,1}-16384 S_{-3,2}-\frac{28672}{3} S_{-2,3}\right. \\
& \left.+\frac{32768}{3} S_{-3,1,1}+\frac{16384}{3} S_{-2,1,2}+\frac{16384}{3} S_{-2,2,1}\right) S_{1}^{4}+\left(20480 S_{-3}^{2}+4096 S_{3}^{2}+81920 S_{-6}\right. \\
& +S_{-2}\left(30720 S_{-4}+8192 S_{4}\right)+30720 S_{6}-98304 S_{-5,1}-12288 S_{-4,-2}-102400 S_{-4,2} \\
& -8192 S_{-3,-3}-90112 S_{-3,3}+S_{3}\left(24576 S_{-3}-16384 S_{-2,1}\right)-57344 S_{-2,4}+4096 S_{4,2} \\
& +16384 S_{5,1}+122880 S_{-4,1,1}-16384 S_{-3,-2,1}+106496 S_{-3,1,2}+106496 S_{-3,2,1} \\
& -16384 S_{-2,-3,1}-8192 S_{-2,-2,2}+S_{2}\left(-8192 S_{-2}^{2}+49152 S_{-4}+8192 S_{4}-\frac{131072}{3} S_{-3,1}\right. \\
& \left.-\frac{81920}{3} S_{-2,2}+\frac{65536}{3} S_{-2,1,1}\right)+65536 S_{-2,1,3}+65536 S_{-2,2,2}+65536 S_{-2,3,1} \\
& \left.-98304 S_{-3,1,1,1}-49152 S_{-2,1,1,2}-49152 S_{-2,1,2,1}-49152 S_{-2,2,1,1}\right) S_{1}^{3}+\left(\left(12288 S_{-3}\right.\right. \\
& \left.+9216 S_{3}\right) S_{-2}^{2}+\left(53248 S_{-5}+24576 S_{5}-61440 S_{-4,1}-40960 S_{-3,2}-20480 S_{-2,3}\right. \\
& \left.+32768 S_{-3,1,1}+16384 S_{-2,1,2}+16384 S_{-2,2,1}\right) S_{-2}+113664 S_{-7}+3072 S_{7}-163840 S_{-6,1} \\
& -172032 S_{-5,2}-174080 S_{-4,3}-163840 S_{-3,4}+S_{2}^{2}\left(36864 S_{-3}+12288 S_{3}-24576 S_{-2,1}\right) \\
& +\left(-12288 S_{-4}-36864 S_{4}\right) S_{-2,1}-118784 S_{-2,5}+8192 S_{4,3}+8192 S_{5,2}-40960 S_{6,1} \\
& +253952 S_{-5,1,1}+24576 S_{-4,-2,1}+24576 S_{-4,1,-2}+266240 S_{-4,1,2}+266240 S_{-4,2,1} \\
& +16384 S_{-3,-3,1}-8192 S_{-3,-2,2}+16384 S_{-3,1,-3}+249856 S_{-3,1,3}+8192 S_{-3,2,-2} \\
& +258048 S_{-3,2,2}+249856 S_{-3,3,1}-16384 S_{-2,-3,2}-16384 S_{-2,-2,3}+S_{-3}\left(14336 S_{-4}\right. \\
& \left.+43008 S_{4}-49152 S_{-3,1}-24576 S_{-2,2}+32768 S_{-2,1,1}\right)+S_{3}\left(52224 S_{-4}+12288 S_{4}\right. \\
& \left.-57344 S_{-3,1}-40960 S_{-2,2}+49152 S_{-2,1,1}\right)+172032 S_{-2,1,4}+180224 S_{-2,2,3}
\end{aligned}
$$

Five-loop [T.Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& +180224 S_{-2,3,2}+172032 S_{-2,4,1}-8192 S_{4,1,2}-8192 S_{4,2,1}-32768 S_{5,1,1} \\
& -368640 S_{-4,1,1,1}+32768 S_{-3,-2,1,1}-344064 S_{-3,1,1,2}-344064 S_{-3,1,2,1}-344064 S_{-3,2,1,1} \\
& +32768 S_{-2,-3,1,1}+16384 S_{-2,-2,1,2}+16384 S_{-2,-2,2,1}+S_{2}\left(92160 S_{-5}+S_{-2}\left(49152 S_{-3}\right.\right. \\
& \left.+24576 S_{3}\right)+30720 S_{5}-122880 S_{-4,1}-12288 S_{-3,-2}-122880 S_{-3,2}-86016 S_{-2,3} \\
& +12288 S_{4,1}+172032 S_{-3,1,1}-24576 S_{-2,-2,1}+122880 S_{-2,1,2}+122880 S_{-2,2,1} \\
& \left.-147456 S_{-2,1,1,1}\right)-221184 S_{-2,1,1,3}-221184 S_{-2,1,2,2}-221184 S_{-2,1,3,1} \\
& -221184 S_{-2,2,1,2}-221184 S_{-2,2,2,1}-221184 S_{-2,3,1,1}+393216 S_{-3,1,1,1,1} \\
& \left.+196608 S_{-2,1,1,1,2}+196608 S_{-2,1,1,2,1}+196608 S_{-2,1,2,1,1}+196608 S_{-2,2,1,1,1}\right) S_{1}^{2} \\
& +\left(2048 S_{2}^{4}+8192 S_{-2} S_{2}^{3}+\left(9216 S_{-2}^{2}+24576 S_{-4}+9216 S_{4}-36864 S_{-3,1}-30720 S_{-2,2}\right.\right. \\
& \left.+49152 S_{-2,1,1}\right) S_{2}^{2}+\left(4096 S_{-2}^{3}+\left(32768 S_{-4}+24576 S_{4}-49152 S_{-3,1}-24576 S_{-2,2}\right.\right. \\
& \left.+32768 S_{-2,1,1}\right) S_{-2}+6144 S_{3}^{2}+53248 S_{-6}+6144 S_{6}-90112 S_{-5,1}-94208 S_{-4,2} \\
& -94208 S_{-3,3}+S_{3}\left(32768 S_{-3}-32768 S_{-2,1}\right)-16384 S_{-3} S_{-2,1}-77824 S_{-2,4}+8192 S_{4,2} \\
& -16384 S_{5,1}+163840 S_{-4,1,1}+16384 S_{-3,-2,1}+16384 S_{-3,1,-2}+172032 S_{-3,1,2} \\
& +172032 S_{-3,2,1}-16384 S_{-2,-2,2}+139264 S_{-2,1,3}+147456 S_{-2,2,2}+139264 S_{-2,3,1}
\end{aligned}
$$

Five-loop [т.Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& -16384 S_{4,1,1}-294912 S_{-3,1,1,1}+32768 S_{-2,-2,1,1}-245760 S_{-2,1,1,2}-245760 S_{-2,1,2,1} \\
& \left.-245760 S_{-2,2,1,1}+393216 S_{-2,1,1,1,1}\right) S_{2}+13824 S_{-4}^{2}+4608 S_{4}^{2}+16384 S_{-3,1}^{2} \\
& +14336 S_{-2,2}^{2}+57344 S_{-8}+S_{-2}^{2}\left(3072 S_{-4}+12288 S_{4}\right)+64512 S_{8}-98304 S_{-7,1} \\
& -30720 S_{-6,-2}-98304 S_{-6,2}-16384 S_{-5,-3}-102400 S_{-5,3}-3072 S_{-4,-4}-98304 S_{-4,4} \\
& -98304 S_{-3,5}-92160 S_{-2,6}-15360 S_{4,4}-12288 S_{5,3}+26624 S_{6,2}+36864 S_{7,1} \\
& +163840 S_{-6,1,1}-24576 S_{-5,-2,1}+180224 S_{-5,1,2}+180224 S_{-5,2,1}-24576 S_{-4,-3,1} \\
& -6144 S_{-4,-2,-2}-18432 S_{-4,-2,2}+184320 S_{-4,1,3}+196608 S_{-4,2,2}+184320 S_{-4,3,1} \\
& -8192 S_{-3,-4,1}-4096 S_{-2,-3,-2}-28672 S_{-3,-3,2}-4096 S_{-3,-2,-3}+12288 S_{-3,-2,3} \\
& +180224 S_{-3,1,4}+192512 S_{-3,2,3}+192512 S_{-3,3,2}+176128 S_{-3,4,1}+8192 S_{-2,-5,1} \\
& -22528 S_{-2,-4,2}+4096 S_{-2,-3,3}+30720 S_{-2,-2,4}+S_{-3,1}\left(36864 S_{-2,2}-16384 S_{-2,1,1}\right) \\
& -8192 S_{-2,2} S_{-2,1,1}+S_{-4}\left(-14336 S_{-3,1}-10240 S_{-2,2}+36864 S_{-2,1,1}\right) \\
& +S_{4}\left(30720 S_{-4}-51200 S_{-3,1}-43008 S_{-2,2}+69632 S_{-2,1,1}\right)+139264 S_{-2,1,5} \\
& +S_{-2,1}\left(-4096 S_{-5}-20480 S_{5}+24576 S_{-6,1}+36864 S_{-3,2}+28672 S_{-2,3}-16384 S_{-3,1,1}\right. \\
& \left.-8192 S_{-2,1,2}-8192 S_{-2,2,1}\right)+145408 S_{-2,2,4}+147456 S_{-2,3,3}+143360 S_{-2,4,2} \\
& +131072 S_{-2,5,1}-8192 S_{4,1,3}-8192 S_{4,2,2}-8192 S_{4,3,1}-16384 S_{5,1,2}-16384 S_{5,2,1} \\
& -294912 S_{-5,1,1,1}-319488 S_{-4,1,1,2}-319488 S_{-4,1,2,1}-319488 S_{-4,2,1,1}+49152 S_{-3,-3,1,1} \\
& +8192 S_{-3,-2,-2,1}+16384 S_{-3,-2,1,2}+16384 S_{-3,-2,2,1}-16384 S_{-3,1,1,-3}-311296 S_{-3,1,1,3} \\
& -327680 S_{-3,1,2,2}-311296 S_{-3,1,3,1}-16384 S_{-3,2,-2,1}-327680 S_{-3,2,1,2}-327680 S_{-3,2,2,1} \\
& -311296 S_{-3,2,1,1}+73728 S_{-2,-4,1,1}+8192 S_{-2,-3,-2,1}+40960 S_{-2,-3,1,2}+40960 S_{-2,-3,2,1}
\end{aligned}
$$

