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The BDS ansatz

• Bern, Dixon and Smirnov (BDS) conjectured that MHV 
amplitudes N=4 SYM can be written as:

9.1. The ABDK/BDS ansatz 92

where
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The quantities c1 and c2 are expected to be rational numbers, but they cannot be determined from

the computation of the three-loop four-point amplitude, because they cancel in the final result. BDS

then extended the iteration formulæ (9.1) and (9.5) and formulated an ansatz for a generic n-point

MHV amplitude in MSYM. This all-orders ansatz reads

Mn(ε) = 1 +
∞
∑

l=1

al M (l)
n (ε) = exp

∞
∑

l=0

al

[

f (l)(ε)M (1)
n (lε) + C(l) + E(l)

n (ε)

]

, (9.7)

The only kinematical dependence in the right-hand side of Eq. (9.7) is in the one-loop amplitude

M (1)
n (lε). The quantities f (l)(ε) and C(l) are universal and are independent of the kinematics and

the number of external particles. f (l)(ε) is expected to be a polynomial of degree two in ε, and

C(l) to be a polynomial of uniform transcendental weight in Riemann ζ values. The values of these

functions for l = 2, 3 are given in Eqs. (9.2) and (9.6). The functions E(l)
n (ε) are additional O(ε)

contributions. It is easy to see that we must have f (1)(ε) = C(1) = E(1)
n (ε) = 0 in order to reproduce

the one-loop result. Expanding the exponential in Eq. (9.7) and collecting powers of the coupling

constant a, the BDS ansatz reproduces the two and three-loop iteration formulæ (9.1) and (9.5).

Using the normalisation of Eq. (8.12) in terms of the rescaled coupling ḡ2, Eq. (9.7) can be written

in the equivalent form,

mn(ε) = 1 +
∞
∑

l=1

ḡ2l m(l)
n (ε) = exp

∞
∑

l=0

ḡ2l 2l Gl(ε)

[

f (l)(ε)
m(1)

n (lε)

2G(lε)
+ C(l) + E(l)

n (ε)

]

. (9.8)

The BDS ansatz was first shown to fail by Alday and Maldacena in the limit of a large number

of gluons using the ADS/CFT correspondence [11]. This result was backed up by the computation

of the six-edge Wilson loop and using the conjecture that the n-edged Wilson loop can be related

to scattering amplitudes in MSYM [94]. The question was settled in Ref. [12] with the explicit

numerical computation of the two-loop six-point amplitude, which confirmed the Wilson loop result

and demonstrated the breakdown of the BDS ansatz for l = 2 and n = 6 in the finite contribution of

the parity-even part. Recently, also the seven and eight-edged Wilson loops have been computed [13].

Assuming that the duality between Wilson loops and MSYM scattering amplitudes holds even

beyond n = 6, the conclusion is that the BDS ansatz fails for n = 7 and 8 as well. The breakdown

of the ansatz can be quantified by the remainder function R(2)
n , defined as the difference between

the left and right-hand sides of the ABDK ansatz,

R(2)
n ≡ M (2)

n (ε) − 1

2

(

M (1)
n (ε)

)2 − f (2)(ε)M (1)
n (2ε) − C(2). (9.9)

The previous results can then be summarized by the statement that R(2)
n #= 0 for n ≥ 6, and

R(2)
n is a constant with respect to ε. Since the computation of Ref. [12] was numerical, we ignore at

• The BDS ansatz reproduces not only correctly the infrared 
poles of the amplitude to all orders in perturbation theory, 
but it is supposed to also provide the finite part of the 
amplitude.
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The BDS ansatz

• In practice, the BDS ansatz implies a tower of iteration 
formulæ in the number of loops, e.g. for two loops

Chapter 9

The BDS ansatz and multi-Regge
kinematics

9.1 The ABDK/BDS ansatz

In Ref. [9], Anastasiou, Bern, Dixon and Kosower (ABDK) formulated an ansatz for the two-loop

n-point MHV amplitude in MSYM, which expresses the two-loop amplitude in terms of the one-loop

amplitude,

M (2)
n (ε) =

1

2

(

M (1)
n (ε)

