A new infrared regularization for planar $\mathcal{N}=4$ super Yang-Mills

Johannes M Henn

Humboldt-Universität zu Berlin

based on

F. Alday, J. H., J. Plefka and T. Schuster, arXiv:0908.0684 [hep-th] J. H., S. Naculich, H. Schnitzer and M. Spradlin arXiv:1001.1358 [hep-th]

Loops and Legs in Quantum Field Theory, April 27th, 2010

Outline

- \bullet Scattering on the Coulomb branch of ${\cal N}=4$ SYM
 - Extended dual conformal symmetry
 - Integral basis at higher loops
 - Exponentiation
 - Regge limit

Higgs IR regulator for planar $\mathcal{N}=4$ Super Yang-Mills

• $U(N+M) \rightarrow U(N) \times U(M)$

[Alday, Maldacena, 2007; Kawai, Suyama, 2007; Schabinger, 2008; Sever, McGreevy, 2008]

[Alday, J.H., Plefka, Schuster, 2009]

- → leads to massive particles
 - scatter massless U(M) particles
 - $N \gg M$: only allow loops in N-part of U(N+M)
 - → renders amplitudes IR finite
 - e.g. colour-ordered one-loop amplitude

One-loop example

Various interesting limits

• Regge limit $s \gg t, m^2$

$$M^{(1)} = \log(s/m^2)\alpha(t/m^2) + O(s^0),$$
 α is Regge trajectory

- large mass limit $m^2 \gg s$, t
- small mass limit $m^2 \ll s, t$ ("mass regulator")

$$M^{(1)} = -\left[\log^2 \frac{s}{m^2} + \log^2 \frac{t}{m^2}\right] + \frac{1}{2}\log^2 \left(\frac{s}{t}\right) + \frac{1}{2}\pi^2 + \mathcal{O}(m^2)$$

reminder: in dimensional regularization

$$M^{(1)} = -\left[\frac{1}{2\epsilon^2} \left(\frac{\mu^2}{s}\right)^{\epsilon} + \frac{1}{2\epsilon^2} \left(\frac{\mu^2}{t}\right)^{\epsilon}\right] + \frac{1}{2} \log^2\left(\frac{s}{t}\right) + \frac{2}{3}\pi^2 + \mathcal{O}(\epsilon)$$

One-loop example

Various interesting limits

• Regge limit $s \gg t, m^2$

$$M^{(1)} = \log(s/m^2)\alpha(t/m^2) + O(s^0),$$
 α is Regge trajectory

- large mass limit $m^2 \gg s, t$
- small mass limit $m^2 \ll s, t$ ("mass regulator")

$$M^{(1)} = -\left[\log^2 \frac{s}{m^2} + \log^2 \frac{t}{m^2}\right] + \frac{1}{2}\log^2 \left(\frac{s}{t}\right) + \frac{1}{2}\pi^2 + \mathcal{O}(m^2)$$

reminder: in dimensional regularization

$$M^{(1)} = -\left[\frac{1}{2\epsilon^2} \left(\frac{\mu^2}{s}\right)^{\epsilon} + \frac{1}{2\epsilon^2} \left(\frac{\mu^2}{t}\right)^{\epsilon}\right] + \frac{1}{2} \log^2\left(\frac{s}{t}\right) + \frac{2}{3}\pi^2 + \mathcal{O}(\epsilon)$$

One-loop example

Various interesting limits

• Regge limit $s \gg t, m^2$

$$M^{(1)} = \log(s/m^2)\alpha(t/m^2) + O(s^0),$$
 α is Regge trajectory

- large mass limit $m^2 \gg s, t$
- small mass limit $m^2 \ll s, t$ ("mass regulator")

$$M^{(1)} = -\left[\log^2\frac{s}{m^2} + \log^2\frac{t}{m^2}\right] + \frac{1}{2}\log^2\left(\frac{s}{t}\right) + \frac{1}{2}\pi^2 + \mathcal{O}(m^2)$$

reminder: in dimensional regularization

$$M^{(1)} = -\left[\frac{1}{2\epsilon^2} \left(\frac{\mu^2}{s}\right)^{\epsilon} + \frac{1}{2\epsilon^2} \left(\frac{\mu^2}{t}\right)^{\epsilon}\right] + \frac{1}{2} \log^2\left(\frac{s}{t}\right) + \frac{2}{3}\pi^2 + \mathcal{O}(\epsilon)$$