Five-loop [T. Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& +8192 S_{-2,-2,-3,1}+4096 S_{-2,-2,-2,2}+16384 S_{-2,-2,1,3}+16384 S_{-2,-2,2,2}+16384 S_{-2,-2,3,1} \\
& -24576 S_{-2,1,1,-4}+S_{-3}\left(40960 S_{-5}+16384 S_{5}-28672 S_{-4,1}-22528 S_{-3,2}-22528 S_{-2,3}\right. \\
& +4096 S_{4,1}+49152 S_{-2,1,1}-8192 S_{-2,-2,1}+36864 S_{-2,1,2}+36864 S_{-2,2,1} \\
& \left.-49152 S_{-2,1,1,1}\right)+S_{3}\left(40960 S_{-5}+8192 S_{5}-53248 S_{-4,1}-51200 S_{-3,2}-\frac{112640 S_{-2,3}}{3}\right. \\
& \left.+\frac{212999}{3} S_{-3,1,1}+\frac{143360}{3} S_{-2,1,2}+\frac{143360}{3} S_{-2,2,1}-49152 S_{-2,1,1,1}\right)-221184 S_{-2,1,1,4} \\
& -8192 S_{-2,1,2,-3}-237568 S_{-2,1,2,3}-237568 S_{-2,1,3,2}-221184 S_{-2,1,4,1}-16384 S_{-2,2,-3,1} \\
& -8192 S_{-2,2,-2,2}-8192 S_{-2,2,1,-3}+S_{-2}\left(4096 S_{-3}^{2}+8192 S_{3}^{2}+56320 S_{-6}+25600 S_{6}\right. \\
& -32768 S_{-5,1}-26624 S_{-4,2}-28672 S_{-3,3}+S_{3}\left(20480 S_{-3}-8192 S_{-2,1}\right)-24576 S_{-2,4} \\
& +2048 S_{4,2}+8192 S_{5,1}+36864 S_{-4,1,1}-8192 S_{-3,-2,1}+36864 S_{-3,1,2}+36864 S_{-3,2,1} \\
& -8192 S_{-2,-3,1}-4096 S_{-2,-2,2}+24576 S_{-2,1,3}+24576 S_{-2,2,2}+24576 S_{-2,3,1} \\
& \left.-49152 S_{-3,1,1,1}-24576 S_{-2,1,1,2}-24576 S_{-2,1,2,1}-24576 S_{-2,2,1,1}\right)-237568 S_{-2,2,1,3} \\
& -245760 S_{-2,2,2,2}-237568 S_{-2,2,3,1}-16384 S_{-2,3,-2,1}-237568 S_{-2,3,1,2}-237568 S_{-2,3,2,1} \\
& -221184 S_{-2,4,1,1}+24576 S_{4,1,1,2}+24576 S_{4,1,2,1}+24576 S_{4,2,2,1,1}+98304 S_{5,1,1,1}
\end{aligned}
$$

Five-loop [T.Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& +491520 S_{-4,1,1,1,1}-98304 S_{-3,-2,1,1,1}-32768 S_{-3,1,-2,1,1}+491520 S_{-3,1,1,1,2} \\
& +491520 S_{-2,1,1,2,1}+491520 S_{-3,1,2,1,1}+491520 S_{-3,2,1,1,1}-98304 S_{-2,-3,1,1,1} \\
& -49152 S_{-2,-2,1,1,2}-49152 S_{-2,-2,1,2,1}-49152 S_{-2,-2,2,1,1}-32768 S_{-2,1,-3,1,1} \\
& -16384 S_{-2,1,-2,1,2}-16384 S_{-2,1,-2,2,1}+327680 S_{-2,1,1,1,3}+327680 S_{-2,1,1,2,2} \\
& +327680 S_{-2,1,1,3,1}+327680 S_{-2,1,2,1,2}+327680 S_{-2,1,2,2,1}+327680 S_{-2,1,3,1,1} \\
& -16384 S_{-2,2,-2,1,1}+327680 S_{-2,2,1,1,2}+327680 S_{-2,2,1,2,1}+327680 S_{-2,2,2,1,1} \\
& +327680 S_{-2,3,1,1,1}-655360 S_{-3,1,1,1,1,1}-327680 S_{-2,1,1,1,1,2}-327680 S_{-2,1,1,1,2,1} \\
& \left.-327680 S_{-2,1,1,2,1,1}-327680 S_{-2,1,2,1,1,1}-327680 S_{-2,2,1,1,1,1}\right) S_{1}+512 S_{3}^{3}-7168 S_{-9} \\
& +7168 S_{9}-18432 S_{-8,1}-2048 S_{-2,-7}+S_{3}^{2}\left(3072 S_{-3}-2048 S_{-2,1}\right)+S_{2}^{3}\left(1024 S_{-3}\right. \\
& \left.+1024 S_{3}-2048 S_{-2,1}\right)+S_{-2}\left(3072 S_{-3} S_{4}-6144 S_{-2,1} S_{4}+S_{3}\left(3072 S_{-4}+6144 S_{4}\right.\right. \\
& \left.\left.-4096 S_{-3,1}-2048 S_{-2,2}\right)\right)-8192 S_{1,-8}+8192 S_{1,8}-16384 S_{2,-7}+16384 S_{2,7} \\
& -3072 S_{3,-6}+3072 S_{3,6}-13824 S_{4,-5}+4608 S_{4,5}-34816 S_{5,-4}-2048 S_{5,4}-35328 S_{6,-3} \\
& -4608 S_{6,3}+10240 S_{7,-2}+9216 S_{7,2}+16384 S_{8,1}+26624 S_{-7,1,1}-27648 S_{-6,-2,1} \\
& -6144 S_{-6,1,-2}+12288 S_{-6,1,2}+12288 S_{-6,2,1}-18432 S_{-5,-3,1}-2048 S_{-5,-2,-2} \\
& -4096 S_{-5,-2,2}-18432 S_{-5,1,-3}-4096 S_{-5,2,-2}+26624 S_{-4,-4,1}+44032 S_{-4,-3,-2} \\
& +51200 S_{-4,-3,2}+70656 S_{-4,-2,-3}+12288 S_{-4,-2,3}+13312 S_{-4,1,-4}+17408 S_{-4,1,4} \\
& +7168 S_{-4,2,-3}-1024 S_{-4,3,-2}+44032 S_{-4,4,1}-10240 S_{-3,-5,1}+45056 S_{-3,-4,-2} \\
& +51200 S_{-3,-4,2}+157696 S_{-2,-3,-3}+33792 S_{-3,-3,3}+73728 S_{-3,-2,-4}+8192 S_{-3,-2,4}
\end{aligned}
$$

