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@ Scattering on the Coulomb branch of N' =4 SYM

- Extended dual conformal symmetry
- Integral basis at higher loops
- Exponentiation

- Regge limit
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Higgs IR regulator for planar N' = 4 Super Yang-Mills

o UIN+ M) — U(N) x U(M)
[Alday, Maldacena, 2007; Kawai, Suyama, 2007; Schabinger, 2008; Sever, McGreevy, 2008]
[Alday, J.H., Plefka, Schuster, 2009]

— leads to massive particles

@ scatter massless U(M) particles
o N> M: only allow loops in N-part of U(N + M)
— renders amplitudes IR finite

o e.g. colour-ordered one-loop amplitude

P2 P3

p1 P4
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One-loop example

Various interesting limits

@ Regge limit s > t, m?

M®) = log(s/m?)a(t/m?) + O(s°), « is Regge trajectory
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One-loop example

Various interesting limits

@ Regge limit s > t, m?
M®) = log(s/m?)a(t/m?) + O(s°), « is Regge trajectory

@ large mass limit m? > s, t

[3/13]



One-loop example

Various interesting limits

@ Regge limit s > t, m?
M®) = log(s/m?)a(t/m?) + O(s°), « is Regge trajectory
@ large mass limit m? > s, t

@ small mass limit m®> < s, t (“mass regulator”)

M) = {Iog 5 + log? i} + % log? (;) + %7‘(‘2 + O(m?)

reminder: in dimensional regularization
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Exponentiation in Higgs regularization

@ universal planar structure
log My = D(s) + D(t) + Fa(s/t) + O(e)

@ reminder: dimensional regularization (8 = 0)

D(s) = =1/2 3" a" [T, /(te)? + 67 /(te) | (1?/5)"

o f|n|te part F4(S/t) |S a|SO Slmp|e| [Anastasiou, Bern, Dixon, Kosower 2002; Bern, Dixon, Smirnov, 2003]
1 1 s 2
Fo =T a) | log? = + =m?| +c(a
= 3enla) 310825 + 577 + (2
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Exponentiation in Higgs regularization

@ universal planar structure
log My = D(s) + D(t) + Fa(s/t) + O(e)

@ reminder: dimensional regularization (8 = 0)
D(s) = =1/2 3" a" [T, /(te)? + 67 /(te) | (1?/5)"

o f|n|te part F4(S/t) |S a|SO Slmp|e| [Anastasiou, Bern, Dixon, Kosower 2002; Bern, Dixon, Smirnov, 2003]
1 1 s 2
Fa = ZTeusp(a) [ S log? = + 7% | + c(a
= 3enla) 310825 + 577 + (2

M@ — 1 (l\/l(l))2 interference 1/e x O(e) = O(1)
= in order to compute log M, need O(¢) terms in M

o analog in Higgs regularization [Alday, J. H., Plefka, Schuster, 2009; J. H., Naculich, Schnitzer, Spradlin, 2010]

1 s ~ s
D(s) = —ersp(a) log?® i Go(a) log =

F4 equal up to scheme-dependent constant

we have m? x log m?> — 0 = can drop all O(m?) terms
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Dual conformal symmetry (1/2)

@ observation: N/ =4 SYM loop integrals have a dual conformal symmetry

[Drummond, J.H., Smirnov, Sokatchev, 2006]
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@ loop integrand has conformal symmetry in dual space
I B .
Xigr —Xi = Pi
e.g. inversion symmetry x* — x*/x? or special conformal transformations

0 0
— Ko v 2
KH = g [2)(1- X D — X i

i

[Drummond, J.H., Korchemsky, Sokatchev, 2007]

@ breaking of symmetry D = 4 — 2¢ under control
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Dual conformal symmetry (2/2)

refinement: U(N + M) — U(N) x U(l)M [Alday, J.H., Plefka, Schuster, 2009]

@ on-shell conditions now read p? = (m; — my1)
@ particles in loop have mass m;

P2 P3 (x5, ms3)
(X2 , M2 X4 , m4)
k (Xa , 0)
P1 P4 (Xl : ml)

@ important: in addition to the dual coordinates x;, we can vary the masses m;

A 0 0
Kt = K+ 2x!' m; ?
! z,: [ 5 om M o,
@ integral has exact dual conformal symmetry
KrI =0