Exponentiation in Higgs regularization

universal planar structure

$$\log M_4 = D(s) + D(t) + F_4(s/t) + \mathcal{O}(\epsilon)$$

ullet reminder: dimensional regularization (eta=0)

$$D(s) = -1/2 \sum a^{\ell} \left[\Gamma_{\text{cusp}}^{(\ell)} / (\ell \epsilon)^2 + \mathcal{G}_0^{(\ell)} / (\ell \epsilon) \right] \left(\mu^2 / s \right)^{\ell \epsilon}$$

• finite part $F_4(s/t)$ is also simple!

[Anastasiou, Bern, Dixon, Kosower 2002; Bern, Dixon, Smirnov, 2003]

$$F_4 = \frac{1}{2}\Gamma_{\text{cusp}}(a)\left[\frac{1}{2}\log^2\frac{s}{t} + \frac{2}{3}\pi^2\right] + c(a)$$

 $M^{(2)} - \frac{1}{2} (M^{(1)})^2$ interference $1/\epsilon \times O(\epsilon) = O(1)$ \Rightarrow in order to compute log M, need $O(\epsilon)$ terms in M

analog in Higgs regularization
 [Alday, J. H., Plefka, Schuster, 2009; J. H., Naculich, Schnitzer, Spradlin, 201

$$D(s) = -\frac{1}{4}\Gamma_{\text{cusp}}(a)\log^2\frac{s}{m^2} - \tilde{G}_0(a)\log\frac{s}{m^2}$$

 F_4 equal up to scheme-dependent constant we have $m^2 \times \log m^2 \to 0 \Rightarrow$ can drop all $O(m^2)$ term

Exponentiation in Higgs regularization

universal planar structure

$$\log M_4 = D(s) + D(t) + F_4(s/t) + \mathcal{O}(\epsilon)$$

ullet reminder: dimensional regularization (eta=0)

$$D(s) = -1/2 \sum a^{\ell} \left[\Gamma_{\text{cusp}}^{(\ell)} / (\ell \epsilon)^2 + \mathcal{G}_0^{(\ell)} / (\ell \epsilon) \right] \left(\mu^2 / s \right)^{\ell \epsilon}$$

• finite part $F_4(s/t)$ is also simple!

[Anastasiou, Bern, Dixon, Kosower 2002; Bern, Dixon, Smirnov, 2003]

$$F_4 = \frac{1}{2}\Gamma_{\text{cusp}}(a)\left[\frac{1}{2}\log^2\frac{s}{t} + \frac{2}{3}\pi^2\right] + c(a)$$

 $M^{(2)} - \frac{1}{2} (M^{(1)})^2$ interference $1/\epsilon \times O(\epsilon) = O(1)$ \Rightarrow in order to compute log M, need $O(\epsilon)$ terms in M

• analog in Higgs regularization [Alday, J. H., Plefka, Schuster, 2009; J. H., Naculich, Schnitzer, Spradlin, 201

$$D(s) = -rac{1}{4}\Gamma_{ ext{cusp}}(a)\log^2rac{s}{m^2} - ilde{G}_0(a)\lograc{s}{m^2}$$

 F_4 equal up to scheme-dependent constant we have $m^2 \times \log m^2 \to 0 \Rightarrow$ can drop all $O(m^2)$ term

Exponentiation in Higgs regularization

universal planar structure

$$\log M_4 = D(s) + D(t) + F_4(s/t) + \mathcal{O}(\epsilon)$$

• reminder: dimensional regularization ($\beta = 0$)

$$D(s) = -1/2 \sum a^{\ell} \left[\Gamma_{\rm cusp}^{(\ell)} / (\ell \epsilon)^2 + \mathcal{G}_0^{(\ell)} / (\ell \epsilon) \right] \left(\mu^2 / s \right)^{\ell \epsilon}$$

• finite part $F_4(s/t)$ is also simple!

