
# FeynHiggs 2.7 and More



T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein

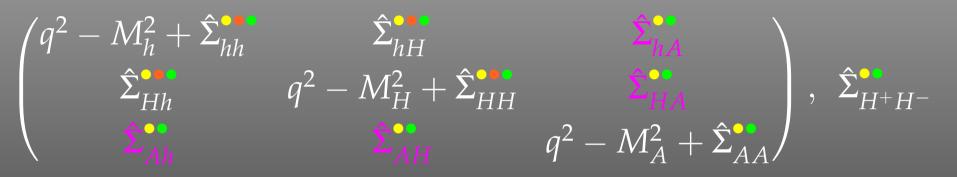




- $h_i \rightarrow f_j \bar{f}_k$  at one-loop precision.
- Improved treatment of NMFV corrections (sfermion section completely revamped).
- Better computation of  $\Delta_b$ .
- Inclusion of  $\Delta M_s$  at one-loop level in NMFV.
- Many small additions and bug-fixes.

# Higgs Mass Matrix

The Higgs mass matrix has the form


$$\mathcal{M}^2 = egin{pmatrix} q^2 - M_h^2 + \hat{\Sigma}_{hh} & \hat{\Sigma}_{hH} & \hat{\Sigma}_{hA} \ \hat{\Sigma}_{Hh} & q^2 - M_H^2 + \hat{\Sigma}_{HH} & \hat{\Sigma}_{HA} \ \hat{\Sigma}_{Ah} & \hat{\Sigma}_{AH} & q^2 - M_A^2 + \hat{\Sigma}_{AA} \end{pmatrix}$$

The physical Higgs states  $h_1$ ,  $h_2$ ,  $h_3$  diagonalize this matrix:

$$\begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = U \begin{pmatrix} h \\ H \\ A \end{pmatrix} \text{ where } U\mathcal{M}^2 U^{\dagger} = \begin{pmatrix} M_{h_1}^2 & 0 & 0 \\ 0 & M_{h_2}^2 & 0 \\ 0 & 0 & M_{h_3}^2 \end{pmatrix}$$

**Observe:**  $\mathcal{M}^2$  is symmetric but not Hermitian.

# Corrections included in FeynHiggs 2.7



• Leading  $\mathcal{O}(\alpha_s \alpha_t)$  two-loop corrections in the cMSSM. Heinemeyer, Hollik, Rzehak, Weiglein 2007

Leading O(α<sup>2</sup><sub>t</sub>) + subleading O(α<sub>s</sub>α<sub>b</sub>, α<sub>t</sub>α<sub>b</sub>, α<sup>2</sup><sub>b</sub>) two-loop corrections in the rMSSM (phases only partially included).
 Degrassi, Slavich, Zwirner 2001
 Brignole, Degrassi, Slavich, Zwirner 2001, 02

Dedes, Degrassi, Slavich 2003

### • Full one-loop evaluation (all phases, $q^2$ dependence).

Frank, Heinemeyer, Hollik, Weiglein 2002

### **Treatment of Phases**

A flag controls the treatment of phases in the part of the two-loop corrections known only in the rMSSM so far:

- all corrections ( $\alpha_s \alpha_t$ ,  $\alpha_s \alpha_b$ ,  $\alpha_t \alpha_t$ ,  $\alpha_t \alpha_b$ ) in the rMSSM,
- only the cMSSM  $\alpha_s \alpha_t$  corrections,
- the cMSSM  $\alpha_s \alpha_t$  corrections combined with the remaining corrections in the rMSSM, truncated in the phases,
- the cMSSM α<sub>s</sub>α<sub>t</sub> corrections combined with the remaining corrections in the rMSSM, interpolated in the phases [default].
   New in 2.7: choice of interpolation in A<sub>t</sub>/X<sub>t</sub>, A<sub>b</sub>/X<sub>b</sub>.

FeynHiggs thus not only has the most precise evaluation of the Higgs masses in the cMSSM available to date, but also a method to obtain a reasonably objective estimate of the uncertainties due to the rMSSM-only parts.

### Masses

FeynHiggs performs a numerical search for the complex roots of  $\det M^2(q^2)$ .