)2
+ f (2)(ε)M (1)

n (2ε) + C(2) + O(ε), (9.1)

where

f (2)(ε) =
ψ(1 − ε) + γE

ε
and C(2) = −5

4
ζ4. (9.2)

Note that because of the infrared poles in 1/ε2 in the one-loop amplitude, the one-loop amplitude

must be known through O(ε2). The origin of this ansatz goes back to the computation by the same

people of the two-loop splitting function in MSYM, which was shown to satisfy an iteration relation

very similar to Eq. (9.1),

r(2)
S (ε) =

1

2

(

r(1)
S (ε)

)2
+ f (2)(ε) r(1)

S (2ε), (9.3)

where r(l)
S denotes the l-loop splitting function, rescaled by the tree-level result. Indeed, in the

collinear limit the one and two-loop n-point MHV amplitudes must factorise according to

M (1)
n → M (1)

n−1 + r(1)
S ,

M (2)
n → M (2)

n−1 + M (1)
n−1 r(1)

S + r(2)
S ,

(9.4)

and it is easy to see that the ABDK ansatz (9.1) is the only iteration which is compatible with both

the iteration of the two-loop splitting amplitude, Eq. (9.3) and the collinear factorisation (9.4). The

ansatz was backed up by comparing the iteration to the two-loop four-point amplitude in MSYM.

In Ref. [92] the ABDK ansatz was shown to hold also in the case of the five-point amplitude, which

has been computed numerically.

Bern, Dixon and Smirnov (BDS) computed the three-loop four-point MSYM amplitude [10], and

showed that it satisfies an iteration formula similar to the ABDK ansatz for the two-loop amplitude,

M (3)
4 (ε) = −1

3

(

M (1)
4 (ε)

)3
+ M (1)

4 (ε)M (2)
4 (ε) + f (3)(ε)M (1)

4 (3ε) + C(3) + O(ε), (9.5)
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1. Introduction

In the planar N = 4 supersymmetric Yang-Mills (SYM) theory, Anastasiou, Bern, Dixon

and Kosower (ABDK) [1] proposed an iterative structure for the colour-stripped two-loop

scattering amplitude with an arbitrary number n of external legs in a maximally-helicity

violating (MHV) configuration. Writing at any loop order L, the amplitude M (L)
n as the

tree-level amplitude, M (0)
n , which depends on the helicity configuration, times a scalar

function, m(L)
n ,

M (L)
n = M (0)

n m(L)
n , (1.1)

the proposed iteration formula for the two-loop MHV amplitude m(2)
n (ε) was

m(2)
n (ε) =

1

2

[

m(1)
n (ε)

]2
+ f (2)(ε)m(1)

n (2ε) + C(2) + O(ε) . (1.2)

Thus the two-loop amplitude is determined in terms of the one-loop MHV amplitude m(1)
n (ε)

evaluated through to O(ε2) in the dimensional-regularisation parameter ε = (4− d)/2, the

constant C(2) = −ζ2
2/2, and the function f (2)(ε) = −ζ2− ζ3ε− ζ4ε2, with ζi = ζ(i) and ζ(z)

the Riemann zeta function.

Subsequently, Bern, Dixon and one of the present authors (BDS) proposed an all-loop

resummation formula [2] for the colour-stripped n-point MHV amplitude, which implies a

tower of iteration formulae, allowing one to determine the n-point amplitude at a given

number of loops in terms of amplitudes with fewer loops, evaluated to higher orders of

ε. BDS checked that the ansatz is correct for the three-loop four-point amplitude, by

evaluating analytically m(3)
4 (ε) through to finite terms, as well as m(2)

4 (ε) through to O(ε2)

and m(1)
4 (ε) through to O(ε4). The BDS ansatz has been proven to be correct also for

the two-loop five-point amplitude [3, 4], for which m(2)
5 (ε) has been computed numerically

through to finite terms, as well as m(1)
5 (ε) through to O(ε2).