Five-loop [T.Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& -8192 S_{-2,1,-5}+61440 S_{-3,1,5}+14336 S_{-3,2,-4}+20480 S_{-3,2,4}-3072 S_{-3,3,-3} \\
& +10240 S_{-3,4,-2}+45056 S_{-3,4,2}+90112 S_{-3,5,1}-13312 S_{-2,-6,1}+1024 S_{-2,-5,-2} \\
& -4096 S_{-2,-5,2}+68608 S_{-2,-4,-3}+12288 S_{-2,-4,3}+70656 S_{-2,-3,-4}+8192 S_{-2,-3,4} \\
& +15360 S_{-2,-2,-5}+7168 S_{-2,-2,5}-7168 S_{-2,1,-6}+21504 S_{-2,1,6}-10240 S_{-7,-2} \\
& -13312 S_{-7,2}+16896 S_{-6,-3}-5632 S_{-6,3}+5120 S_{-5,-4}+1024 S_{-5,4}+3584 S_{-4,-5} \\
& -27136 S_{-4,5}+9216 S_{-3,-6}-23552 S_{-3,6}-4096 S_{-2,2,-5}+28672 S_{-2,2,5} \\
& +1024 S_{-2,3,4}+8192 S_{-2,4,-3}+11264 S_{-2,4,3}+13312 S_{-2,5,-2}+40960 S_{-2,5,2} \\
& +35840 S_{-2,6,1}+40960 S_{1,-7,1}-11264 S_{1,-6,-2}+8192 S_{1,-6,2}-32768 S_{1,-5,-3} \\
& +4096 S_{1,-5,3}+18432 S_{1,-4,-4}+23552 S_{1,-4,4}-10240 S_{1,-3,-5}+71680 S_{1,-3,5} \\
& -11264 S_{1,-2,-6}+25600 S_{1,-2,6}+32768 S_{1,1,-7}-32768 S_{1,1,7}+8192 S_{1,2,-6}-8192 S_{1,2,6} \\
& +4096 S_{1,3,-5}+35840 S_{1,4,-4}-6144 S_{1,4,4}+83968 S_{1,5,-3}+18432 S_{1,5,3}+17408 S_{1,6,-2} \\
& +22528 S_{1,6,2}-32768 S_{1,7,1}+14336 S_{2,-6,1}-20480 S_{2,-5,-2}-8192 S_{2,-5,2} \\
& +22528 S_{2,-4,-3}+1024 S_{2,-4,3}+32768 S_{2,-3,-4}+30720 S_{2,-3,4}-6144 S_{2,-2,-5} \\
& +38912 S_{2,-2,5}+8192 S_{2,1,-6}-8192 S_{2,1,6}-4096 S_{2,2,-5}+16384 S_{2,2,5}-1024 S_{2,3,-4} \\
& -5120 S_{2,3,4}+43008 S_{2,4,-3}+9216 S_{2,4,3}+32768 S_{2,5,-2}+40960 S_{2,5,2}+6144 S_{2,6,1} \\
& +2048 S_{3,-5,1}-3072 S_{3,-4,-2}-3072 S_{3,-4,2}+12288 S_{3,-2,-3}+1024 S_{3,-3,3}+5120 S_{3,-2,-4}
\end{aligned}
$$

Five-loop [т.Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& +7168 S_{3,-2,4}+4096 S_{3,1,-5}-1024 S_{3,2,-4}-5120 S_{3,2,4}+3072 S_{3,3,-3}+9216 S_{3,4,-2} \\
& +9216 S_{3,4,2}+8192 S_{3,5,1}+39936 S_{4,-4,1}-6144 S_{4,-3,-2}+31744 S_{4,-3,2}-6144 S_{4,-2,-3} \\
& +15360 S_{4,-2,3}+32768 S_{4,1,-4}-6144 S_{4,1,4}+36864 S_{4,2,-3}+9216 S_{4,2,3}+8192 S_{4,3,-2} \\
& +9216 S_{4,3,2}-6144 S_{4,4,1}+86016 S_{5,-3,1}+8192 S_{5,-2,-2}+36864 S_{5,-2,2}+81920 S_{5,1,-3} \\
& +18432 S_{5,1,3}+32768 S_{5,2,-2}+40960 S_{5,2,2}+18432 S_{5,3,1}+50176 S_{6,-2,1}+20480 S_{6,1,-2} \\
& +22528 S_{6,1,2}+22528 S_{6,2,1}-18432 S_{7,1,1}-24576 S_{-6,1,1,1}+8192 S_{-5,-2,1,1} \\
& +28672 S_{-5,1,-2,1}+8192 S_{-5,1,1,-2}-102400 S_{-4,-3,1,1}-88064 S_{-4,-2,-2,1} \\
& -53248 S_{-4,-2,1,-2}-59392 S_{-4,-2,1,2}-59392 S_{-4,-2,2,1}-55296 S_{-4,1,-3,1} \\
& -34816 S_{-4,1,-2,-2}-43008 S_{-4,1,-2,2}-14336 S_{-4,1,1,-3}-2048 S_{-4,1,2,-2}-12288 S_{-4,2,-2,1} \\
& -2048 S_{-4,2,1,-2}-102400 S_{-3,-4,1,1}-188416 S_{-3,-3,-2,1}-126976 S_{-3,-3,1,-2} \\
& -155648 S_{-3,-3,1,2}-155648 S_{-3,-3,2,1}-180224 S_{-3,-2,-3,1}-24576 S_{-3,-2,-2,-2} \\
& -90112 S_{-3,-2,-2,2}-155648 S_{-3,-2,1,-3}-36864 S_{-3,-2,1,3}-65536 S_{-3,-2,2,-2} \\
& -81920 S_{-3,-2,2,2}-36864 S_{-3,-2,3,1}-61440 S_{-3,1,-4,1}-102400 S_{-3,1,-3,-2} \\
& -122880 S_{-3,1,-3,2}-159744 S_{-3,1,-2,-3}-30720 S_{-3,1,-2,3}-28672 S_{-3,1,1,-4} \\
& -40960 S_{-3,1,1,4}-12288 S_{-3,1,2,-3}+2048 S_{-3,1,3,-2}-98304 S_{-3,1,4,1}-61440 S_{-3,2,-3,1} \\
& -40960 S_{-3,2,-2,-2}-49152 S_{-3,2,-2,2}-12288 S_{-3,2,1,-3}+4096 S_{-3,3,-2,1}+2048 S_{-3,3,1,-2} \\
& -90112 S_{-3,4,1,1}+8192 S_{-2,-5,1,1}-83968 S_{-2,-4,-2,1}-53248 S_{-2,-4,1,-2}-59392 S_{-2,-4,1,2} \\
& -59392 S_{-2,-4,2,1}-169984 S_{-2,-3,-3,1}-24576 S_{-2,-2,-2,-2}-83968 S_{-2,-2,-2,2} \\
& -151552 S_{-2,-3,1,-3}-36864 S_{-2,-3,1,3}-65536 S_{-2,-3,2,-2}-81920 S_{-2,-3,2,2} \\
& -36864 S_{-2,-3,3,1}-75776 S_{-2,-2,-4,1}-24576 S_{-2,-2,-3,-2}-79872 S_{-2,-2,-3,2}
\end{aligned}
$$

Five-loop [T. Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& -24576 S_{-2,-2,-2,-3}-22528 S_{-2,-2,-2,3}-69632 S_{-2,-2,1,-4}-8192 S_{-2,-2,1,4} \\
& -73728 S_{-2,-2,2,-3}-18432 S_{-2,-2,2,3}-16384 S_{-2,-2,3,-2}-18432 S_{-2,-2,3,2} \\
& -8192 S_{-2,-2,4,1}+12288 S_{-2,1,-5,1}-38912 S_{-2,1,-4,-2}-43008 S_{-2,1,-4,2} \\
& -157696 S_{-2,1,-3,-3}-30720 S_{-2,1,-3,3}-71680 S_{-2,1,-2,-4}-8192 S_{-2,1,-2,4} \\
& +8192 S_{-2,1,1,-5}+S_{-4}\left(4608 S_{-5}+1536 S_{5}-9216 S_{-4,1}-9216 S_{-3,2}-9216 S_{-2,3}\right. \\
& \left.+18432 S_{-3,1,1}+18432 S_{-2,1,2}+18432 S_{-2,2,1}-36864 S_{-2,1,1,1}\right)+S_{4}\left(4608 S_{-5}+1536 S_{5}\right. \\
& -9216 S_{-4,1}-9216 S_{-3,2}-9216 S_{-2,3}+18432 S_{-3,1,1}+18432 S_{-2,1,2}+18432 S_{-2,2,1} \\
& \left.-36864 S_{-2,1,1,1}\right)+S_{2}^{2}\left(3072 S_{-5}+1024 S_{5}-6144 S_{-4,1}-6144 S_{-3,2}+S_{-2}\left(2048 S_{-3}\right.\right. \\
& \left.+4096 S_{3}-4096 S_{-2,1}\right)-6144 S_{-2,3}+12288 S_{-3,1,1}+12288 S_{-2,1,2}+12288 S_{-2,2,1} \\
& \left.-24576 S_{-2,1,1,1}\right)+S_{-2,2}\left(-3072 S_{-5}-1024 S_{5}+6144 S_{-4,1}+6144 S_{-3,2}+6144 S_{-2,3}\right. \\
& \left.-12288 S_{-3,1,1}-12288 S_{-2,1,2}-12288 S_{-2,2,1}+24576 S_{-2,1,1,1}\right)+S_{-3,1}\left(-6144 S_{-5}\right. \\
& -2048 S_{5}+12288 S_{-4,1}+12288 S_{-3,2}+12288 S_{-2,3}-24576 S_{-3,1,1}-24576 S_{-2,1,2} \\
& \left.-24576 S_{-2,2,1}+49152 S_{-2,1,1,1}\right)-57344 S_{-2,1,1,5}-8192 S_{-2,1,2,-4}-14336 S_{-2,1,2,4} \\
& +4096 S_{-2,1,3,-3}-12288 S_{-2,1,4,-2}-43008 S_{-2,1,4,2}-90112 S_{-2,1,5,1}-20480 S_{-2,2,-4,1}
\end{aligned}
$$