@ very natural from string theory: m corresponds to radial coordinate of AdSs
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Implications for higher loop integral basis

@ basis of loop integrals in A/ = 4 SYM constrained by dual conformal symmetry?
[Drummond, J.H., Smirnov, Sokatchev, 2006; Bern, Czakon, Dixon, Kosower, Smirnov, 2006; Bern, Carrasco, Johansson, Kosower, 2007]
[Drummond, Korchemsky, Sokatchev, ‘07; Nguyen, Spradlin Volovich, ‘07; Bern, Dixon, Kosower, Roiban, Spradlin, Vergu, Volovich, ‘08]

[Spradlin, Volovich, Wen, 2008]

@ it seems reasonable to speculate that [J.H., Naculich, Schnitzer, Spradiin, 2010]
My=1+) a"P (D)7,
A

where: coupling a, loop order L(7)
coefficients ¢(Z) = compute by (generalized) unitarity
integrals 7 = restricted set of extended dual conformal integrals

@ additional constraints from expected IR structure

1 S; 1. Si
My = exp |~ gTeusp(a) > " log? —5 — 5 Go(a) > log —5+ O(log® m?)

@ insights from analytic structure for generic m?, and Regge limit(s)?
o further constraints from the (broken) conventional conformal symmetry?
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Extended dual conformal invariance at higher loops

@ At 2 loops: Only one integral is allowed by

extended dual conformal symmetry:

@ At 3 loops: four integrals allowed:

3a o3 T 3¢ T 3d

Similarly restricts integral basis at higher loops and legs.
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Extended dual conformal invariance at higher loops

@ At 2 loops: Only one integral is allowed by

extended dual conformal symmetry:

@ At 3 loops: four integrals allowed:

3a o3 T 3¢ T 3d

Similarly restricts integral basis at higher loops and legs.
(—8)M3 = c3313a + caphl3p + C3cl3c + 3ahd + {s = t}

in dimreg: c3;, =1,c3, =2 and c3c =3¢ =0
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Two- and three-loop exponentiation

@ analog of BDS in Higgs regularization:
[Alday, J. H., Plefka, Schuster, 2009; J. H., Naculich, Schnitzer, Spradlin, 2010]
o s t
log M, = [eusp(@) [Iog + log? —} — Gp(a) [Iog 3 + log F]

_l’_

-l>||—\-l>|l—l

[ eusp(a) [Iog2 ; + 7T2] + &(a) + O(m?)

@ verified by computing dual conformal integrals up to O(m?)

- at two loops [Alday, J. H., Plefka, Schuster, 2009]

- at three IOOpS [J. H., Naculich, Schnitzer, Spradlin, 2010]

@ method used: MB representation of all integrals, asymptotic expansion,
numerical integration (Mathematica packages MBasymptotics, MB; CUBA)
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The analytic S-matrix

The Analytic
S-Matrix
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Regge limits for amplitudes on the Coulomb branch

o take Regge limit s = (p1 + p2)2 — 00 [J. H., Naculich, Schnitzer, Spradlin, 2010]
expect

s \olt/m?)
o(e/m?) (=) +O(m?)
trajectory a(t/m?) = — 3l cusp(a) log(t/m?) — Go(a)
@ Regge limit is simpler here compared to dimensional regularization

@ dual conformal symmetry implies:
Regge limit s > m?,t equivalent to m?> < M? in “Bhabha-type” scattering

m M
s> mAt = m? < M?
M m
@ determine leading Regge behavior of integrals [Eden et al, The analytic S-matrix]
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LL and NLL Regge limit to all loop orders

17" 0000 []

p1.-

t]
I leading log (LL) and NLL It 1 NLL

Regge limit to all loop orders:
@ LL : ladder integrals

@ NLL and LL : ladders and ladders with one H-shaped insertion

[J. H., Naculich, Schnitzer, Spradlin, to appear]

@ in contrast, in dimensional regularization, many different diagrams contribute
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@ Higgs IR regulator for planar N/ = 4 SYM

<

makes dual conformal symmetry exact
@ restricts integral basis

@ exponentiation of amplitude easier to compute

<

Regge limit: LL and NLL computed to all loop orders
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