The Higgs masses are thus determined as the real parts of the complex poles of the propagator.

Complex contributions to the Higgs mass matrix ( $\mathrm{Im}\,\hat{\Sigma}$ ) are taken into account.

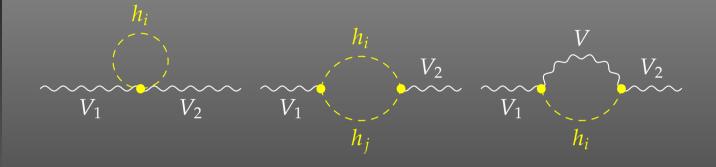
The diagonalization routines are available as a stand-alone package: <a href="http://feynarts.de/diag">http://feynarts.de/diag</a>

Hahn 2006

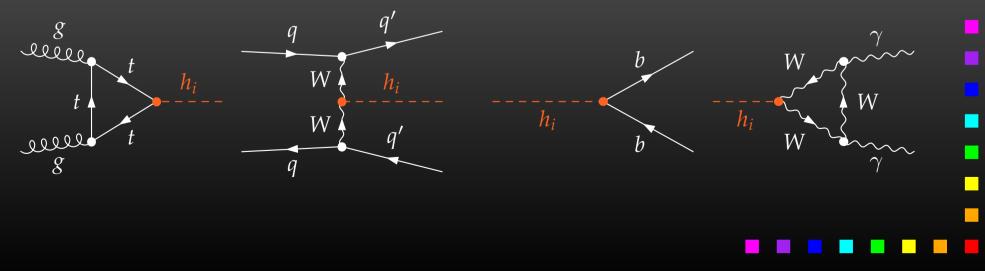
# Mixings

FeynHiggs returns two different 'mixing' matrices.

• UHiggs is a 'true' mixing matrix in the sense of being unitary and hence preserving probabilities. This matrix must be used for internal Higgs bosons.


Note: To obtain a unitary matrix, it is mathematically a necessity that  $\mathcal{M}^2$  has no imaginary parts – making it Hermitian. This of course constrains the achievable quality of approximation.

• ZHiggs is a matrix of Z-factors. It guarantees on-shell properties for external Higgs bosons.


It is important to understand that ZHiggs and UHiggs are two objects with physically and mathematically distinct properties. Neither is universally 'better' than the other.

# Examples of Internal and External Higgs Bosons

### Internal Higgs bosons:



### External Higgs bosons (production and decay):



# UHiggs

FeynHiggs offers two approximations for UHiggs:

•  $q^2$  on-shell

neaning 
$$\hat{\Sigma}_{ii}(q^2=m_i^2)$$
, $\hat{\Sigma}_{ij}(q^2=rac{1}{2}(m_i^2+m_j^2))$ .

•  $q^2 = 0$ 

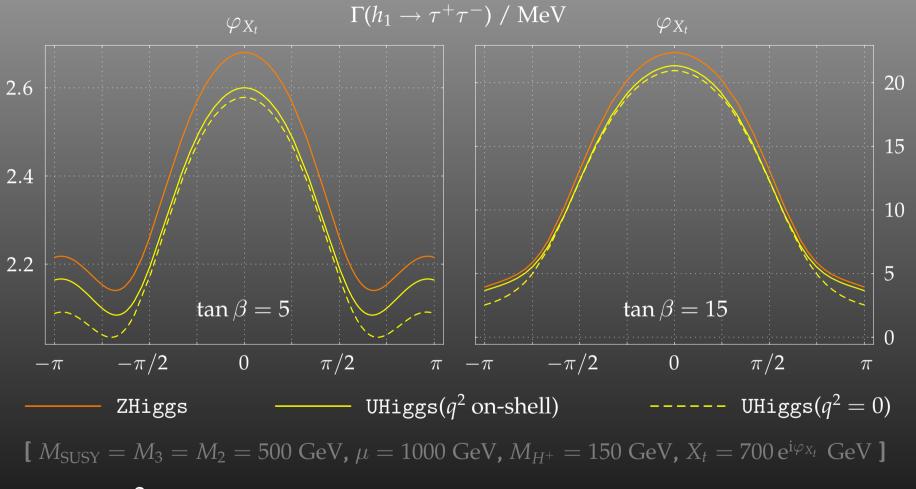
In this limit, UHiggs corresponds to the effective potential approach and coincides with  $\text{ZHiggs}(q^2 = 0)$ . In the absence of CP effects (i.e. 2×2 mixing only), this is identical to the  $\alpha_{\text{eff}}$  description.

