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LARGE X BEHAVIOR

For DY, DIS, Higgs, singular behavior when x→ 1

singularity structure for plus distributions is organizable to all orders, 
perhaps also for divergent logarithms?

After Mellin transform

We know a lot about logs and constants, very little about 1/N
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LN(N)/N TERMS

Can be numerically important

We know that the leading series lni(N)/N exponentiates

by replacing  in resummation formula
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SUCCESFUL  LN(N)/N ORGANIZATION

Moch, Vermaseren, Vogt noted an remarkable relation

DMS reproduced this by changing DGLAP equation

Can this be reproduced in threshold resummation?
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EXTENDED THRESHOLD RESUMMATION
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Modified resummed expression
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EXTENDED THRESHOLD RESUMMATION
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Almost works, but not quite. Similar at 3 loop.
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Other approach, talk by A. Vogt

Even more general approach by Grunberg, Ravindran. Does not 
work fully either.

Investigate in more detail, for amplitudes

We must go beyond the eikonal approximation



HISTORY OF EIKONAL APPROXIMATION

“Eikon” originally from Greek εικεναι [to resemble]

leading to εικον  [icon, image]

Predates quantum mechanics, and even Maxwell

also known in optics as “ray optics”

Rays are straight lines, perpendicular to wave fronts 
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RAY  OPTICS

Can describe formation of images/eikons

wavelength  <<  size of scatterer

Cannot describe diffraction, polarization etc

these are wave phenomena
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EIKONAL APPROXIMATION IN QFT

At amplitude level

Reveals new symmetries, new structures in gauge theory

Intuitive interpretation

Practical

Coherence, resummation, EFT, ....
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BASICS, QED

Soft emission by charged particle 

Propagator: expand numerator & denominator in soft momentum, keep 
lowest order

Vertex: expand in soft momentum, keep lowest order

p + k p

k

(p + k)µ + pµ

2p · k + k2
−→ 2pµ

2p · k
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BASICS QED, CONT’D

p

k1, µ1 k2, µ2 kn, µn

1
(p + K1)2

(2p + K2 + K1)µ1 . . .
1

(p + Kn)2
(2p + Kn)µn , Ki =

n�

m=i

km.

1
p · (k1 + k2) p · k2

+
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1
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Exact:

1
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identity:
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all permʼs:

�

i
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.

Independent, uncorrelated emissions, Poisson process

12



NON-ABELIAN EIKONAL APPROXIMATION

Same methods as for QED, but organization harder: SU(3) 
generator at every vertex

no obvious decorrelation

Key “object”: Wilson line

Order by order in “g”, it generates QCD eikonal Feynman rules
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EXPONENTIATON

A0
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dnk
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(p · k)(p̄ · k)

�2

One loop vertex correction, in eikonal approximation

Two loop vertex correction, in eikonal approximation

Exponential series
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NON-ABELIAN EXPONENTIATION: WEBS

Take quark - antiquark line, connect with soft gluons in all possible 
ways, use eikonal approximation

Exponentiation still occurs, without path ordering!

A selection of diagrams in exponent, but with modified color weights: 
“webs”

Prove by induction; recursive definition of color weights

How can we extend this to include next-to-eikonal terms?
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Gatheral; Frenkel, Taylor; Sterman



PATH INTEGRAL METHOD
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Represent propagator as particle path integral, between coord. and momentum states
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with a gauge field
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S

S

n-point Green’s function

EL, Stavenga, White

G(p1, . . . , pn) =
�

DA
µ
s H(x1, . . . , xn)

× �p1|((p−As)2 − iε)−1|x1� . . . �pn|(p−As)2 − iε)−1|xn�



PATH INTEGRAL METHOD
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Truncate external lines for S-matrix element