Five-loop [T.Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& -43008 S_{-2,2,-3,-2}-49152 S_{-2,2,-3,2}-79872 S_{-2,2,-2,-3}-12288 S_{-2,2,-2,3} \\
& -8192 S_{-2,2,1,-4}+S_{-3}\left(7680 S_{-6}+2560 S_{6}-12288 S_{-5,1}-12288 S_{-4,2}-12288 S_{-3,3}\right. \\
& -9216 S_{-2,4}+18432 S_{-4,1,1}+18432 S_{-3,1,2}+18432 S_{-3,2,1}+12288 S_{-2,1,3}+12288 S_{-2,2,2} \\
& \left.+12288 S_{-2,3,1}-24576 S_{-3,1,1,1}-12288 S_{-2,1,1,2}-12288 S_{-2,1,2,1}-12288 S_{-2,2,1,1}\right) \\
& +S_{3}\left(2560 S_{-3}^{2}-6144 S_{-2,1} S_{-3}+2048 S_{-2,1}^{2}+7680 S_{-6}+2560 S_{6}-12288 S_{-5,1}\right. \\
& -12288 S_{-4,2}-12288 S_{-3,3}-9216 S_{-2,4}+18432 S_{-4,1,1}+18432 S_{-3,1,2}+18432 S_{-3,2,1} \\
& +12288 S_{-2,1,3}+12288 S_{-2,2,2}+12288 S_{-2,3,1}-24576 S_{-3,1,1,1}-12288 S_{-2,1,1,2} \\
& \left.-12288 S_{-2,1,2,1}-12288 S_{-2,2,1,1}\right)+S_{-2,1}\left(-15360 S_{-6}-5120 S_{6}+24576 S_{-5,1}\right. \\
& +24576 S_{-4,2}+24576 S_{-3,3}+18432 S_{-2,4}-36864 S_{-4,1,1}-36864 S_{-3,1,2} \\
& -36864 S_{-3,2,1}-24576 S_{-2,1,3}-24576 S_{-2,2,2}-24576 S_{-2,3,1}+49152 S_{-3,1,1,1} \\
& \left.+24576 S_{-2,1,1,2}+24576 S_{-2,1,2,1}+24576 S_{-2,2,1,1}\right)-14336 S_{-2,2,1,4} \\
& -51200 S_{-2,2,4,1}+2048 S_{-2,3,-3,1}-2048 S_{-2,3,-2,-2}-2048 S_{-2,3,-2,2}+4096 S_{-2,3,1,-3} \\
& -4096 S_{-2,4,-2,1}-12288 S_{-2,4,1,-2}-38912 S_{-2,4,1,2}-38912 S_{-2,4,2,1} \\
& -81920 S_{-2,5,1,1}-16384 S_{1,-6,1,1}+40960 S_{1,-5,-2,1}+24576 S_{1,-5,1,-2}-83968 S_{1,-4,-3,1} \\
& -51200 S_{1,-4,-2,-2}-59392 S_{1,-4,-2,2}-28672 S_{1,-4,1,-3}+2048 S_{1,-4,1,3}-4096 S_{1,-4,2,-2} \\
& +2048 S_{1,-4,3,1}-96256 S_{1,-3,-4,1}-129024 S_{1,-3,-3,-2}-155648 S_{1,-3,-3,2} \\
& -165888 S_{1,-3,-2,-3}-36864 S_{1,-3,-2,3}-51200 S_{1,-3,1,-4}-59392 S_{1,-3,1,4} \\
& -40960 S_{1,-3,2,-3}+8192 S_{1,-3,3,-2}-96256 S_{1,--3,4,1}+8192 S_{1,-2,--5,1}-51200 S_{1,-2,-4,-2}
\end{aligned}
$$

Five-loop [T.Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& -73728 S_{2,-3,1,-3}+4096 S_{2,-3,1,3}-16384 S_{2,-3,2,-2}+4096 S_{2,-3,3,1}-55296 S_{2,-2,-4,1} \\
& -69632 S_{2,-2,-3,-2}-81920 S_{2,-2,-3,2}-86016 S_{2,-2,-2,-3}-18432 S_{2,-2,-2,3} \\
& -30720 S_{2,-2,1,-4}-32768 S_{2,-2,1,4}-28672 S_{2,-2,2,-3}+6144 S_{2,-2,3,-2}-49152 S_{2,-2,4,1} \\
& +16384 S_{2,1,-5,1}-2048 S_{2,1,-4,-2}+4096 S_{2,1,-4,2}-110592 S_{2,1,-3,-3}+4096 S_{2,1,-3,3} \\
& -34816 S_{2,1,-2,-4}-28672 S_{2,1,-2,4}+8192 S_{2,1,1,-5}-32768 S_{2,1,1,5}-36864 S_{2,1,4,-2} \\
& -40960 S_{2,1,4,2}-65536 S_{2,1,5,1}-16384 S_{2,2,-3,-2}-8192 S_{2,2,-3,2}-65536 S_{2,2,-2,-3} \\
& -49152 S_{2,2,4,1}+8192 S_{2,3,-3,1}+10240 S_{2,3,-2,-2}+8192 S_{2,3,-2,2}-49152 S_{2,4,-2,1} \\
& -36864 S_{2,4,1,-2}-40960 S_{2,4,1,2}-40960 S_{2,4,2,1}-81920 S_{2,5,1,1}+6144 S_{3,-4,1,1} \\
& -22528 S_{3,-3,-2,1}-2048 S_{3,-3,1,-2}-4096 S_{3,-3,1,2}-4096 S_{3,-3,2,1}-26624 S_{3,-2,-3,1} \\
& -18432 S_{3,-2,-2,-2}-18432 S_{3,-2,-2,2}-10240 S_{3,-2,1,-3}+2048 S_{3,-2,1,3}-2048 S_{3,-2,2,-2} \\
& +2048 S_{3,-2,3,1}-2048 S_{3,1,-4,1}+10240 S_{3,1,-3,-2}+4096 S_{3,1,-3,2}-14336 S_{3,1,-2,-3} \\
& -4096 S_{3,1,-2,3}+2048 S_{3,1,1,-4}+10240 S_{3,1,1,4}-14336 S_{3,1,4,1}+8192 S_{3,2,-3,1} \\
& +10240 S_{3,2,-2,-2}+8192 S_{3,2,-2,2}-6144 S_{3,3,-2,1}-18432 S_{3,4,1,1}-63488 S_{4,-3,1,1} \\
& +8192 S_{4,-2,-2,1}+4096 S_{4,-2,1,-2}-38912 S_{4,-2,1,2}-38912 S_{4,-2,2,1}-65536 S_{4,1,-3,1} \\
& +8192 S_{4,1,-2,-2}-24576 S_{4,1,-2,2}-73728 S_{4,1,1,-3}-18432 S_{4,1,1,3}-32768 S_{4,1,2,-2} \\
& -40960 S_{4,1,2,2}-18432 S_{4,1,3,1}-40960 S_{4,2,-2,1}-32768 S_{4,2,1,-2}-40960 S_{4,2,1,2} \\
& -40960 S_{4,2,2,1}-18432 S_{4,3,1,1}-73728 S_{5,-2,1,1}-98304 S_{5,1,-2,1}-65536 S_{5,1,1,-2} \\
& -81920 S_{5,1,1,2}-81920 S_{5,1,2,1}-81920 S_{5,2,1,1}-45056 S_{6,1,1,1}+118784 S_{-4,-2,1,1,1}
\end{aligned}
$$