[Anastasiou, Bern, Dixon, Kosower 2002; Bern, Dixon, Smirnov, 2003]

$$F_4 = \frac{1}{2}\Gamma_{\text{cusp}}(a)\left[\frac{1}{2}\log^2\frac{s}{t} + \frac{2}{3}\pi^2\right] + c(a)$$

$$M^{(2)} - \frac{1}{2} (M^{(1)})^2$$
 interference $1/\epsilon \times O(\epsilon) = O(1)$

- \Rightarrow in order to compute log M, need $O(\epsilon)$ terms in M
- analog in Higgs regularization [Alday, J. H., Plefka, Schuster, 2009; J. H., Naculich, Schnitzer, Spradlin, 2010]

$$D(s) = -\frac{1}{4}\Gamma_{\text{cusp}}(a)\log^2\frac{s}{m^2} - \tilde{G}_0(a)\log\frac{s}{m^2}$$

 F_4 equal up to scheme-dependent constant we have $m^2 \times \log m^2 \to 0 \Rightarrow$ can drop all $O(m^2)$ terms

Dual conformal symmetry (1/2)

ullet observation: ${\cal N}=4$ SYM loop integrals have a dual conformal symmetry

loop integrand has conformal symmetry in dual space

$$x_{i+1}^{\mu} - x_i^{\mu} = p_i$$

e.g. inversion symmetry $x^{\mu} \rightarrow x^{\mu}/x^2$ or special conformal transformations

$$K^{\mu} = \sum_{i} \left[2x_{i}^{\mu} x_{i}^{\nu} \frac{\partial}{\partial x_{i\nu}} - x_{i}^{2} \frac{\partial}{\partial x_{i\mu}} \right]$$

• breaking of symmetry $D = 4 - 2\epsilon$ under control

[Drummond, J.H., Korchemsky, Sokatchev, 2007]

Dual conformal symmetry (2/2)

refinement: $U(N+M) \rightarrow U(N) \times U(1)^M$

[Alday, J.H., Plefka, Schuster, 2009]

- on-shell conditions now read $p_i^2 = (m_i m_{+1})$
- particles in loop have mass m_i

ullet important: in addition to the dual coordinates x_i , we can vary the masses m_i

$$\hat{K}^{\mu} = K^{\mu} + \sum_{i} \left[2x_{i}^{\mu} m_{i} \frac{\partial}{\partial m_{i}} - m_{i}^{2} \frac{\partial}{\partial x_{i \mu}} \right]$$

• integral has exact dual conformal symmetry

$$\hat{K}^{\mu}I=0$$

 \bullet very natural from string theory: \emph{m} corresponds to radial coordinate of AdS_5

Implications for higher loop integral basis

ullet basis of loop integrals in ${\cal N}=4$ SYM constrained by dual conformal symmetry?

[Drummond, J.H., Smirnov, Sokatchev, 2006; Bern, Czakon, Dixon, Kosower, Smirnov, 2006; Bern, Carrasco, Johansson, Kosower, 2007] [Drummond, Korchemsky, Sokatchev, '07; Nguyen, Spradlin Volovich, '07; Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, Volovich, '08]

[Spradlin, Volovich, Wen, 2008]

it seems reasonable to speculate that

[J.H., Naculich, Schnitzer, Spradlin, 2010]

$$M_n = 1 + \sum_{\mathcal{I}} a^{L(\mathcal{I})} c(\mathcal{I}) \frac{\mathcal{I}}{\mathcal{I}},$$

where: coupling a, loop order $L(\mathcal{I})$ coefficients $c(\mathcal{I}) \Rightarrow$ compute by (generalized) unitarity integrals $\mathcal{I} \Rightarrow$ restricted set of extended dual conformal integrals

• additional constraints from expected IR structure

$$M_n = \exp\left[-\frac{1}{8}\Gamma_{\text{cusp}}(a)\sum_{i}\log^2\frac{s_i}{m^2} - \frac{1}{2}\tilde{G}_0(a)\sum_{i}\log\frac{s_i}{m^2} + \mathcal{O}(\log^0m^2)\right]$$

- insights from analytic structure for generic m^2 , and Regge limit(s)?
- further constraints from the (broken) conventional conformal symmetry?