Using the AdS/CFT correspondence, Alday and Maldacena showed that in the strong-

coupling limit the ansatz must break down for amplitudes with a large number of legs [5].

Likewise, there were hints of a failure of the ansatz from the six-point amplitude analysed

in the multi-Regge kinematics in a Minkowski region [6, 7]. The clue from AdS/CFT

provoked the numerical calculation of m(2)
6 (ε) through to finite terms and of m(1)

6 (ε) through

to O(ε2), where the BDS ansatz was demonstrated to fail [8], and where it was shown that

the finite pieces of the parity-even part of m(2)
6 (ε) are incorrectly determined by the ansatz

(although the parity-odd part of m(2)
6 (ε) does satisfy the ansatz [9]). In particular, it was

shown numerically that the two-loop remainder function, defined as the difference between

the two-loop amplitude and the BDS ansatz for it,

R(2)
n = m(2)

n (ε) −
1

2

[

m(1)
n (ε)

]2
− f (2)(ε)m(1)

n (2ε) − C(2) , (1.3)

is different from zero for n = 6, where R(2)
n is a function of the kinematical parameters of

the n-point amplitude, but a constant with respect to ε. However, the analytic form of

R(2)
6 was not computed.
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✓t

• t(num.)✓t(num.)

• What goes wrong for n = 6 ..?

• The answer comes from the Wilson loop!
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Wilson loops in N=4 SYM
• Definition of a Wilson loop:

• It is conjectured that Wilson loop along an n-edged polygon 
is equal to an n-point MHV scattering amplitude:

pi = xi,i+1 = xi − xi+1

conformally invariant cross ratios are not invariant in such a limit [22]. Less constraining

Regge limits have been analysed in Ref. [23]. The simplest of those limits to feature an

exact Regge factorisation of w(L)
6 is the quasi-multi-Regge kinematics (QMRK) of a pair

along the ladder [24, 25].

In Sec. 3, we recall the QMRK of a pair along the ladder for the six-edged Wilson loop,

and we show that the QMRK of three-of-a-kind along the ladder [26] for the seven-edged

Wilson loop, the QMRK of four-of-a-kind along the ladder [27] for the eight-edged Wilson

loop, and in general the QMRK of a cluster of (n − 4)-of-a-kind along the ladder for the

n-edged Wilson loop do not modify the analytic dependence of w(L)
n on the conformally

invariant cross ratios. That is, this class of kinematics exhibits an exact Regge factorisation

of w(L)
n . Thus, the result for w(L)

n in these kinematics is the same as the result in general

kinematics, although the computation is remarkably simplified with respect to the same

computation in general kinematics. Finally, we note that although in Sec. 4 we apply the

analysis of Sec. 3 to the computation of the six-edged two-loop Wilson loop, nothing of

what we consider in Sec. 3 is specific to two loops: The analysis of Sec. 3 is valid for any

number of loops.

In Sec. 4, we brief on how the Feynman-parameter-like integrals of the two-loop six-

edged Wilson loop have been computed in the QMRK of a pair along the ladder, and on the

type of functions which appear in the final result. Because of the exact Regge factorisation,

the ensuing remainder function is valid in general kinematics. It can be expressed as a linear

combination of multiple polylogarithms of uniform transcendental weight four. However,

the result is far too long to be reported in this letter. We present it in an electronic form at

www.arxiv.org where a text file containing the Mathematica expression for the remainder

function is provided.

2. The two-loop Wilson loop

The Wilson loop is defined through the path-ordered exponential,

W [Cn] = Tr P exp

[

ig

∮

dτ ẋµ(τ)Aµ(x(τ))

]

, (2.1)

computed on a closed contour Cn. In what follows, the closed contour is a light-like n-edged

polygonal contour [10]. The contour is such that labelling the n vertices of the polygon as

x1, . . . , xn, the distance between any two contiguous vertices, i.e., the length of the edge

in between, is given by the momentum of a particle in the corresponding colour-ordered

scattering amplitude,

pi = xi − xi+1 , (2.2)

with i = 1, . . . , n. Because the n momenta add up to zero,
∑n

i=1 pi = 0, the n-edged

contour closes, provided we make the identification x1 = xn+1.