Five-loop [T. Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& +86016 S_{-4,1,-2,1,1}+24576 S_{-4,1,1,-2,1}+4096 S_{-4,1,1,1,-2}+311296 S_{-3,-3,1,1,1} \\
& +180224 S_{-2,-2,-2,1,1}+180224 S_{-3,-2,1,-2,1}+131072 S_{-3,-2,1,1,-2}+163840 S_{-3,-2,1,1,2} \\
& +163840 S_{-3,-2,1,2,1}+163840 S_{-3,-2,2,1,1}+245760 S_{-3,1,-3,1,1}+196608 S_{-3,1,-2,-2,1} \\
& +122880 S_{-3,1,-2,1,-2}+147456 S_{-3,1,-2,1,2}+147456 S_{-3,1,-2,2,1}+122880 S_{-3,1,1,-3,1} \\
& +81920 S_{-3,1,1,-2,-2}+98304 S_{-3,1,1,-2,2}+24576 S_{-3,1,1,1,-3}+24576 S_{-3,1,2,-2,1} \\
& +98304 S_{-3,2,-2,1,1}+24576 S_{-3,2,-2,1}+118784 S_{-2,-4,1,1,1}+167936 S_{-2,-3,-2,1,1} \\
& +172032 S_{-2,-3,1,-2,1}+131072 S_{-2,-3,1,1,-2}+163840 S_{-2,-3,1,1,2}+163840 S_{-2,-3,1,2,1} \\
& +163840 S_{-2,-3,2,1,1}+159744 S_{-2,-2,-3,1,1}+24576 S_{-2,-2,-2,-2,1} \\
& +24576 S_{-2,-2,-2,1,-2}+77824 S_{-2,-2,-2,1,2}+77824 S_{-2,-2,-2,2,1}+163840 S_{-2,-2,1,-3,1} \\
& +24576 S_{-2,-2,1,-2,-2}+81920 S_{-2,-2,1,-2,2}+147456 S_{-2,-2,1,1,-3}+36864 S_{-2,-2,1,1,3} \\
& +65536 S_{-2,-2,1,2,-2}+81920 S_{-2,-2,1,2,2}+36864 S_{-2,-2,1,3,1}+81920 S_{-2,-2,2,-2,1} \\
& +65536 S_{-2,-2,2,1,-2}+81920 S_{-2,-2,2,1,2}+81920 S_{-2,-2,2,1,1}+36864 S_{-2,-2,3,1,1} \\
& +86016 S_{-2,1,-4,1,1}+192512 S_{-2,1,-2,-2,1}+122880 S_{-2,1,-3,1,-2} \\
& +147456 S_{-2,1,-3,1,2}+147456 S_{-2,1,-3,2,1}+176128 S_{-2,1,-2,-3,1}+24576 S_{-2,1,-2,-2,-2} \\
& +86016 S_{-2,1,-2,-2,2}+155648 S_{-2,1,-2,1,-3}+36864 S_{-2,1,-2,1,3}+65536 S_{-2,1,-2,2,-2}
\end{aligned}
$$

Five-loop [т.Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& +81920 S_{-2,1,-2,2,2}+36864 S_{-2,1,-2,3,1}+40960 S_{-2,1,1,-4,1}+86016 S_{-2,1,1,-3,-2} \\
& +98304 S_{-2,1,1,-3,2}+159744 S_{-2,1,1,-2,-3}+24576 S_{-2,1,1,-2,3}+16384 S_{-2,1,1,1,-4} \\
& +28672 S_{-2,1,1,1,4}+102400 S_{-2,1,1,4,1}+32768 S_{-2,1,2,-3,1}+28672 S_{-2,1,2,-2,-2} \\
& +32768 S_{-2,1,2,-2,2}-8192 S_{-2,1,3,-2,1}+86016 S_{-2,1,4,1,1}+98304 S_{-2,2,-3,1,1} \\
& +102400 S_{-2,2,-2,-2,1}+57344 S_{-2,2,-2,1_{1}-2}+65536 S_{-2,2,-2,1,2}+65536 S_{-2,2,-2,2,1} \\
& +32768 S_{-2,2,1,-3,1}+28672 S_{-2,2,1,-2,-2}+32768 S_{-2,2,1,-2,2}+4096 S_{-2,3,-2,1,1} \\
& -8192 S_{-2,3,1,-2,1}+77824 S_{-2,4,1,1,1}+118784 S_{1,-4,-2,1,1}+49152 S_{1,-4,1,-2,1} \\
& +8192 S_{1,-4,1,1,-2}+311296 S_{1,-3,-3,1,1}+192512 S_{1,-3,-2,-2,1}+139264 S_{1,-3,-2,1,-2} \\
& +163840 S_{1,-3,-2,1,2}+163840 S_{1,-3,-2,2,1}+221184 S_{1,-3,1,-3,1}+118784 S_{1,-3,1,-2,-2} \\
& +147456 S_{1,-3,1,-2,2}+81920 S_{1,-3,1,1,-3}+8192 S_{1,-3,1,2,-2}+73728 S_{1,-3,2,-2,1} \\
& +8192 S_{1,-3,2,1,-2}+118784 S_{1,-2,-4,1,1}+184320 S_{1,-2,-3,-2,1}+131072 S_{1,-2,-3,1,-2} \\
& +163840 S_{1,-2,-3,1,2}+163840 S_{1,-2,-3,2,1}+184320 S_{1,-2,-2,-3,1}+24576 S_{1,-2,-2,-2,-2} \\
& +94208 S_{1,-2,-2,-2,2}+155648 S_{1,-2,-2,1,-3}+36864 S_{1,-2,-2,1,3}+65536 S_{1,-2,-2,2,-2} \\
& +81920 S_{1,-2,-2,2,2}+36864 S_{1,-2,-2,3,1}+81920 S_{1,-2,1,-4,1}+118784 S_{1,-2,1,-3,-2} \\
& +147456 S_{1,-2,1,-3,2}+159744 S_{1,-2,1,-2,-3}+36864 S_{1,-2,1,-2,3}+40960 S_{1,-2,1,1,-4} \\
& +53248 S_{1,-2,1,1,4}+24576 S_{1,-2,1,2,-3}-4096 S_{1,-2,1,3,-2}+94208 S_{1,-2,1,4,1} \\
& +90112 S_{1,-2,2,-3,1}+53248 S_{1,-2,2,-2,-2}+65536 S_{1,-2,2,-2,2}+24576 S_{1,-2,2,1,-3} \\
& -4096 S_{1,-2,3,1,-2}+94208 S_{1,-2,4,1,1}-32768 S_{1,1,-5,1,1}+77824 S_{1,1,-4,-2,1} \\
& +12288 S_{1,1,-4,1,-2}+8192 S_{1,1,-4,1,2}+8192 S_{1,1,-4,2,1}+278528 S_{1,1,-3,-3,1} \\
& +139264 S_{1,1,-3,-2,-2}+163840 S_{1,1,-3,-2,2}+147456 S_{1,1,-3,1,-3}-8192 S_{1,1,-3,1,3}
\end{aligned}
$$

Five-loop [T. Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& +32768 S_{1,1,-3,2,-2}-8192 S_{1,1,-3,3,1}+110592 S_{1,1,-2,-4,1}+139264 S_{1,1,-2,-3,-2} \\
& +163840 S_{1,1,-2,-3,2}+172032 S_{1,1,-2,-2,-3}+36864 S_{1,1,-2,-2,3}+61440 S_{1,1,-2,1,-4} \\
& +65536 S_{1,1,-2,1,4}+57344 S_{1,1,-2,2,-3}-12288 S_{1,1,-2,3,-2}+98304 S_{1,1,-2,4,1} \\
& -32768 S_{1,1,1,-5,1}+4096 S_{1,1,1,-4,-2}-8192 S_{1,1,1,-4,2}+221184 S_{1,1,1,-3,-3} \\
& -8192 S_{1,1,1,-3,3}+69632 S_{1,1,1,-2,-4}+57344 S_{1,1,1,-2,4}-16384 S_{1,1,1,1,-5}+65536 S_{1,1,1,1,5} \\
& +73728 S_{1,1,1,4,-2}+81920 S_{1,1,1,4,2}+131072 S_{1,1,1,5,1}+32768 S_{1,1,2,-3,-2} \\
& +16384 S_{1,1,2,-3,2}+131072 S_{1,1,2,-2,-3}+98304 S_{1,1,2,4,1}-16384 S_{1,1,3,-3,1} \\
& -20480 S_{1,1,3,-2,-2}-16384 S_{1,1,3,-2,2}+98304 S_{1,1,4,-2,1}+73728 S_{1,1,4,1,-2} \\
& +81920 S_{1,1,4,1,2}+81920 S_{1,1,4,2,1}+163840 S_{1,1,5,1,1}-8192 S_{1,2,-4,1,1}+163840 S_{1,2,-3,-2,1} \\
& +57344 S_{1,2,-3,1,-2}+16384 S_{1,2,-3,1,2}+16384 S_{1,2,-3,2,1}+147456 S_{1,2,-2,-3,1} \\
& +73728 S_{1,2,-2,-2,-2}+81920 S_{1,2,-2,-2,2}+90112 S_{1,2,-2,1,-3}-8192 S_{1,2,-2,1,3} \\
& +24576 S_{1,2,-2,2,-2}-8192 S_{1,2,-2,3,1}+32768 S_{1,2,1,-3,-2}+16384 S_{1,2,1,-3,2} \\
& +131072 S_{1,2,1,-2,-3}+98304 S_{1,2,1,4,1}+81920 S_{1,2,4,1,1}-8192 S_{1,3,-3,1,1}+28672 S_{1,3,-2,-2,1} \\
& +8192 S_{1,3,-2,1,2}+8192 S_{1,3,-2,2,1}-16384 S_{1,3,1,-3,1}-20480 S_{1,3,1,-2,-2}-16384 S_{1,3,1,-2,2}
\end{aligned}
$$