Extended dual conformal invariance at higher loops

 At 2 loops: Only one integral is allowed by extended dual conformal symmetry:

• At 3 loops: four integrals allowed:

Similarly restricts integral basis at higher loops and legs.

$$(-8)M_3 = c_{3a}I_{3a} + c_{3b}I_{3b} + c_{3c}I_{3c} + c_{3d}I_{3d} + \{s \leftrightarrow t\}$$

in dimreg: $c_{3a} = 1$, $c_{3b} = 2$ and $c_{3c} = c_{3d} = 0$

Extended dual conformal invariance at higher loops

 At 2 loops: Only one integral is allowed by extended dual conformal symmetry:

• At 3 loops: four integrals allowed:

Similarly restricts integral basis at higher loops and legs.

$$(-8)M_3 = c_{3a}I_{3a} + c_{3b}I_{3b} + c_{3c}I_{3c} + c_{3d}I_{3d} + \{s \leftrightarrow t\}$$

in dimreg: $c_{3a} = 1$, $c_{3b} = 2$ and $c_{3c} = c_{3d} = 0$

Two- and three-loop exponentiation

analog of BDS in Higgs regularization:

[Alday, J. H., Plefka, Schuster, 2009; J. H., Naculich, Schnitzer, Spradlin, 2010]

$$\log M_4 = -\frac{1}{4} \Gamma_{\text{cusp}}(a) \left[\log^2 \frac{s}{m^2} + \log^2 \frac{t}{m^2} \right] - \tilde{G}_0(a) \left[\log \frac{s}{m^2} + \log \frac{t}{m^2} \right] + \frac{1}{4} \Gamma_{\text{cusp}}(a) \left[\log^2 \frac{s}{t} + \pi^2 \right] + \tilde{c}(a) + O(m^2)$$

- verified by computing dual conformal integrals up to $O(m^2)$
 - at two loops

[Alday, J. H., Plefka, Schuster, 2009]

- at three loops

[J. H., Naculich, Schnitzer, Spradlin, 2010]

 method used: MB representation of all integrals, asymptotic expansion, numerical integration (Mathematica packages MBasymptotics, MB; CUBA)

The analytic S-matrix

The Analytic S-Matrix

R.J. EDEN

P.V. LANDSHOFF

D.I.OLIVE

J.C.POLKINGHORNE

Cambridge University Press

Regge limits for amplitudes on the Coulomb branch

• take Regge limit $s = (p_1 + p_2)^2 \to \infty$ expect

[J. H., Naculich, Schnitzer, Spradlin, 2010]

$$\beta(t/m^2)\left(\frac{s}{m^2}\right)^{\alpha(t/m^2)} + \mathcal{O}(m^2)$$

trajectory $lpha(t/m^2) = -rac{1}{2} \Gamma_{\mathrm{cusp}}(a) \log(t/m^2) - ilde{\mathcal{G}}_0(a)$

- Regge limit is simpler here compared to dimensional regularization
- dual conformal symmetry implies: Regge limit $s \gg m^2$, t equivalent to $m^2 \ll M^2$ in "Bhabha-type" scattering

determine leading Regge behavior of integrals

[Eden et al, The analytic S-matrix]

LL and NLL Regge limit to all loop orders

Regge limit to all loop orders:

- LL : ladder integrals
- NLL and LL: ladders and ladders with one H-shaped insertion
 [J. H., Naculich, Schnitzer, Spradlin, to appear]
- in contrast, in dimensional regularization, many different diagrams contribute

Summary

- ullet Higgs IR regulator for planar $\mathcal{N}=4$ SYM
 - makes dual conformal symmetry exact
 - restricts integral basis
 - exponentiation of amplitude easier to compute
 - Regge limit: LL and NLL computed to all loop orders