In the weak-coupling limit, the Wilson loop can be computed as an expansion in

the coupling. The expansion of Eq. (2.1) is done through the non-abelian exponentiation

theorem [28, 29], which gives the vacuum expectation value of the Wilson loop as an

– 3 –

• Proven analytically at one-loop for arbitrary n, and at two-
loops for n = 4, 5, 6.

=
[Alday, Maldacena;

Drummond, Korchemsky, Sokatchev]

[Drummond, Henn, Korchemsky, Sokatchev;
Brandhuber, Heslop, Spence]
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Wilson loops in N=4 SYM
• Wilson loops possess a conformal symmetry, and it was 

shown that a solution to the corresponding Ward identities 
is the BDS ansatz, e.g., at two-loops,

exponential,

〈W [Cn]〉 = 1 +
∞
∑

L=1

aLW (L)
n = exp

∞
∑

L=1

aLw(L)
n , (2.3)

where the coupling is defined as

a =
g2N

8π2
. (2.4)

For the first two loop orders, one obtains

w(1)
n = W (1)

n , w(2)
n = W (2)

n −
1

2

(

W (1)
n

)2
. (2.5)

The one-loop coefficient w(1)
n was evaluated in Refs. [11, 12], where it was given in terms

of the one-loop n-point MHV amplitude,

w(1)
n =

Γ(1 − 2ε)

Γ2(1 − ε)
m(1)

n = m(1)
n − n

ζ2

2
+ O(ε) , (2.6)

where the amplitude is a sum of one-loop two-mass-easy box functions [30],

m(1)
n =

∑

p,q

F 2me(p, q, P,Q) , (2.7)

where p and q are two external momenta corresponding to two opposite massless legs,

while the two remaining legs P and Q are massive. The two-loop coefficient w(2)
n has been

computed analytically for n = 4 [13] and n = 5 [14] and numerically for n = 6 [16] and

n = 7, 8 [17].

In Ref. [14] it was established that the Wilson loop fulfils a special conformal Ward

identity, whose solution is the BDS ansatz plus, for n ≥ 6, an arbitrary function of the

conformally invariant cross-ratios, defined in Eq. (2.11). Thus, the two-loop coefficient w(2)
n

can be written as

w(2)
n (ε) = f (2)

WL(ε)w(1)
n (2ε) + C(2)

WL + R(2)
n,WL + O(ε) , (2.8)

where the constant is the same as in Eq. (1.2), C(2)
WL = C(2) = −ζ2

2/2, and the function

f (2)
WL(ε) is [13, 17, 31]2,

f (2)
WL(ε) = −ζ2 + 7ζ3ε − 5ζ4ε

2 . (2.9)

With the two-loop coefficient w(2)
n given by Eqs. (2.8) and (2.9) and the two-loop MHV

amplitude given by Eqs. (1.2) and (1.3), the duality between Wilson loops and amplitudes

is expressed by the equality of their remainder functions [17],

R(2)
n,WL = R(2)

n . (2.10)

Defining the conformally invariant cross ratios as,

uij =
x2

ij+1x
2
i+1j

x2
ijx

2
i+1j+1

, (2.11)

2Note that because of the different normalisation between the one-loop amplitude and the Wilson loop

(2.6), f
(2)
WL

differs from the analogous function for the amplitude, given after Eq. (1.2).
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Wilson loops in N=4 SYM
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invariants and we still obtain a solution to the Ward 
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n=4 n=5 n=6

l=2

l=3

The breakdown of BDS

✓t

✓t

• t(num.)✓t(num.)

No non trivial 
conformal cross-

ratios, 
R(l)

4 = R(l)
5 = 0.

There are three non 
trivial cross ratios:

u1 =
s12 s45

s123 s345
, u2 =

s23 s56

s123 s234
, u3 =

s34 s61

s234 s345
,

Dienstag, 27. April 2010



How can we compute this function?
• Anastasiou, Brandhuber, Heslop, Khoze, Spence and 

Travaglini worked out the two-loop Wilson loop diagrams:

...

