Parton Distributions for LHC

S.Alekhin DESY&IHEP (Protvino)

Loops and Legs, Wörlitz, 2010

- The DIS data constraint sea and gluon at small x and valence quarks at large x.
- The DY data constraint sea at large x.
- The jet data are sensitive to gluons at large x.
- The momentum and fermion number conservation is imposed.
- The fit is sensitive to α_s

- 4
- HERAPDF (DIS, NLO, VFNS)
- ABKM (DIS+DY, NLO/NNLO, FFNS)
- JR (DIS+DY, NLO/NNLO, FFNS)
- NNPDF (DIS+DY+jets, NLO, VFNS)

• CTEQ (DIS+DY+jets, NLO, VFNS)

• MSTW (DIS+DY+jets, NLO/NNLO, VFNS)

- [arXiV:0802.0007]

[arXiV:1002.4407]

[arXiV:0810.4274]

[arXiV:0908.2766]

[arXiV:0911.0884]

[arXiV:0901.0002]

Modern PDF sets

LH benchmark

Huston/DIS10

[arXiV:0911.0884]

MSTW/DIS10

- NLO: Global fit quality: 2610/2471. Significant effect in places, but generally not actually bigger than potential effects from variation of GMVFNS.
- NNLO: Global fit quality 2505/2387. Significant effect in places. Very little dependence on whether α_s left free.

$$\alpha_s(M_Z) = 0.1215(NLO)$$

 $\alpha_s(M_Z) = 0.1178(NNLO)$

CTEQ/DIS10

- For the NLO CTEQ fit the combined HERA data prefer the lower gluon distribution at small x.
- The uncertainty in the gluons at small x is essentially reduced due to inclusion of new data.
- Normalizations are treated as the same footing as the other correlated uncertainties
- The value of α_s is fixed at the world average.

ABKM/DIS10

In general the combined HERA data are above the earlier data sets, however at smallest x the trend is different: The modification of the low-x asymptotic of the singlet distributions is necessary.

 $q(x) \sim \exp\left[a\ln x(1+\beta\ln x)\right].$

At $\beta = 0$ it reproduces a conventional shape $q(x) \sim x^a$. The coefficients β allow additional flexibility at small x.

 $\beta^{\rm sea}=0.035\pm0.003$

ABKM/DIS10

- The gluon distribution at small xgoes lower than for the ABKM09 set, however it remains positive down to $\mu^2 \approx 2 \text{ GeV}^2$.
- The value of $\alpha_{\rm s}(5, M_{\rm Z}) = 0.1147(12)$. This is somewhat bigger than the value for the ABKM09 fit $\alpha_{\rm s}(5, M_{\rm Z}) = 0.1135(14)$. The difference is within 1σ , however it also signals about some tension.

The NNLO rates for the candle processes

	W^{\pm} (nb)	Z (nb)	$t\bar{t}$ (pb)	H (pb)						
			(approx.)	$(M_H = 150 \text{ GeV})$						
Tevatron										
ABKM09	26.8 ± 0.3	7.88 ± 0.07	6.72 ± 0.12	0.35 ± 0.02						
(Run-I comb)										
ABKM09	26.2 ± 0.3	7.73 ± 0.08	6.91 ± 0.17	0.36 ± 0.03						
LHC (7 TeV)										
ABKM09	100.9 ± 1.3	29.3 ± 0.4	130.3 ± 5.8	9.4 ± 0.2						
(Run-I comb)										
ABKM09	98.8 ± 1.5	28.6 ± 0.5	131.3 ± 7.5	8.8 ± 0.3						

The 5-flavour PDFs generated from the 3-flavour ones are used

NNPDF2.0

- DIS data combined with the hadronic data (W/Z and inclusive jet production).
- NLO computation of hadronic observables too slow for parton global fits. K-factor depends on PDFs and it is not always a good approximation. Built up FastKernel code for computation of DY observables.
- No obvious tension between hadronic and DIS data, the worst case

Charge lepton asymmetry

The NNLO predictions overshoot the data on charge lepton asymmetry

Charge lepton asymmetry

Catani-Ferrera-Grazzini

Charge lepton asymmetry

CTEQ/DIS10

- Good fits to electron (e) asymmetry data are possible without NMC and BCDMS; and vice versa. No acceptable fit to D0 II electron asymmetry and NMC/BCDMS data can be achieved. Tension between Run-2 electron asymmetry and D0 Run-2 muon asymmetry.
- Two variants of the fit, CT10 and CT10W, with(out) Tevatron Run-2 data. CT10W agrees better with the W asymmetry data; has smaller uncertainty than CT10.

