
Perturbative calculations of radiative B decay

Miko laj Misiak
(University of Warsaw and Karlsruhe Institute of Technology )

1. Motivation

2. Completed and ongoing calculations of b→ Xp
sγ at O(α2

s)

3. Example: G27 from imaginary parts of 4-loop diagrams
[M. Czakon, T. Schutzmeier, R. Boughezal, T. Huber]

4. Overview of non-perturbative effects in B(B̄ → Xsγ)

5. Summary



Information on electroweak-scale physics in the b→ sγ transition
is encoded in an effective low-energy local interaction:

γ

γ
γ

t̃
t −→

b s
b W s b χ− s

Basic properties:

• Sensitivity to new physics at scales (a few)×O(100 GeV) with the present th/exp accuracy,

even in models with Minimal Flavour Violation (MFV).

• Perturbative calculability of the inclusive rate

Γ(B̄ → Xs γ)Eγ>E0
= Γ(b→ Xp

s γ)Eγ>E0
+


 non-perturbative effects

∼ (2 ± 5)%




provided E0 is large (E0 ∼ mb/2) but not too close to the endpoint (mb − 2E0 ≫ ΛQCD).

• The known/estimated NNLO O(α2
s) contributions to the partonic rate are ∼ O(10%).

An uncertainty of ±3% is assumed for the unknown part.

A very recent and detailed analysis of dominant non-perturbative effects:

M. Benzke, S. J. Lee, M. Neubert and G. Paz, arXiv:1003.5012.



Results of the SM calculations:

B(B̄ → Xsγ)NNLO
Eγ>1.6 GeV =






(3.15 ± 0.23) × 10−4, hep-ph/0609232, using the 1S scheme,

(3.26 ± 0.24) × 10−4,
following the kin scheme analysis of

arXiv:0805.0271, but mc(mc)
2loop

rather than mc(mc)
1loop.

Experimental world averages:

B(B̄ → Xsγ)EXP
Eγ>1.6 GeV =





(3.55 ± 0.26) × 10−4, [HFAG, winter 2010],

(3.50 ± 0.17) × 10−4,
[Artuso, Barberio, Stone,

arXiv:0902.3743].

⇒ Clean signals of new physics — unlikely.
(even after reducing the uncertainties by factors of 2 on both sides)

Constraints on new physics — certainly.



Decoupling of W , Z, t, H0 ⇒ effective weak interaction Lagrangian:

Lweak ∼ Σ Ci(µb)Qi
where

Q2 = b s
c c

= (s̄LγµcL)(c̄Lγ
µbL), from b W s

c c

, C2(µb) ≃ 1

Q7 = b s

γ

∼ (s̄Lσ
µνbR)Fµν, C7(µb) ≃ −0.3

Q8 = b s

g

∼ (s̄Lσ
µνT abR)Ga

µν, C8(µb) ≃ −0.2

Q1 differs from Q2 only by color structure.

Q3,. . . , Q6 – other 4-quark operators with small Wilson coefficients Ci(µ).

All the Ci(µ) are known up to O(α2
s) (NNLO) in the SM.

[Bobeth, MM, Urban, 2000], [MM, Steinhauser, 2004], [Gorban, Haisch, 2005], [Gorban, Haisch, MM, 2005], [Czakon, Haisch, MM, 2007].



Evaluation of the NNLO matrix elements at µb ∼
mb
2 .

Γ(b→ Xp
sγ)

Eγ>E0

=
G2
Fm

5
bαem

32π4 |V ∗
tsVtb|

2 8∑

i,j=1
Ci(µb)Cj(µb)Gij(E0, µb)

|C1,2(µb)| ∼ 1, |C3,4,5,6(µb)| < 0.07,

C7(µb) ∼ −0.3, C8(µb) ∼ −0.15.LO: Gij = δi7δj7 ⇔b s

γ

7
b s b

γ

7 7

NLO: The most important Gij (i, j = 1, 2, 7, 8) are known since 1996.
{

[Greub, Hurth, Wyler, 1996]
[Ali, Greub, 1991-1995]

The remaining Gij are known since 2002.
{

[Buras, Czarnecki, MM, Urban, 2002]
[Pott, 1995]

NNLO: Only i, j = 1, 2, 7, 8 have been considered so far.

Only G77 is
fully known: + + . . .