• Each of these diagrams is an integral, similar to a Feynman 
parameter integral.

• They studied these integrals extensively numerically, but no 
analytic solution was known.
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How can we compute this function?
• For n = 6, many of the integrals can be computed explicitly, 

but one is particularly ’hard’:

• The integrals do not explicitly depend on conformal ratios.

• But is all this complexity really needed..?

• Could we go to simplified kinematics?

We also set D = 4 − 2εUV = 4 + 2ε where εUV = −ε > 0. The special four-point case
is considered later.

We write this diagram in the most general configuration as9

fH(p1, p2, p3; Q1, Q2, Q3)

:=
Γ(2 − 2εUV)

Γ(1 − εUV)2

∫ 1

0

( 3∏

i=1

dτi

)∫ 1

0

( 3∏

i=1

dαi

)
δ(1 −

3∑

i=1

αi) (α1α2α3)
−εUV

N
D2−2εUV

,

(B.1)

where
D := −α1α2(z1 − z2)

2 − α2α3(z2 − z3)
2 − α1α3(z1 − z3)

2 , (B.2)

and

(z1 − z2)
2 = Q2

3 + 2(p1p2)(1 − τ1)τ2 + 2(Q3p1)(1 − τ1) + 2(Q3p2)τ2 , (B.3)

(z2 − z3)
2 = Q2

1 + 2(p2p3)(1 − τ2)τ3 + 2(Q1p2)(1 − τ2) + 2(Q1p3)τ3 ,

(z3 − z1)
2 = Q2

2 + 2(p3p1)(1 − τ3)τ1 + 2(Q2p3)(1 − τ3) + 2(Q2p1)τ1 .

The original expressions for the zi − zi+1 are

zi − zi+1 = Qi+2 + pi(1 − τi) + pi+1τi+1 , i = 1, 2, 3 . (B.4)

The expression for the numerator N has two kinds of terms. The first three lines
involve τ and α parameters, whereas the remaining three lines involve only the τ
parameters. It is given by

N = 2(p1p2)(p1p3)
[
α1α2(1 − τ1) + α3α1τ1

]

+ 2(p1p2)(p2p3)
[
α2α3(1 − τ2) + α1α2τ2

]

+ 2(p1p3)(p2p3)
[
α3α1(1 − τ3) + α2α3τ3

]

+ 2α1α2

[
2(p1p2)(p3Q3) − (p2p3)(p1Q3) − (p3p1)(p2Q3)

]

+ 2α2α3

[
2(p2p3)(p1Q1) − (p3p1)(p2Q1) − (p1p2)(p3Q1)

]

+ 2α3α1

[
2(p3p1)(p2Q2) − (p1p2)(p3Q2) − (p2p3)(p1Q2)

]
. (B.5)

B.1 Four-point case

The four-point case can be obtained by setting

Q3 = Q1 = 0 , Q2 = p4 = −(p1 + p2 + p3) , (B.6)

9We remind the reader that we will always suppress the common prefactor defined in (4.1) from
the expression of all diagrams.
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Regge limits

7.3. Quasi multi-Regge limit 74
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Figure 7.1: Amplitude in multi-Regge kinematics. The green blobs indicate the coefficient functions
(impact factors) and the Lipatov vertices describing the emission of gluons along the ladder.

where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
n−4

(

q2; 4
+, . . . , (n − 1)+; q1

)

=
q∗2⊥ q1⊥

p4⊥

√

x4

xn−1

1

〈45〉 . . . 〈(n − 2)(n − 1)〉 ,

V (0)
n−4

(

q2; 4
−, . . . , (n − 1)−; q1

)

=
[

V (0)
n−4

(

q2; 3
+, . . . , (n − 1)+; q1

)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)

7.3. Quasi multi-Regge limit 74

p1

p2

pn

p3

qn−3

qn−4

p4

p5

q2

pn−2

q1

pn−1

sn−3

sn−4

s2

s1

κ1

κ2

κn−5

κn−4

...