# ZHiggs

ZHiggs is engineered to deliver the correct on-shell properties of an external Higgs boson, but is not necessarily unitary.

- - $\Gamma_{h,H,A}$  amplitude for h,H,A o X,
  - $\sqrt{Z_h}$  sets residuum of the external Higgs boson to 1,
  - $Z_{hH}$ ,  $Z_{hA}$  describe the transition  $h \rightarrow H, A$ .




For convenience, the Z factors can be arranged in matrix form:

$$\text{ZHiggs} = \begin{pmatrix} \sqrt{Z_h} & \sqrt{Z_h} \, \mathbf{Z}_{hH} & \sqrt{Z_h} \, \mathbf{Z}_{hA} \\ \sqrt{Z_H} \, \mathbf{Z}_{Hh} & \sqrt{Z_H} & \sqrt{Z_H} \, \mathbf{Z}_{HA} \\ \sqrt{Z_A} \, \mathbf{Z}_{Ah} & \sqrt{Z_A} \, \mathbf{Z}_{AH} & \sqrt{Z_A} \end{pmatrix}$$

In this guise, ZHiggs can be used very much like UHiggs, even though its theoretical origin is quite different.

**Reassuringly,** ZHiggs and UHiggs coincide in the limit  $q^2 = 0$ .

# **Phenomenological Effects**



UHiggs( $q^2$  on-shell) gives results closer to the full result than UHiggs( $q^2 = 0$ ) with deviations at the few-percent level.

# **Mixing Matrix Overview**

- Internal Higgs boson: use UHiggs. Two approximations:
  - $q^2$  on-shell,
  - $q^2 = 0$  = effective potential approximation.
- External Higgs boson: use ZHiggs.

Choice of mixing matrices in all Higgs production and decay channels through FHSelectUZ (default: ZHiggs).



# **Non-Minimal Flavour Violation**

In NMFV, the sfermion flavours are allowed to mix with each other, i.e. the mixing is  $6 \times 6$  rather than  $2 \times 2$ :

| NMFV                                                                                                                                                      | MFV                                                                                                                                                                                                                                                                                                             | NMFV                                                                                                                                      | MFV                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $	ilde{u}_i = R^{\mathrm{u}}_{ij} egin{pmatrix} 	ilde{u}_L \ 	ilde{c}_L \ 	ilde{t}_L \ 	ilde{t}_L \ 	ilde{u}_R \ 	ilde{c}_R \ 	ilde{t}_R \end{pmatrix}_j$ | $egin{aligned} &	ilde{u}_i = U^{\mathrm{u}}_{ij} \begin{pmatrix} 	ilde{u}_L \ 	ilde{u}_R \end{pmatrix}_j \ &	ilde{c}_i = U^{\mathrm{c}}_{ij} \begin{pmatrix} 	ilde{c}_L \ 	ilde{c}_R \end{pmatrix}_j \ &	ilde{t}_i = U^{\mathrm{t}}_{ij} \begin{pmatrix} 	ilde{t}_L \ 	ilde{t}_R \end{pmatrix}_j \end{aligned}$ | $	ilde{d_i} = R^{	ext{d}}_{ij} egin{pmatrix} 	ilde{d_L} \ 	ilde{s_L} \ 	ilde{b}_L \ 	ilde{d_R} \ 	ilde{s_R} \ 	ilde{b}_R \end{pmatrix}_j$ | $egin{aligned} &	ilde{d}_i = U_{ij}^{\mathrm{d}} \begin{pmatrix} 	ilde{d}_L \ 	ilde{d}_R \end{pmatrix}_j \ &	ilde{s}_i = U_{ij}^{\mathrm{s}} \begin{pmatrix} 	ilde{s}_L \ 	ilde{s}_R \end{pmatrix}_j \ &	ilde{b}_i = U_{ij}^{\mathrm{b}} \begin{pmatrix} 	ilde{b}_L \ 	ilde{b}_R \end{pmatrix}_j \end{aligned}$ |

Technical remark: FeynHiggs 2.7 keeps the MFV arrays U exactly 'on top' of the NMFV R ones.