Five-loop [T.Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& +61440 S_{1,4,-2,1,1}+90112 S_{1,4,1,-2,1}+65536 S_{1,4,1,1,-2}+81920 S_{1,4,1,1,2}+81920 S_{1,4,1,2,1} \\
& +81920 S_{1,4,2,1,1}+163840 S_{1,5,1,1,1}+8192 S_{2,-4,1,1,1}+163840 S_{2,-3,-2,1,1} \\
& +114688 S_{2,-3,1,-2,1}+32768 S_{2,-3,1,1,-2}+163840 S_{2,-2,-3,1,1}+98304 S_{2,-2,-2,-2,1} \\
& +73728 S_{2,-2,-2,1,-2}+81920 S_{2,-2,-2,1,2}+81920 S_{2,-2,-2,2,1}+131072 S_{2,-2,1,-3,1} \\
& +65536 S_{2,-2,1,-2,-2}+81920 S_{2,-2,1,-2,2}+57344 S_{2,-2,1,1,-3}+8192 S_{2,-2,1,2,-2} \\
& +49152 S_{2,-2,2,-2,1}+8192 S_{2,-2,2,1,-2}-8192 S_{2,1,-4,1,1}+163840 S_{2,1,-3,-2,1} \\
& +57344 S_{2,1,-3,1,-2}+16384 S_{2,1,-3,1,2}+16384 S_{2,1,-3,2,1}+147456 S_{2,1,-2,-3,1} \\
& +73728 S_{2,1,-2,-2,-2}+81920 S_{2,1,-2,-2,2}+90112 S_{2,1,-2,1,-3}-8192 S_{2,1,-2,1,3} \\
& +24576 S_{2,1,-2,2,-2}-8192 S_{2,1,-2,3,1}+32768 S_{2,1,1,-3,-2}+16384 S_{2,1,1,-3,2} \\
& +131072 S_{2,1,1,-2,-3}+98304 S_{2,1,1,4,1}+81920 S_{2,1,4,1,1}+16384 S_{2,2,-3,1,1} \\
& +98304 S_{2,2,-2,-2,1}+32768 S_{2,2,-2,1,-2}+16384 S_{2,2,-2,1,2}+16384 S_{2,2,-2,2,1} \\
& -16384 S_{2,3,-2,1,1}+81920 S_{2,4,1,1,1}+8192 S_{3,-3,1,1,1}+36864 S_{3,-2,-2,1,1} \\
& +16384 S_{3,-2,1,-2,1}+4096 S_{3,-2,1,1,-2}-8192 S_{3,1,-3,1,1}+28672 S_{3,1,-2,-2,1} \\
& +8192 S_{3,1,-2,1,2}+8192 S_{3,1,-2,2,1}-16384 S_{3,1,1,-3,1}-20480 S_{3,1,1,-2,-2}-16384 S_{3,1,1,-2,2} \\
& -16384 S_{3,2,-2,1,1}+77824 S_{4,-2,1,1,1}+49152 S_{4,1,-2,1,1}+81920 S_{4,1,1,-2,1}+65536 S_{4,1,1,1,-2} \\
& +81920 S_{4,1,1,1,2}+81920 S_{4,1,1,2,1}+81920 S_{4,1,2,1,1}+81920 S_{4,2,1,1,1}+163840 S_{5,1,1,1,1} \\
& -327680 S_{-3,-2,1,1,1,1}-294912 S_{-3,1,-2,1,1,1}-196608 S_{-3,1,1,-2,1,1}-49152 S_{-3,1,1,1,-2,1} \\
& -327680 S_{-2,-3,1,1,1,1}-155648 S_{-2,-2,-2,1,1,1}-163840 S_{-2,-2,1,-2,1,1} \\
& -163840 S_{-2,-2,1,1,-2,1}-131072 S_{-2,-2,1,1,1,-2}-163840 S_{-2,-2,1,1,1,2}-163840 S_{-2,-2,1,1,2,1} \\
& -163840 S_{-2,-2,1,2,1,1}-163840 S_{-2,-2,2,1,1,1}-294912 S_{-2,1,-3,1,1,1}-172032 S_{-2,1,-2,-2,1,1}
\end{aligned}
$$

Five-loop [T. Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& -180224 S_{-2,1,-2,1,-2,1}-131072 S_{-2,1,-2,1,1,-2}-163840 S_{-2,1,-2,1,1,2}-163840 S_{-2,1,-2,1,2,1} \\
& -163840 S_{-2,1,-2,2,1,1}-196608 S_{-2,1,1,-3,1,1}-204800 S_{-2,1,1,-2,-2,1}-114688 S_{-2,1,1,-2,1,-2} \\
& -131072 S_{-2,1,1,-1,1,2}-131072 S_{-2,1,1,-2,1,1}-65536 S_{-2,1,1,-3,1}-57344 S_{-2,1,1,-2,-2} \\
& -65536 S_{-2,1,1,-2,2}+S_{2}\left(\left(1024 S_{-3}+4096 S_{3}\right) S_{-2}^{2}+\left(11264 S_{-5}+5120 S_{5}-8192 S_{-4,1,1}\right.\right. \\
& -6144 S_{-3,2}-8192 S_{-2,3}+2048 S_{4,1}+12288 S_{-3,1,1}-4096 S_{-2,-2,1}+12288 S_{-2,1,2} \\
& \left.+12288 S_{-2,2,1}-24576 S_{-2,1,1,1}\right) S_{-2}+8192 S_{-7}+9216 S_{7}-16384 S_{-6,1}-6144 S_{-5,-2} \\
& -16384 S_{-5,2}-1024 S_{-4,-3}-17408 S_{-4,3}-15360 S_{-3,4}-18432 S_{-2,5}-5120 S_{4,3} \\
& +4096 S_{5,2,2}+6144 S_{6,1}+32768 S_{-5,1,1}-6144 S_{-4,-2,1}+36864 S_{-4,1,2}+36864 S_{-4,2,1} \\
& -4096 S_{-3,-3,1}-2048 S_{-3,-2,-2}-4096 S_{-3,-2,2}+36864 S_{-3,1,3}+40960 S_{-3,2,2} \\
& +36864 S_{-3,1,1}+2048 S_{-2,-4,1}-8192 S_{-2,-3,2}+10240 S_{-2,-2,3}+S_{-2,1}\left(-4096 S_{-4}\right. \\
& \left.-8192 S_{4}+12288 S_{-3,1}+16384 S_{-2,2}-8192 S_{-2,1,1}\right)+S_{-3}\left(6144 S_{-4}+3072 S_{4}\right. \\
& \left.-6144 S_{-3,1}-4096 S_{-2,2}+12288 S_{-2,1,1}\right)+S_{3}\left(10240 S_{-4}+3072 S_{4}-\frac{47104 S_{-3,1}}{3}\right.
\end{aligned}
$$

Five-loop [т. Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& \left.-\frac{40960 S_{-2,2}}{3}+\frac{69632}{3} S_{-2,1,1}\right)+34816 S_{-2,1,4}+36864 S_{-2,2,3}+36864 S_{-2,3,2} \\
& +32768 S_{-2,4,1}-4096 S_{4,1,2}-4096 S_{4,2,1}-73728 S_{-4,1,1,1}-81920 S_{-3,1,1,2} \\
& -81920 S_{-3,1,2,1}-81920 S_{-3,2,1,1}+24576 S_{-2,-3,1,1}+4096 S_{-2,-2,-2,1}+8192 S_{-2,-2,1,2} \\
& +8192 S_{-2,-2,2,1}-8192 S_{-2,1,1,-3}-73728 S_{-2,1,1,3}-81920 S_{-2,1,2,2}-73728 S_{-2,1,3,1} \\
& -8192 S_{-2,2,-2,1}-81920 S_{-2,2,1,2}-81920 S_{-2,2,2,1}-73728 S_{-2,3,1,1}+24576 S_{4,1,1,1} \\
& +163840 S_{-3,1,1,1,1}-49152 S_{-2,-2,1,1,1}-16384 S_{-2,1,-2,1,1}+163840 S_{-2,1,1,1,2} \\
& \left.+163840 S_{-2,1,1,2,1}+163840 S_{-2,1,2,1,1}+163840 S_{-2,2,1,1,1}-327680 S_{-2,1,1,1,1,1}\right) \\
& -65536 S_{-2,1,2,-2,1,1}-131072 S_{-2,2,-2,1,1,1}-65536 S_{-2,2,1,-2,1,1}-327680 S_{1,-3,-2,1,1,1} \\
& -294912 S_{1,-3,1,-2,1,1}-147456 S_{1,-3,1,1,-2,1}-16384 S_{1,--3,1,1,1,-2}-327680 S_{1,-2,-3,1,1,1} \\
& -188416 S_{1,-2,-2,-2,1,1}-180224 S_{1,-2,-2,1,-2,1}-131072 S_{1,-2,-2,1,1,-2} \\
& -163840 S_{1,-2,-2,1,1,2}-163840 S_{1,-2,-2,1,2,1}-163840 S_{1,-2,-2,2,1,1}-294912 S_{1,-2,1,-3,1,1} \\
& -188416 S_{1,-2,1,-2,-2,1}-131072 S_{1,-2,1,-2,1,-2}-163840 S_{1,-2,1,-2,1,2}-163840 S_{1,-2,1,-2,2,1} \\
& -180224 S_{1,-2,1,1,-3,1}-106496 S_{1,-2,1,1,-2,-2}-131072 S_{1,-2,1,1,-2,2}-49152 S_{1,-2,1,1,1,-3} \\
& -49152 S_{1,-2,1,2,-2,1}-131072 S_{1,-2,2,-2,1,1}-49152 S_{1,-2,2,1,-2,1}-16384 S_{1,1,-4,1,1,1} \\
& -327680 S_{1,1,-3,-2,1,1}-229376 S_{1,1,-3,1,-2,1}-65536 S_{1,1,-3,1,1,-2}-327680 S_{1,1,-2,-3,1,1} \\
& -196608 S_{1,1,-2,-2,-2,1}-147456 S_{1,1,-2,-2,1,-2}-163840 S_{1,1,-2,-2,1,2}-163840 S_{1,1,-2,-2,2,1} \\
& -262144 S_{1,1,-2,1,-3,1}-131072 S_{1,1,-2,1,-2,-2}-163840 S_{1,1,-2,1,-2,2}-114688 S_{1,1,-2,1,1,-3}
\end{aligned}
$$