[Blokland et al., 2005]
[Melnikov, Mitov, 2005]
[Asatrian et al., 2006-2007]

7 7

7 7

G27: + + + . . .
(and analogous G17) 2 7 2 7 2 7

c c c

︸ ︷︷ ︸
coming soon
for mc=0

Boughezal, Czakon, Schutzmeier Czakon, Huber, Schutzmeier

O(200) massive 4-loop on-shell master integrals...
Medieval monk job? M.C.: ”not really...”



G78: + + . . .8

7

7 8

coming soon [H.M. Asatrian, T. Ewerth, A. Ferroglia, C. Greub, G. Ossola]

G22: + + + . . .
(and analogous
G11 & G12)

2 2 2 2 2 2

c c c c c c

Two-particle cuts Three- and four-particle cuts
are known (just |NLO|2). vanish at the endpoint Eγ = mb/2.

Analogous NLO corrections are not big (+3.6%).

The phenomenological estimate at the NNLO in 2006 relied on using the BLM approximation together
with the large-mc asymptotics of the non-BLM correction. The latter correction has been interpolated
in mc under the assumption that it vanishes at mc = 0.

Large-mc asymptotics The BLM approximation

of GNNLO
ij (mc ≫ mb/2): for GNNLO

ij (arbitrary mc):

1 2 7 8

+ + + + 1

+ + + 2
+ × 7

− 8

1 2 7 8

+ + + × 1

+ + × 2
+ + 7

+ 8

[MM, Steinhauser, 2006]

[Bieri, Greub, Steinhauser, 2003]
[Ligeti, Luke, Manohar, Wise, 1999]
[Ferroglia, Haisch, unpublished] (G88)
[MM, Poradziński, coming soon]

The BLM corrections to G78, G88 are small.

G18 and G28 are small at the NLO.

Beyond BLM, diagrams with massive quark loops on gluon lines are now known for all the relevant Gij.

[Boughezal, Czakon, Schutzmeier, 2007], [Asatrian, Ewerth, Gabrielyan, Greub, 2007], [Ewerth, 2008]



Other examples of diagrams contributing to G27
(Figures here and in the next few slides are from the Ph.D. thesis of T. Schutzmeier):

However:

(i) Diagrams with fermion loops on the gluon lines can be removed
from the mc = 0 calculation because they are known for arbitrary mc.
[Bieri, Greub, Steinhauser, 2003], [Boughezal, Czakon, Schutzmeier, 2007]

(ii) In all the remaining diagrams, charm lines should not be cut. No open charm production

occurs in B̄ → Xsγ by definition. Ignoring such cuts is possible even in the mc = 0 case
without introducing IR singularities.



Evaluation of the master integrals Ik. (e.g.: )

(i) Generalization to the off-shell case z ≡ p2

m2
b
6= 1

(ii) Automatic derivation (with the help of IBP) of differential equations of the form:

d
dz In = Σk wnk(z, ǫ) Ik

where wnk are rational functions of their arguments.

(iii) Establishing initial conditions from expansions around z = 0 that involve massless integrals only
(apart from massive tadpoles).

(iv) Evolving to the vicinity of z = 1 using precise numerical solutions to the differential equations.

The evolution goes either in the upper or in the lower part of the complex z-plane to bypass spurious
singularities of wnk on the real axis. Path-independence of the final results serves as a test.

(v) Matching with expansions around z = 1, assuming their form Σ cpq (1 − z)p lnq(1 − z)
(with unknown coefficients cpq). This is necessary only if numerical instabilities occur at z = 1.



Example of z-dependence (the O(ǫ0) part of ):



Massless integrals with two- and three-particle cuts for the initial conditions

Massless integrals with four-particle cuts for the initial conditions (calculated by T. Huber
using Mellin-Barnes techniques):



Energetic photon production in charmless decays of the B̄-meson
(Eγ ∼>

mb

3
≃ 1.6 GeV) [see MM, arXiv:0911.1651]

A. Without long-distance charm loops:
1. Hard 2. Conversion 3. Collinear 4. Annihilation

s

(qq̄ 6= cc̄)
q̄ q

s s s
Dominant, well-controlled. O(αsΛ/mb), (−1.5 ± 1.5)%. Pert. < 1%, nonp. ∼ −0.2%. Exp. π0, η, η′, ω subtracted.

[Lee, Neubert, Paz, 2006] [Kapustin,Ligeti,Politzer, 1995] Perturbatively ∼ 0.1%.