The heavy-quark electroproduction contributes up to 30% to the inclusive structure functions measured at HERA.

- FFNS (conceptually simple, technically involved $(m_h \neq 0)$, fixed order)
- VFNS (technically simple $(m_h = 0)$, re-sums large logs, conceptually difficult)

At $Q \sim m_h$ ZMVFNS is clearly irrelevant since the whole concept of heavy-quark PDFs is irrelevant due to the power corrections in $F_{2,c}^{\text{FFNS}}$ spoil the collinear factorization.

A complete definition of the VFNS should include a matching between $F_{2,c}^{\text{FFNS}}$ at small Q^2 and $F_{2,c}^{\text{ZMVFNS}}$ at large Q^2 . This matching cannot be derived from the first principles and must be modeled, with a natural requirement of the smooth transition between the large- and small- Q^2 regions.

- With account of the $O(\alpha_s^2)$ corrections (Laenen-Riemersma-Smith) the difference between the FFN and VFN schemes is not too big.
- The smooth VFNS prescription (Buza-Matiounine-Smith-van Neerven) goes very close to FFN for the realistic kinematics.
- With account of the $O(\alpha_s^3)$ corrections (cf. talk by Klein) this difference would be even smaller.

$$F_{2,c}^{\text{BMSN}} = F_{2,c}^{\text{FFNS}}(N_f = 3) + F_{2,c}^{\text{ZMVFNS}}(N_f = 4) - F_{2,c}^{\text{ASYMP}}(N_f = 3)$$

Thorne/DIS10

6 extreme variations tried, along with ZM-VFNS

GMVFNS1 - b = -1, c = 1.

GMVFNS2 - b = -1, c = 0.5.

 $\mathsf{GMVFNS3} - a = 1.$

$$GMVFNS4 - b = +0.3, c = 1 - fit.$$

 $\mathsf{GMVFNS5} - d = 0.1 - \mathsf{fit}.$

 $\mathsf{GMVFNS6} - d = -0.2 - \mathsf{fit}.$

Variations in $F_2^c(x,Q^2)$ near the transition point at NLO due to different choices of GM-VFNS.

Optimal, a = 1, b = -2/3, c = 1, smooth behaviour.

HERAPDF/DIS10

#points

524

scheme	RT Std m _c =1.4	RT Std m _c =1.65	RT Opt m _c =1.4	RT Opt m _c =1.65	ACOT m _c =1.4	ACOT m _c =1.65	#points	scheme	FFN m _c =1.4	FFN m _c =1.65	#points	FFN m _c =1.4 no F ₂ °
12	730.7	627.5	644.6	695.4	653.9	605.7	633	□2	567.0	852.0	565	512.9
F ₂ (charm)	134.5	43.5	64.8	100.1	89.5	41.4	41	$F_2^{(charm)}$	51.7	248.9	41	
Sub 12	2010/02/02	11123421	2101	1000011								

The best values of χ^2 are comparable for the ACOT, RT(Standard), RT(Optimized), and FFN schemes, provided the value of m_c is adjusted too.

HERAPDF/DIS10

- ACOT gluon shape is suppressed compared to the Standard RT VFN scheme used for HERAPDF1.0
- The FFN gluon shape is VERY different from that of the Standard RT VFN scheme used for HERA-PDF1.0.

At small x the NNLO ABKM09 gluons are also go above the MSTW08 ones.

The NNLO Higgs production rates

- The NNLO rate predictions based on the ABKM09 and MSTW09 PDFs are significantly different for the Tevatron case (the same for the tt production at LHC, cf. talk by Beneke)
- Taking this difference as an uncertainty, some 40%, one has to release the constraint on the Higgs mass obtained on Tevatron (Baglio-Djouadi)

We have a lot of to do....