Five-loop [T.Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& -16384 S_{1,1,-2,1,2,-2}-98304 S_{1,1,-2,2,-2,1}-16384 S_{1,1,-2,2,1,-2}+16384 S_{1,1,1,-4,1,1} \\
& -327680 S_{1,1,1,-3,-2,1}-114688 S_{1,1,1,-3,1,-2}-32768 S_{1,1,1,-3,1,2}-32768 S_{1,1,1,-3,2,1} \\
& -294912 S_{1,1,1,-2,-3,1}-147456 S_{1,1,1,-2,-2,-2}-163840 S_{1,1,1,-2,-2,2}-180224 S_{1,1,1,-2,1,-3} \\
& +16384 S_{1,1,1,-2,1,3}-49152 S_{1,1,1,-2,2,-2}+16384 S_{1,1,1,-2,3,1}-65536 S_{1,1,1,1,-3,-2} \\
& -32768 S_{1,1,1,1,-3,2}-262144 S_{1,1,1,1,-2,-3}-196608 S_{1,1,1,1,4,1}-163840 S_{1,1,1,4,1,1} \\
& -32768 S_{1,1,2,-3,1,1}-196608 S_{1,1,2,-2,-2,1}-65536 S_{1,1,2,-2,1,-2}-32768 S_{1,1,2,-2,1,2} \\
& -32768 S_{1,1,2,-2,2,1}+32768 S_{1,1,3,-2,1,1}-163840 S_{1,1,4,1,1,1}-32768 S_{1,2,-3,1,1,1} \\
& -163840 S_{1,2,-2,-2,1,1}-131072 S_{1,2,-2,1,-2,1}-49152 S_{1,2,-2,1,1,-2}-32768 S_{1,2,1,-3,1,1} \\
& -196608 S_{1,2,1,-2,-2,1}-65536 S_{1,2,1,-2,1,-2}-32768 S_{1,2,1,-2,1,2}-32768 S_{1,2,1,-2,2,1} \\
& -16384 S_{1,3,-2,1,1,1}+32768 S_{1,3,1,-2,1,1}-163840 S_{1,4,1,1,1,1,1}-163840 S_{2,-2,-2,1,1,1} \\
& -163840 S_{2,-2,1,-2,1,1}-98304 S_{2,-2,1,1,-2,1}-16384 S_{2,-2,1,1,1,-2}-32768 S_{2,1,-3,1,1,1} \\
& -163840 S_{2,1,-2,-2,1,1}-131072 S_{2,1,-2,1,-2,1}-49152 S_{2,1,-2,1,1,-2}-32768 S_{2,1,1,-3,1,1} \\
& -196608 S_{2,1,1,-2,-2,1}-65536 S_{2,1,1,-2,1,-2}-32768 S_{2,1,1,-2,1,2}-32768 S_{2,1,1,-2,2,1} \\
& -32768 S_{2,2,-2,1,1,1}-16384 S_{3,1,-2,1,1,1}+32768 S_{3,1,1,-2,1,1}-163840 S_{4,1,1,1,1,1,1} \\
& +327680 S_{-2,-2,1,1,1,1,1}+327680 S_{-2,1,-2,1,1,1,1}+262144 S_{-2,1,1,-2,1,1,1}
\end{aligned}
$$

Five-loop [T. Łukowski, A. R., v. Velizhanin, '09]

$$
\begin{aligned}
& +131072 S_{-2,1,1,1,-2,1,1}+327680 S_{1,-2,-2,1,1,1,1}+327680 S_{1,-2,1,-2,1,1,1} \\
& +262144 S_{1,-2,1,1,-2,1,1}+98304 S_{1,-2,1,1,1,-2,1}+327680 S_{1,1,-2,-2,1,1,1} \\
& +327680 S_{1,1,-2,1,-2,1,1}+196608 S_{1,1,-2,1,1,-2,1}+32768 S_{1,1,-2,1,1,1,-2}+65536 S_{1,1,1,-3,1,1,1} \\
& +327680 S_{1,1,1,-2,-2,1,1}+262144 S_{1,1,1,-2,1,-2,1}+98304 S_{1,1,1,-2,1,1,-2}+65536 S_{1,1,1,1,-3,1,1} \\
& +393216 S_{1,1,1,1,-2,-2,1}+131072 S_{1,1,1,1,-2,1,-2}+65536 S_{1,1,1,1,-2,1,2}+65536 S_{1,1,1,1,-2,2,1} \\
& +65536 S_{1,1,2,-2,1,1,1}+65536 S_{1,2,1,-2,1,1,1}+65536 S_{2,1,1,-2,1,1,1}-131072 S_{1,1,1,1,-2,1,1,1} \\
& +512\left(4 S_{-2,1} S_{-3}-S_{-3}^{2}+S_{3}^{2}-4 S_{-2,1}^{2}+S_{1}^{2}\left(2 S_{-2}^{2}-4 S_{-4}+6 S_{4}+16 S_{-3,1}+12 S_{-2,2}\right.\right. \\
& \\
& \left.-16 S_{-2,1,1}\right)+S_{1}\left(-2 S_{-5}-4 S_{-3} S_{2}+4 S_{-2} S_{3}+4 S_{2} S_{3}+6 S_{5}+8 S_{-4,1}-4 S_{-3,-2}\right. \\
& +12 S_{-3,2}+8 S_{-2} S_{-2,1}+8 S_{2} S_{-2,1}+8 S_{-2,3}+4 S_{4,1}-24 S_{-3,1,1}-8 S_{-2,-2,1}-24 S_{-2,1,2} \\
& \left.\left.-24 S_{-2,2,1}+48 S_{-2,1,1,1}\right)\right) \zeta(3) \\
& +2560 S_{1}\left(S_{3}-S_{-3}+2 S_{-2,1}\right) \zeta(5)
\end{aligned}
$$

- The remaining contributions may be calculated by
- Exploiting the putative spectral equations - Lüscher corrections adapted to AdS/CFT
- The remaining contributions may be calculated by
- Exploiting the putative spectral equations
- Lüscher corrections adapted to AdS/CFT
- The remaining contributions may be calculated by
- Exploiting the putative spectral equations
- Lüscher corrections adapted to AdS/CFT
[Lukowski, Janik, 2007], [Bajnok, Janik, 2008]
- The remaining contributions may be calculated by
- Exploiting the putative spectral equations
- Lüscher corrections adapted to AdS/CFT
[Lukowski, Janik, 2007], [Bajnok, Janik, 2008]
- This approach has been already used at four-loop level and for the Konishi operator at five loops.
- The remaining contributions may be calculated by
- Exploiting the putative spectral equations
- Lüscher corrections adapted to AdS/CFT
[Lukowski, Janik, 2007], [Bajnok, Janik, 2008]
- This approach has been already used at four-loop level and for the Konishi operator at five loops.
[Bajnok, Janik, Lukowski, 2008] [Bajnok, Hegedus, Janik, Lukowski, 2009]
- The remaining contributions may be calculated by
- Exploiting the putative spectral equations
- Lüscher corrections adapted to AdS/CFT
[Lukowski, Janik, 2007], [Bajnok, Janik, 2008]
- This approach has been already used at four-loop level and for the Konishi operator at five loops.
[Bajnok, Janik, Lukowski, 2008] [Bajnok, Hegedus, Janik, Lukowski, 2009]
- Tedious algebra, computations with high precision (app. 1000 significant numbers) and EZ-Face allowed to find