S(p1, . . . , pn) =
�
DA

µ
s H(x1, . . . , xn) e

−ip1x1f1(∞) . . . e
−ipnxnfn(∞) e

iS[As]

i(p2
f + m2)�pf |− i((p−A)2 − iε)−1|xi� = e−ipf xif(∞)

f(∞) =
�

x(0)=0
Dx ei

R∞
0 dt( 1

2 ẋ2+(pf +ẋ)·A(xi+pf t+x(t))+ i
2 ∂·A(xi+pf t+x))

Disconnected Connected

Eikonal vertices act as sources for gauge bosons along path

QED: exponentiation now textbook result:
all diagrams = exp (connected diagrams)



REPLICA TRICK

Can relate exponentiation of soft gauge fields to that of connected 
diagrams in QFT. Proof: replica trick (from stat. mech.)

Consider a N copies of a scalar theory 

If Z is exponential, find out what contributes to log Z

Amounts to diagrams that allow only one replica → connected!
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ZN = 1 + N log Z +O(N2)
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APPLICATION TO QCD
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S(p1, p2) = H(p1, p2)
�
DAsf(∞)eiS[As]

Amplitude for two colored lines

Replicate, and introduce ordering operator

f(∞) = P exp
� �

dx · A(x)
� N�

i=1

P exp
��

dx ·Ai(x)
�

= RP exp

�
N�

i=1

�
dx ·Ai(x)

�

Look for diagrams of replica order N.  These will go into exponent

i, A

x2

x1

x2
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x2

x1
(a) (b) (c)

j, Bi, A
i, A j, B

(a) is order N

(b) for equal replica number (i=j): CF2.   For i≠j  also CF2.  Sum: NC2
F + N(N − 1)C2
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F

N

�
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F −
CF CA

2

�
+ (−N)C2

F = N

�
−CF CA

2

�(c) for equal replica number (i=j): CF2-CF CA /2.  
 For i≠j  CF2.  Term linear in N:



APPLICATION TO QCD

19

S(p1, p2) = H(p1, p2)
�
DAsf(∞)eiS[As]

Amplitude for two colored lines

Replicate, and introduce ordering operator

f(∞) = P exp
� �

dx · A(x)
� N�

i=1

P exp
��

dx ·Ai(x)
�

= RP exp

�
N�

i=1

�
dx ·Ai(x)

�

Look for diagrams of replica order N.  These will go into exponent

i, A

x2

x1

x2

x1

x2

x1
(a) (b) (c)

j, Bi, A
i, A j, B

(a) is order N

(b) for equal replica number (i=j): CF2.   For i≠j  also CF2.  Sum: NC2
F + N(N − 1)C2

F = N2C2
F

N

�
C2

F −
CF CA

2

�
+ (−N)C2

F = N

�
−CF CA

2

�(c) for equal replica number (i=j): CF2-CF CA /2.  
 For i≠j  CF2.  Term linear in N:

Web
Modified color factor



NEXT-TO-EIKONAL

Wilson lines are classical solutions of path integral

Fluctuations around classical path at NE corrections

This class of NE corrections exponentiates

Keep track via scaling variable λ 
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pµ = λnµ

f(∞) =
�

x(0)=0
Dx exp

�
i

� ∞

0
dt

�
λ

2
ẋ2 + (n + ẋ) · A(xi + nt + x)

+
i

2λ
∂ · A(xi + pf t + x)

� �

�x(t)x(t�)� = G(t, t�) =
i

λ
min(t, t�)

Use 1-D field theory propagator

p

lk

p

lk

p

k

NE Feynman rules

kµ

2p · k
− k2 pµ

2(p · k)2
+

ηµν

p · (k + l)
− lµpνp · k + kνpµp · l

p · (k + l)p · kp · l



LOW-BURNETT-KROLL
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H

S

S

S

One soft emission determined by elastic amplitude to eikonal and next-to-eikonal order