B. With long-distance charm loops:

5. Soft 6. Boosted light cc̄ 7. Annihilation of cc̄ in a heavy (c̄s)(q̄c) state
gluons state annihilation
only (e.g. ηc, J/ψ, ψ′)

c̄
c̄ c c̄ c c̄ c

c

s s s s

O(Λ2/m2

c), ∼ +3.1%. Exp. J/ψ subtracted (< 1%). O(αs(Λ/M)2) O(αsΛ/M)
[Voloshin, 1996], [...], Perturbatively (including hard): ∼ +3.6%. M ∼ 2mc, 2Eγ, mb.

[Buchalla, Isidori, Rey, 1997] φ
(1)
ij (δ), φ

(2)β0

ij (δ), i, j = 1, 2 e.g. B[B− → DsJ(2457)− D∗(2007)0 ] ≃ 1.2%,
B[B0 → D∗(2010)+ D̄∗(2007)0K−] ≃ 1.2%.



Summary

• Given the present consistency of measurements and SM calculations,
observing clean signals of new physics in B̄ → Xsγ is unlikely,
even if the uncertainties were reduced by factors of 2 on both sides.
However, achieving such a reduction is worth an effort,
as it would lead to strengthening constraints
on most popular beyond-SM theories (e.g. MSSM with MFV).

• New perturbative NNLO results are coming soon.
This is going to improve the mc-interpolation.
No BLM approximation at mc = 0 will be necessary any more.

• Non-perturbative uncertainties remain at the 5% level.
However, their estimate has become more solid
thanks to the recent analysis in arXiv:1003.5012.

[M. Benzke, S.J. Lee, M. Neubert, G. Paz].



BACKUP SLIDES



Updated B(B → Xsγ) measurement by Belle.
A. Limosani et al, arXiv:0907.1384, PRL 103 (2009) 241801.

B×104 for each Emin
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Babar, hep-ex/0607071

88.5 MBB̄ HFAG

0808.1297

SM, hep-ph/0609232
Belle, arXiv:0907.1384

657 MBB̄

Cleo, hep-ex/0108032

9.7 MBB̄

The displayed measurements are only the fully-inclusive, no-hadronic-tag ones.

Other methods (included in the HFAG average):

• Semi-inclusive (systematics-limited),

• With hadronic tags of the recoiling B meson (not necessarily fully reconstructed).
Low systematic errors, but statistics-limited at present.



Interpolation in mc

B(B̄ → Xsγ)
Eγ>E0

= X [ P (E0) + N (E0) ]
normalization perturbative non-perturbative

Expansion of P (E0):

P = P (0) + αs(µb)
4π


P

(1)
1 + P

(1)
2 (r)


 +



αs(µb)

4π



2 
P

(2)
1 + P

(2)
2 (r) + P

(2)
3 (r)




︸ ︷︷ ︸ ︸ ︷︷ ︸

known known

P
(1)
1 , P

(2)
3 ∼ C

(0)
i C

(1)
j , P

(1)
2 , P

(2)
2 ∼ C

(0)
i C

(0)
j , P

(2)
1 ∼

(

C
(0)
i C

(2)
j , C

(1)
i C

(1)
j

)

Moreover: P
(2)
2 = Anf +B = −3

2
(11 − 2/3nf)A + 33

2
A +B = P

(2)β0
2 + P

(2)rem
2

P
(2)β0
2 known for all r

The complete P
(2)
2 has been calculated only for r ≫ 1

2.

r = mc(mc)
m1S
b

c c
q



The NNLO corrections P
(2)
k as functions of r = mc(mc)/m

1S
b
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See hep-ph/0609241

Dotted: exact, Solid: small-r expansions, Dashed: leading large-r asymptotics.

Interpolation:

P
(2)rem
2 (r) = x1+x2 P

(1)
2 (r)+x3 r

d
drP

(1)
2 (r)+x4 P

(2)β0
2 (r)+x5|ANLO(r)|2

The coefficients xk are determined from the asymptotic behaviour at large r
and from the requirement that either (a) P

(2)rem
2 (0) = 0,

or (b) P
(2)
1 + P

(2)rem
2 (0) + P

(2)
3 (0) = 0,

or (c) P
(2)rem
2 (0) =

[

P
(2)rem
2 (0)

]

77
.