## **Non-Minimal Flavour Violation**

The mixing matrices R diagonalize the mass matrices

$$M_{u,d}^{2} = \begin{pmatrix} M_{\tilde{L},i}^{2} & 0 & 0 & m_{i}X_{i} & 0 & 0 \\ 0 & M_{\tilde{L},j}^{2} & 0 & 0 & m_{j}X_{j} & 0 \\ 0 & 0 & M_{\tilde{L},k}^{2} & 0 & 0 & m_{k}X_{k} \\ \hline m_{i}X_{i}^{*} & 0 & 0 & M_{\tilde{K},i}^{2} & 0 & 0 \\ 0 & m_{j}X_{j}^{*} & 0 & 0 & M_{\tilde{K},j}^{2} & 0 \\ 0 & 0 & m_{k}X_{k}^{*} & 0 & 0 & M_{\tilde{K},k}^{2} \end{pmatrix} + \Delta_{u,d}$$

$$M_{\tilde{L},q}^{2} = M_{\tilde{Q},q}^{2} + m_{q}^{2} + \cos 2\beta (T_{3}^{q} - Q_{q}s_{W}^{2})m_{Z}^{2} \qquad X_{q} = A_{q} - \mu \tan^{-2T_{3}^{q}} \beta$$
$$M_{\tilde{R},q}^{2} = M_{\tilde{U}/\tilde{D},q}^{2} + m_{q}^{2} + \cos 2\beta Q_{q}s_{W}^{2}m_{Z}^{2}$$

FeynHiggs 2.7 and More – p.15

# NMFV Effects

The most immediately notable effect comes from the LR(RL) sector, as the  $A_{ij}^{f}$  enter the couplings directly, e.g.

$$\frac{\tilde{d}_{i}}{A_{0}} \propto \sum_{g,g'} \left[ m_{d_{g'}} R_{i,g+3}^{d*} R_{j,g'}^{d} (\delta_{gg'} \mu + A_{g'g}^{d*} \tan \beta) - m_{d_{g}} R_{i,g}^{d*} R_{j,g'+3}^{d} (\delta_{gg'} \mu^{*} + A_{gg'}^{d} \tan \beta) \right]$$

This enters the Higgs masses through the  $A_0$  self-energy and can lead to sizable effects.

Main constraints from low-energy observables. Currently included in FeynHiggs are  $b \rightarrow s\gamma$  and  $\Delta M_s$ , both at one-loop including NMFV effects, with more to follow.

### **Benchmark Scenarios**

FeynHiggs has long included **Benchmark Scenarios** which are useful in the search for the MSSM Higgs bosons:

- Vary only  $M_A$  and  $\tan\beta$ ,
- Keep all other SUSY parameters fixed.

### $m_h^{\rm max}$ scenario

Yields conservative  $\tan \beta$  exclusion bounds  $(X_t = 2 M_{SUSY})$ .

### gluophobic Higgs scenario

Looks at a small hgg coupling, such that a main LHC production mode vanishes.

Carena, Heinemeyer, Wagner, Weiglein 2002

### no-mixing scenario

No mixing in the scalar top sector ( $X_t = 0$ ).

#### small $\alpha_{\rm eff}$ scenario

Explores  $\alpha_{\rm eff} \rightarrow 0$  where the  $hb\bar{b}$  coupling  $\sim \sin \alpha_{\rm eff} / \cos \beta$  and thus a main decay mode and important search channel vanishes.

But: constraints such as CDM so far ignored. Wanted:  $M_A$ -tan  $\beta$  planes in agreement with CDM.

### **Parameter Planes**

Moreover, models like the NUHM\* introduce non-trivial relations between parameters, which thus cannot be scanned naively by independent loops.

FeynHiggs offers the Parameter Table format to deal with such cases.

\*Non-universal Higgs mass model: assumes no unification of sfermion and Higgs parameters at the GUT scale.