$$
\begin{aligned}
\Delta_{w}= & 13440 \zeta(7) S_{1}^{2}-1536 \zeta(3)^{2} S_{1}^{3}+2560 \zeta(5) S_{1}\left(3 S_{1}\left(2 S_{-2}+S_{2}\right)-S_{1}^{3}+S_{-3}+S_{3}-2 S_{-2,1}\right) \\
& +1024 \zeta(3) S_{1}\left(-2 S_{1}^{3} S_{-2}+2 S_{1}^{2}\left(2 S_{-3}+3 S_{3}\right)+S_{1}\left(4 S_{-2}^{2}+6 S_{2} S_{-2}+3 S_{-4}-S_{4}\right.\right. \\
& \left.\left.-2\left(S_{-3,1}-2 S_{-2,-2}+S_{-2,2}+S_{3,1}-2 S_{-2,1,1}\right)\right)+2 S_{-2}\left(S_{-3}+S_{3}-2 S_{-2,1}\right)\right) \\
& -1024 S_{1}\left((S _ { 1 } (3 S _ { 2 } + 2 S _ { - 2 }) + S _ { - 3 } + S _ { 3 } - 2 S _ { - 2 , 1 } - S _ { 1 } ^ { 3 }) \left(S_{-5}-S_{5}+2 S_{-2,-3}-2 S_{3,-2}\right.\right. \\
& \left.+2 S_{4,1}-4 S_{-2,-2,1}\right)+2 S_{1}^{2}\left(2 S_{-6}-2 S_{6}-S_{-4,-2}+2 S_{-3,-3}+3 S_{-2,-4}+S_{-2,4}\right. \\
& \left.-2 S_{3,-3}-2 S_{4,-2}+S_{4,2}+4 S_{5,1}-4 S_{-3,-2,1}-4 S_{-2,-3,1}-2 S_{-2,-2,-2}-2 S_{-2,-2,2}\right) \\
& +S_{1}\left(5 S_{-7}-5 S_{7}-4 S_{-6,1}+4 S_{-5,-2}-S_{-5,2}+3 S_{-4,-3}+S_{-3,-4}-S_{-3,4}+8 S_{-2,-5}\right. \\
& -6 S_{-2,5}-4 S_{3,-4}+2 S_{3,4}-8 S_{4,-3}+3 S_{4,3}-6 S_{5,-2}+S_{5,2}+6 S_{6,1}+2 S_{-5,1,1} \\
& -6 S_{-4,-2,1}-2 S_{-3,-3,1}+2 S_{-3,-2,-2}-2 S_{-3,1,-3}-8 S_{-2,-4,1}+6 S_{-2,-3,-2}-2 S_{-2,-3,2} \\
& +14 S_{-2,-2,-3}-6 S_{-2,-2,3}-2 S_{-2,1,-4}+2 S_{-2,1,4}-2 S_{-2,2,-3}-4 S_{-2,3,-2}+10 S_{-2,4,1} \\
& +2 S_{3,-3,1}-4 S_{3,-2,-2}+2 S_{3,-2,2}+2 S_{3,1,-3}+2 S_{3,2,-2}+10 S_{4,-2,1}+6 S_{4,1,-2}-2 S_{4,1,2} \\
& -2 S_{4,2,1}-2 S_{5,1,1}+4 S_{-3,1,-2,1}+4 S_{-2,-3,1,1}-20 S_{-2,-2,-2,1}-8 S_{-2,-2,1,-2} \\
& +4 S_{-2,-2,1,2}+4 S_{-2,-2,2,1}+4 S_{-2,1,-3,1}-4 S_{-2,1,-2,-2}+4 S_{-2,1,1,-3}+4 S_{-2,2,-2,1} \\
& \left.\left.-4 S_{3,-2,1,1}-4 S_{3,1,1,-2}+4 S_{4,1,1,1}-8 S_{-2,-2,1,1,1}-8 S_{-2,1,1,-2,1}\right)\right) .
\end{aligned}
$$

Tests

- Adding up these two contributions should provide complete answer. How to check its veracity?
- The BFKL equation! It predicts the leading poles at $M=-1+\omega$ at any loop order

- Upon analytic continuation of the five-loop result to $M=-1+\omega$ we found perfect agreement!
- Analytic and numerical analysis of the spectral equations reproduce the above result.

Tests

- Adding up these two contributions should provide complete answer. How to check its veracity?
- The BFKL equation! It predicts the leading poles at $M=-1+\omega$ at any loop order

$$
\begin{aligned}
\gamma= & \left(2+0 \omega+\mathcal{O}\left(\omega^{2}\right)\right)\left(\frac{-4 g^{2}}{\omega}\right)-\left(0+0 \omega+\mathcal{O}\left(\omega^{2}\right)\right)\left(\frac{-4 g^{2}}{\omega}\right)^{2} \\
& +\left(0+\zeta(3) \omega+\mathcal{O}\left(\omega^{2}\right)\right)\left(\frac{-4 g^{2}}{\omega}\right)^{3} \\
& -\left(4 \zeta(3)+5 / 4 \zeta(4) \omega+\mathcal{O}\left(\omega^{2}\right)\right)\left(\frac{-4 g^{2}}{\omega}\right)^{4} \\
& -\left(0+(2 \zeta(2) \zeta(3)+16 \zeta(5)) \omega+\mathcal{O}\left(\omega^{2}\right)\right)\left(\frac{-4 g^{2}}{\omega}\right)^{5} \pm \ldots
\end{aligned}
$$

we found perfect agreement!

- Analytic and numerical analysis of the spectral equations

Tests

- Adding up these two contributions should provide complete answer. How to check its veracity?
- The BFKL equation! It predicts the leading poles at $M=-1+\omega$ at any loop order

$$
\begin{aligned}
\gamma= & \left(2+0 \omega+\mathcal{O}\left(\omega^{2}\right)\right)\left(\frac{-4 g^{2}}{\omega}\right)-\left(0+0 \omega+\mathcal{O}\left(\omega^{2}\right)\right)\left(\frac{-4 g^{2}}{\omega}\right)^{2} \\
& +\left(0+\zeta(3) \omega+\mathcal{O}\left(\omega^{2}\right)\right)\left(\frac{-4 g^{2}}{\omega}\right)^{3} \\
& -\left(4 \zeta(3)+5 / 4 \zeta(4) \omega+\mathcal{O}\left(\omega^{2}\right)\right)\left(\frac{-4 g^{2}}{\omega}\right)^{4} \\
& -\left(0+(2 \zeta(2) \zeta(3)+16 \zeta(5)) \omega+\mathcal{O}\left(\omega^{2}\right)\right)\left(\frac{-4 g^{2}}{\omega}\right)^{5} \pm \ldots
\end{aligned}
$$

- Upon analytic continuation of the five-loop result to $M=-1+\omega$ we found perfect agreement!
- Analytic and numerical analysis of the spectral equations

Tests

- Adding up these two contributions should provide complete answer. How to check its veracity?
- The BFKL equation! It predicts the leading poles at $M=-1+\omega$ at any loop order

$$
\begin{aligned}
\gamma= & \left(2+0 \omega+\mathcal{O}\left(\omega^{2}\right)\right)\left(\frac{-4 g^{2}}{\omega}\right)-\left(0+0 \omega+\mathcal{O}\left(\omega^{2}\right)\right)\left(\frac{-4 g^{2}}{\omega}\right)^{2} \\
& +\left(0+\zeta(3) \omega+\mathcal{O}\left(\omega^{2}\right)\right)\left(\frac{-4 g^{2}}{\omega}\right)^{3} \\
& -\left(4 \zeta(3)+5 / 4 \zeta(4) \omega+\mathcal{O}\left(\omega^{2}\right)\right)\left(\frac{-4 g^{2}}{\omega}\right)^{4} \\
& -\left(0+(2 \zeta(2) \zeta(3)+16 \zeta(5)) \omega+\mathcal{O}\left(\omega^{2}\right)\right)\left(\frac{-4 g^{2}}{\omega}\right)^{5} \pm \ldots
\end{aligned}
$$

- Upon analytic continuation of the five-loop result to $M=-1+\omega$ we found perfect agreement!
- Analytic and numerical analysis of the spectral equations reproduce the above result.

Conclusions

- The recently proposed spectral equations for the planar $\mathcal{N}=4$ SYM theory, if supplemented by appropriate analytic properties, provide the full solution to the spectral problem!
- There is no need for Feynman diagram computations, as long as the ADs are concerned.
- Their veracity needs thus to be extensively tested!
- Motivated by this we have calculated the five-loop anomalous dimension of twist-two operators. It has been found to satisfy all known constraints.

Conclusions

- The recently proposed spectral equations for the planar $\mathcal{N}=4$ SYM theory, if supplemented by appropriate analytic properties, provide the full solution to the spectral problem!
- There is no need for Feynman diagram computations, as long as the ADs are concerned.
- Their veracity needs thus to be extensively tested!
- Motivated by this we have calculated the five-loop anomalous dimension of twist-two operators. It has been found to satisfy all known constraints.

Conclusions

- The recently proposed spectral equations for the planar $\mathcal{N}=4$ SYM theory, if supplemented by appropriate analytic properties, provide the full solution to the spectral problem!
- There is no need for Feynman diagram computations, as long as the ADs are concerned.
- Their veracity needs thus to be extensively tested!
- Motivated by this we have calculated the five-loop anomalous
dimension of twist-two operators. It has been found to satisfy all known constraints.

Conclusions

- The recently proposed spectral equations for the planar $\mathcal{N}=4$ SYM theory, if supplemented by appropriate analytic properties, provide the full solution to the spectral problem!
- There is no need for Feynman diagram computations, as long as the ADs are concerned.
- Their veracity needs thus to be extensively tested!
- Motivated by this we have calculated the five-loop anomalous dimension of twist-two operators. It has been found to satisfy all known constraints.