HHH= + +

p1

p2

k

p1 p1

p2 p2

k

k

Γµ =
�
(2p1 − k)µ

−2p1 · k
+

(2p2 + k)µ

2p2 · k

�
Γ+

�
pµ
1 (k · p2 − k · p1)

p1 · k
+

pµ
2 (k · p1 − k · p2)

p2 · k

�
∂Γ

∂p1 · p2

One emission from H still missing in our approach

Analyzed in context of jet-soft factorization by Del Duca 



LOW-BURNETT-KROLL
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H

S

S

S

Path integral method provides elegant way to derive Low’s theorem

S(p1, . . . , pn) =
�
DAsH(x1, . . . , xn;As)e−ip1x1f(x1, p1;As) . . . e

−ipnxnf(x1, p1;As)eiS[As]

Gauge transformation must cancel between f’s and H

f(xi, pf ;A)→ f(xi, pf ;A + ∂Λ) = e−iqΛ(xi)f(xi, pf ;A)

Opposite transformation in H,  expand to first order in A and Λ

S(p1, . . . , pn) =
�

DA

� �
d

d
k

(2π)d

n�

j

qj

� n
µ
j

nj · k
kν

∂

∂pjν

− ∂

∂pjµ

�
H(p1, . . . , pn)Aµ(k)

�

× f(0, p1;A) . . . f(0, pn;A)

Low contribution is then:

Analagous result in non-abelian case, for n=2

First term is due to displacement of  f(x,p,A)



UPSHOT

Exponentiation of soft emissions for matrix elements as 
“connectedness”

For both eikonal and next-to-eikonal contributions from external lines 

Replica trick both for exponentiation, and for explicit expression for 
webs. New NE Webs.

1 emission from hard part (1/N) also included

QCD: 2 lines. 3 lines also easy. 4, not so much.

Can we arrive at the same results using diagrams, and inductive 
reasoning?

Combinatorics challenging..
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DIAGRAMMATIC APPROACH
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EL, Magnea, Stavenga, White

1
p · (k1 + k2) p · k2

+
1

p · (k1 + k2) p · k1
=

1
p · k1 p · k2

Eikonal 
identity:

For many
emissions

�

i

pµi

p · ki
.

Recall:  Abelian case, multiple 
emission, and sum over 

permutations p

k1, µ1 k2, µ2 kn, µn

Non-abelian case requires
• web: two-eikonal irreducible graph
• “group” : projection of web on external line
• analogue of eikonal identity for permutations 
that leaves ordering in group invariant

�

π̃

1
2p · kπ̃1

1
2p · (kπ̃1 + kπ̃2)

. . .
1

p · (kπ̃1 + . . . + kπ̃n)
=
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g

1
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1
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. . .
1
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MERGING
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1 2

1

A

B

3

2 1 2

1 3 2

=
12�

132

Can also use in reverse, as “merging”

exp

�
�

i

c̄HE(H)

�
=

�

H

�
�

n

1
n!

[c̄HE(H)]n
�

=
�

G

cGE(G)

Prove that, for normal color factors on rhs, those on right side are those of webs

Proof uses
• induction
• combinatorics
• Schur’s lemma

Eµ(k) =
2pµ

2p · k



NEXT-TO-EIKONAL CASE

Identify next-to-eikonal vertices

show that they “decorrelate”, once summed over all perm’s. Use 
induction again

as eikonal webs, but now with a special vertex

for fermions: become spin-sensitive

new correlations between eikonal webs → NE webs

checked precise correspondence with path integral method

Proof of exponentiation as for eikonal case
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DRELL-YAN  CHECK

Check use of NE Feynman rules for Drell-Yan double real emission 

Combine with exact phase space

Agrees with exact result, to similar accuracy
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CONCLUSIONS

Eikonal approximation important, yields simplification, symmetries, all-
order results

Next-to-eikonal contributions not negligible, but fairly little is known

Found that certain next-to-eikonal contributions form new webs, and 
exponentiate

using path integrals, or diagrammatics

classified “Low’s theorem” contributions

To do: 

further test predictive power, application to cross sections

more legs, 
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