# Parameter Tables

Input parameters can either be given in an input file (as before) or interpolated from a table, in almost any mixture.

The table format is pretty straightforward:

| MT    | MSusy | MAO | TB | At   | MUE . |  |
|-------|-------|-----|----|------|-------|--|
| 171.4 | 500   | 200 | 5  | 1000 | 761   |  |
| 171.4 | 500   | 210 | 5  | 1000 | 753   |  |
|       |       |     |    |      |       |  |
| 171.4 | 500   | 200 | 6  | 1000 | 742   |  |
| 171.4 | 500   | 210 | 6  | 1000 | 735   |  |

For two given inputs (typically  $M_A$  and  $\tan \beta$ ) the four neighbouring grid points are searched in the table and the other parameters are interpolated from those points. An error is returned if the inputs fall outside of the table boundaries (i.e. no extrapolation).

### **Tables and Records**

Four predefined NUHM  $M_A$ -tan  $\beta$  planes can be downloaded from feynhiggs.de.

Definition of new planes by the user is possible.

The Table is actually embedded in the concept of the FeynHiggs Record. This is a data type which captures the entire content of a FeynHiggs parameter file. Using a Record, the programmer can process FeynHiggs parameter files independently of the frontend.

# Higgs Decays

The Higgs decays to fermions,  $h_i \rightarrow f_j \bar{f}_k$  are now available at one-loop precision.

Weiglein, Williams 2007

# The real gluon (photon) which cancels the IR pole is treated fully inclusive.

Braaten, Leveille 1980

The (phenomenologically important) resummed  $\Delta_b$  corrections are still taken into account, with the corresponding one-loop contribution subtracted to prevent double counting.

### Output of FeynHiggs 2.7

- FHHiggsCorr All Higgs-boson masses and mixings:  $M_{h_1}$ ,  $M_{h_2}$ ,  $M_{h_3}$ ,  $M_{H^{\pm}}$ ,  $\alpha_{\rm eff}$ , UHiggs, ZHiggs, ...
- FHUncertainties Uncertainties of masses and mixings.
- FHCouplings
  - Couplings and Branching Ratios for the channels  $h_{1,2,3} \rightarrow f\bar{f}', \gamma\gamma, ZZ^*, WW^*, gg \qquad H^{\pm} \rightarrow f\bar{f}' \qquad t \rightarrow W^+b$   $h_iZ^*, h_ih_j, H^+H^- \qquad h_iW^{\pm *} \qquad H^+b$  $\tilde{f}_i\tilde{f}_j, \qquad \tilde{f}_i\tilde{f}'_j, \qquad \tilde{f}_i\tilde{f}'_j, \qquad \tilde{f}_i\tilde{f}'_j, \qquad \tilde{\chi}^{\pm}_i\tilde{\chi}^{\pm}_j, \tilde{\chi}^{0}_i\tilde{\chi}^{0}_j \qquad \tilde{\chi}^{\pm}_i \qquad \tilde{\chi}^{0}_i\tilde{\chi}^{\pm}_j$
  - Branching Ratios of an SM Higgs with mass  $M_{h_i}$ :  $h_{1,2,3}^{\text{SM}} \rightarrow f\bar{f}, \gamma\gamma, ZZ^*, WW^*, gg$

# Output of FeynHiggs 2.7

- FHHiggsProd Higgs production-channel cross-sections: (SM: most up-to-date, MSSM: effective coupling approximation)
  - $gg \rightarrow h_i$  gluon fusion.
  - $WW \rightarrow h_i$ ,  $ZZ \rightarrow h_i$  gauge-boson fusion.
  - $W \rightarrow Wh_i$ ,  $Z \rightarrow Zh_i$  Higgs-strahlung.
  - $b\bar{b} \rightarrow b\bar{b}h_i$  Yukawa process.
  - $bar{b} o bar{b}h_i, \, h_i o bar{b}$ , one b tagged.
  - $t\bar{t} \rightarrow t\bar{t}h_i$  Yukawa process.

Note: Not all are available for  $\sqrt{s} \neq 2$ , 14 TeV at present.