The average of (a) and (b) is chosen to determine the central value of the NNLO branching ratio.

The difference between these two cases is used to estimate the interpolation ambiguity.



The mc-dependence of P
(2)rem
2 = C

(0)
i (µb)C

(0)
j (µb)K

(2)rem
ij (µb, E0).

Example: K
(2)rem
77 (2.5 GeV, 1.6 GeV) as a function of mc/mb:
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in BR

large mc

asymptotics

↑ mc/mb
exp.
range

charm

Value at mc = 0: Blokland et al., hep-ph/0506055 (cc̄ production included).

Large-mc asymptotics: Steinhauser, MM, hep-ph/0609241.

Interpolation: “ “ “ (cc̄ production included).

interp.

exact

Exact b→ Xsγ: Asatrian et al, hep-ph/0611123 (cc̄ production excluded).

Exact b→ Xueν̄ : Pak, Czarnecki, arXiv:0803.0960 (cc̄ production included).



Renormalization scale dependence of B(B̄ → Xsγ)Eγ>1.6 GeV
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µc = 1.5 GeV



The inclusive branching ratio in the SM:

B(B̄ → Xsγ)NNLO
Eγ>1.6 GeV =





(3.15 ± 0.23) × 10−4, hep-ph/0609232, using the 1S scheme,

(3.26 ± 0.24) × 10−4,
following the kin scheme analysis of

arXiv:0805.0271, but mc(mc)
2loop

rather than mc(mc)
1loop.

Contributions to the total uncertainty:

5% non-perturbative, mainly O
(

αs
Λ
mb

)

→ Improved measurements of ∆0− should help.

3% parametric (αs(MZ), Bexp
semileptonic, mc & C, . . . )

2.0% 1.6% 1.1% (1S)
2.5% (kin)

3% mc-interpolation ambiguity → The calculation of G17 and G27
for mc = 0 should help a lot.

3% higher order O(α3
s) → This uncertainty will stay with us.



Gluon-to-photon conversion in the QCD medium

This is hard gluon scattering on the valence quark or a “sea” quark that produces
an energetic photon. The quark that undergoes this Compton-like scattering
is assumed to remain soft in the B̄-meson rest frame to ensure effective
interference with the leading “hard” amplitude. Without interference
the contribution would be negligible (O(α2

sΛ
2/m2

b)).

Suppression by Λ can be understood as originating from dilution of the target
(size of the B̄-meson ∼ Λ−1).

A rough estimate using vacuum insertion approximation gives

∆Γ/Γ ∈ [−3%,−0.3%] (O(αsΛ/mb)).

[ Lee, Neubert, Paz, hep-ph/0609224]

However:

1. Contribution to the interference from scattering on the ”sea” quarks vanishes

in the SU (3)flavour limit because Qu +Qd +Qs = 0.

2. If the valence quark dominates, then the isospin-averaged ∆Γ/Γ is given by:

∆Γ
Γ ≃ Qd+Qu

Qd−Qu
∆0− = −1

3∆0− =
(

+0.2 ± 1.9stat ± 0.3sys ± 0.8ident

)

%,

using the BABAR measurement (hep-ex/0508004) of the isospin asymmetry

∆0− = [Γ(B̄0 → Xsγ) − Γ(B− → Xsγ)]/[Γ(B̄0 → Xsγ) + Γ(B− → Xsγ)],

for Eγ > 1.9 GeV.

Quark-to-photon conversion gives a soft s-quark and poorly interferes with the ”hard” b→ sγg amplitude.



Annihilation of cc̄ in a heavy (c̄s)(q̄c) state

c̄ c

s

Heavy ⇔ Above the DD̄ production threshold

Long-distance ⇒ Annihilation amplitude is suppressed with respect to the

open-charm decay due to the order Λ−1
distance between

c and c̄. By analogy to the B-meson decay constant

fB ∼ Λ(Λ/mb)
1/2

, we may expect that the suppression

factor scales like (Λ/M)3/2, whereM ∼ 2mc, 2Eγ, mb.

Hard gluon ⇔ Suppression by αs of the interference with
(non-soft)

Altogether: O
(
αs(Λ/M)3/2

)
.

To stay on the safe side, assume O (αsΛ/mb) for numerical error estimates.

c̄

c

s

This type of amplitude interferes with the leading term but receives an additional

Λ/M suppression (at least) due to participation of the s-quark in the hard

annihilation.