# Output of FeynHiggs 2.7

- FHConstraints Electroweak precision observables:
  - $\Delta \rho$ at  $\mathcal{O}(\alpha, \alpha \alpha_s)$  including NMFV effects.
  - $M_W$ ,  $s_w^{\text{eff}}$ via SM formula +  $\Delta \rho$ .
  - (g<sub>μ</sub> 2)<sub>SUSY</sub>
     full one-, leading/subleading two-loop SUSY corrections.
     Heinemeyer, Stöckinger, Weiglein 2004
  - EDMs of electron (Th), neutron, Hg.
- FHFlavour Flavour observables:
  - ${
    m BR}(b o s \gamma)$ Hahn, Hollik, Illana, Peñaranda 2006
  - $\Delta M_s$

Hahn, Illana 2009

## **Download and Build**

- Get the FeynHiggs tar file from feynhiggs.de.
- Unpack and configure:

tar xfz FeynHiggs-2.7.0.tar.gz cd FeynHiggs-2.7.0 ./configure

- Type make to build the Fortran/C++ part only.
   Type make all to build also the Mathematica part.
   Build takes about 75 sec on a Macbook Air.
- Type make install to install the package.
- Type make clean to remove unnecessary files.

Build tested on Linux, Tru64 Unix, Mac OS, Windows (Cygwin).

### Usage

Four operation modes:

- Library Mode: Invoke the FeynHiggs routines from a Fortran or C/C++ program linked with libFH.a.
- Command-line Mode: Process parameter files in FeynHiggs or SLHA format at the shell prompt or in scripts with the standalone executable FeynHiggs.
- Web Mode: Interactively choose the parameters at the FeynHiggs User Control Center (FHUCC) and obtain the results on-line.
- Mathematica Mode: Access the FeynHiggs routines in Mathematica via MathLink with MFeynHiggs.

All programs and subroutines are documented in man pages.

## Library Mode

- Static Fortran 77 library libFH.a.
- All global symbols prefixed to prevent symbol collision.
- Uses only subroutines (no functions): No include files needed (except for couplings).
   C/C++ users include CFeynHiggs.h for prototypes.
- Detailed debugging output can be turned on at run time.

### • Main routines:

FHSetFlags - set the flags of the calculation, FHSetPara - set the MSSM input parameters, FHHiggsCorr - compute Higgs masses and mixings, FHUncertainties - estimate their uncertainties, FHCouplings - compute the Higgs couplings and BRs, FHHiggsProd - estimate Higgs production cross-sections, FHConstraints - evaluate additional constraints.

|                                                                                                                                                                                                           | Screen Output                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input File         MT       178         MB       4.7         MW       80.450         MZ       91.1875         MSusy       975         MAO       200         Abs(M_2)       332         Abs(MUE)       980 | HIGGS MASSES<br>  Mh0 = 116.022817<br>  MHH = 199.943497<br>  MA0 = 200.000000<br>  MHp = 216.973920<br>  SAeff = -0.02685112<br>  UHiggs = 0.99999346 -0.00361740 0.00000000 \<br>  0.00361740 0.99999346 0.00000000 \<br>  0.00000000 0.00000000 1.00000000 |
| TB     50       Abs(At)     -300       Abs(Ab)     1500       Abs(M_3)     975                                                                                                                            | ESTIMATED UNCERTAINTIES<br>  DeltaMh0 = 1.591957<br>  DeltaMHH = 0.004428<br>  DeltaMA0 = 0.000000<br>  DeltaMHp = 0.152519<br>                                                                                                                               |

- Mask off details with
   FeynHiggs *file* [*flags*] | grep -v %
- table utility converts to machine-readable format, e.g.
   FeynHiggs file [flags] | table TB Mh0 > outfile

# **Access to Tables**

| Input File | e "normal" | "table"   |              | "inline to | able"    |
|------------|------------|-----------|--------------|------------|----------|
| MT         | 170.9      | MT        | 170.9        | MT         | 170.9    |
| MB         | 4.7        | MB        | 4.7          | MB         | 4.7      |
| MW         | 80.392     | MW        | 80.392       | MW         | 80.392   |
| MZ         | 91.1875    | MZ        | 91.1875      | MZ         | 91.1875  |
| MSusy      | 975        | MAO       | 200          | MAO        | 200      |
| MAO        | 200        | TB        | 50           | TB         | 50       |
| $Abs(M_2)$ | 332        | table fil | e.dat MAO TB | table - N  | IAO TB   |
| Abs(MUE)   | 980        |           |              | MAO TB     | At MUE   |
| TB         | 50         |           |              | 200 5      | 1000 761 |
| Abs(At)    | -300       |           |              | 210 5      | 1000 753 |
| Abs(Ab)    | 1500       |           |              |            |          |
| $Abs(M_3)$ | 975        |           |              |            |          |

Loops over parameter values possible (parameter scans).

- MAO 200 400 50 linear: 200, 250, 300, 350, 400,
- TB 5 40 \* 2 logarithmic: 5, 10, 20, 40,
- TB 5 50 /6 # of steps: 5, 14, 23, 32, 41, 50.

#! /bin/sh

make || exit 1

FHDEBUG=2 ./build/FeynHiggs - \${1:-400202113} << \_EOF\_ 173.1 MT MSusy 3000 1000 MAO  $Abs(M_2)$ 2500 Abs(MUE) 2000 TB 5 Abs(Xt) 1000  $Abs(M_3)$ 2000 \_EOF\_

#! /bin/sh Shell "Magic"

make || exit 1

FHDEBUG=2 ./build/FeynHiggs - \${1:-400202113} << \_EOF\_ 173.1 MT MSusy 3000 1000 MAO  $Abs(M_2)$ 2500 Abs(MUE) 2000 TB 5 Abs(Xt) 1000  $Abs(M_3)$ 2000 \_EOF\_

#! /bin/sh

make || exit 1 exit if make fails

FHDEBUG=2 ./build/FeynHiggs - \${1:-400202113} << \_EOF\_ 173.1 MT MSusy 3000 1000 MAO  $Abs(M_2)$ 2500 Abs(MUE) 2000 TB 5 Abs(Xt) 1000  $Abs(M_3)$ 2000 \_EOF\_

#! /bin/sh

make || exit 1

| FHDEBUG=2).    | /build/FeynHiggs       | - \${1:-400202113} < | < _EOF_ |
|----------------|------------------------|----------------------|---------|
| MT env. variat | <mark>) e</mark> 173.1 |                      |         |
| MSusy          | 3000                   |                      |         |
| MAO            | 1000                   |                      |         |
| $Abs(M_2)$     | 2500                   |                      |         |
| Abs(MUE)       | 2000                   |                      |         |
| TB             | 5                      |                      |         |
| Abs(Xt)        | 1000                   |                      |         |
| $Abs(M_3)$     | 2000                   |                      | _       |
| _EOF_          |                        |                      |         |
|                |                        |                      |         |

#! /bin/sh

make || exit 1

| FHDEBUG=2  | ./build/FeynHiggs | - \${1:-400202113} << _EOF_ |
|------------|-------------------|-----------------------------|
| MT         | 173.1             | default flags               |
| MSusy      | 3000              | (if arg #1 not given)       |
| MAO        | 1000              |                             |
| $Abs(M_2)$ | 2500              |                             |
| Abs(MUE)   | 2000              |                             |
| TB         | 5                 |                             |
| Abs(Xt)    | 1000              |                             |
| $Abs(M_3)$ | 2000              |                             |
| _EOF_      |                   |                             |
|            |                   |                             |

#! /bin/sh

| make    ex | it 1             | stdin            | begin "here" document |
|------------|------------------|------------------|-----------------------|
|            | ./build/FeynHigg | s - \${1:-400202 | 2113} << _EOF_        |
| MT         | 173.1            |                  |                       |
| MSusy      | 3000             |                  |                       |
| MAO        | 1000             |                  |                       |
| $Abs(M_2)$ | 2500             |                  |                       |
| Abs(MUE)   | 2000             |                  |                       |
| TB         | 5                |                  |                       |
| Abs(Xt)    | 1000             |                  |                       |
| $Abs(M_3)$ | 2000             |                  |                       |
| (_EOF_)    |                  |                  |                       |
| end "l     | nere" document   |                  |                       |

# **SUSY Les Houches Accord Format**

## **Input File**

| BLOCK | MODSEL          |   |         |
|-------|-----------------|---|---------|
|       |                 |   |         |
| BLOCK | MINPAR          |   |         |
|       | 0.10000000E+03  | # | mO      |
| 2     | 0.25000000E+03  | # | m12     |
| 3     | 0.10000000E+02  | # | tanb    |
| 4     | 0.10000000E+01  | # | Sign(mu |
| 5     | -0.10000000E+03 | # | A       |
| BLOCK | SMINPUTS        |   |         |
| 4     | 0.911870000E+02 | # | MZ      |
| 5     | 0.425000000E+01 | # | mb(mb)  |
| 6     | 0.175000000E+03 | # | t       |
|       |                 |   |         |
|       |                 |   |         |



*file*.fh

| BLOCK | MASS            |   |       |
|-------|-----------------|---|-------|
| 25    | 1.12697840E+02  | # | MhO   |
| 35    | 4.00145460E+02  | # | MHH   |
| 36    | 3.99769788E+02  | # | MAO   |
| 37    | 4.08050556E+02  | # | MHp   |
|       |                 |   |       |
| BLOCK | ALPHA           |   |       |
|       | -1.10658125E-01 | # | Alpha |
|       |                 |   |       |
|       |                 |   |       |

- Uses the SLHA 2.
- SLHA can also be used in Library Mode with FHSetSLHA.
- FeynHiggs tries to read each file in SLHA format first. If that fails, fallback to native format.

# Web Mode

### The FeynHiggs User Control Center (FHUCC) is on-line at http://feynhiggs.de/fhucc

| \varTheta 🔿 Mozilla Fire                                                                 | efox     |                | 0    |
|------------------------------------------------------------------------------------------|----------|----------------|------|
| 🛶 🔹 😴 🚱 🏠 🙆 http://www.feynhiggs.de/fhucc                                                |          | ▼ 🕨 🕞 • Google | ٩) 🐇 |
| The FeynHiggs User Control Center                                                        |          |                |      |
| You can still access the version $2.5.1$ .<br>You can still access the version $2.3.2$ . |          |                |      |
| Flags                                                                                    |          |                |      |
| Scope of the 1-loop part: full MSSM                                                      |          |                |      |
| 1-loop field renormalization: DRbar                                                      |          |                |      |
| 1-loop tan(beta) renormalization: DRbar                                                  | <u>.</u> |                |      |
| Mixing in the neutral Higgs sector: $2x2$ (h0-HH) mixing = real parameters               | <b>•</b> |                |      |
| Approximation for the 1-loop result: no approximation                                    | <u>•</u> |                | U    |

FHUCC is a Web interface for the Command-line Frontend. The user gets the results together with the input file for the Command-line Frontend.

# **Mathematica Mode**

### Provides the FeynHiggs functions in Mathematica, e.g.

```
In[1]:= Install["MFeynHiggs"];
```

```
In[2]:= FHSetFlags[...];
```

```
In[3]:= FHSetPara[...];
```

```
In[4]:= FHHiggsCorr[]
```

```
Out[4]= {MHiggs -> {117.184, 194.268, 200., 212.67},
> SAeff -> -0.37575,
> UHiggs -> {{0.994782, 0.102021, 0},
> {-0.102021, 0.994782, 0},
> {0, 0, 1.}}
```

- Can use all Mathematica functions on the results (e.g. ContourPlot, FindMinimum).
- Convenient interactive mode for FeynHiggs.

## Summary

- Higgs masses are the real part of the complex pole.
- Two kinds of 'mixing' matrices (UHiggs, ZHiggs).
- Inclusion of the full cMSSM two-loop  $\alpha_s \alpha_t$  corrections in highly optimized form.
- Inclusion of full one-loop NMFV effects.
- Possibility to interpolate parameters from data tables.  $M_A$ -tan  $\beta$  planes in agreement with CDM constraints.
- All important Higgs decay channels. New:  $h_i \rightarrow f_j \bar{f}_k$  at one-loop.
- Estimates of Higgs production cross-sections.
- Precision EW and flavour observables as constraints.