Figure 7.1: Amplitude in multi-Regge kinematics. The green blobs indicate the coefficient functions
(impact factors) and the Lipatov vertices describing the emission of gluons along the ladder.

where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
n−4

(

q2; 4
+, . . . , (n − 1)+; q1

)

=
q∗2⊥ q1⊥

p4⊥

√

x4

xn−1

1

〈45〉 . . . 〈(n − 2)(n − 1)〉 ,

V (0)
n−4

(

q2; 4
−, . . . , (n − 1)−; q1

)

=
[

V (0)
n−4

(

q2; 3
+, . . . , (n − 1)+; q1

)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)

7.3. Quasi multi-Regge limit 74

p1

p2

pn

p3

qn−3

qn−4

p4

p5

q2

pn−2

q1

pn−1

sn−3

sn−4

s2

s1

κ1

κ2

κn−5

κn−4

...

Figure 7.1: Amplitude in multi-Regge kinematics. The green blobs indicate the coefficient functions
(impact factors) and the Lipatov vertices describing the emission of gluons along the ladder.

where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
n−4

(

q2; 4
+, . . . , (n − 1)+; q1

)

=
q∗2⊥ q1⊥

p4⊥

√

x4

xn−1

1

〈45〉 . . . 〈(n − 2)(n − 1)〉 ,

V (0)
n−4

(

q2; 4
−, . . . , (n − 1)−; q1

)

=
[

V (0)
n−4

(

q2; 3
+, . . . , (n − 1)+; q1

)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)

7.3. Quasi multi-Regge limit 74

p1

p2

pn

p3

qn−3

qn−4

p4

p5

q2

pn−2

q1

pn−1

sn−3

sn−4

s2

s1

κ1

κ2

κn−5

κn−4

...

Figure 7.1: Amplitude in multi-Regge kinematics. The green blobs indicate the coefficient functions
(impact factors) and the Lipatov vertices describing the emission of gluons along the ladder.

where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
n−4

(

q2; 4
+, . . . , (n − 1)+; q1

)

=
q∗2⊥ q1⊥

p4⊥

√

x4

xn−1

1

〈45〉 . . . 〈(n − 2)(n − 1)〉 ,

V (0)
n−4

(

q2; 4
−, . . . , (n − 1)−; q1

)

=
[

V (0)
n−4

(

q2; 3
+, . . . , (n − 1)+; q1

)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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)
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,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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)

=
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)

=
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V (0)
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(
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)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)

• Multi-Regge kinematics
y3 � y4 � y5 � y6

|p3⊥|2 � |p4⊥|2 � |p5⊥|2 � |p6⊥|2
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
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+, . . . , (n − 1)+; q1

)

=
q∗2⊥ q1⊥

p4⊥

√

x4

xn−1

1

〈45〉 . . . 〈(n − 2)(n − 1)〉 ,

V (0)
n−4

(

q2; 4
−, . . . , (n − 1)−; q1

)

=
[
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)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)

• s-type invariants are large.
t-type invariants are small.
Conformal cross ratios become 
trivial [Del Duca, CD, Glover]
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Regge limits

• Quasi-multi-Regge kinematics

|p3⊥|2 � |p4⊥|2 � |p5⊥|2 � |p6⊥|2

y3 � y4 � y5 � y6

[Del Duca, CD, Glover]

• Conformal cross ratios are no 
longer trivial
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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,
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where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn , and q2 = −p2 − p3,

(7.19)

and ti = q 2
i " −|qi⊥|2. The coefficient functions C (0)

appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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where we defined

xi =
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n−1
.

(7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2 ; 4; q1).

(7.22)

In the limit of more restrictive kinematics, sayy3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn

(7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4 (q2; 4, . . . , n − 1; q1) = V (0)

m−3 (q2; 4, . . . ,m; q3) 1
t3

V (0)
n−m−1 (q3;m + 1, . . . , n − 1; q1),

(7.24)
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Figure 7.1: Amplitude in multi-Regge kinematics. The green blobs indicate the coefficient functions

(impact factors)
and the Lipatov vertices

describing the emission of gluons along the ladder.

where qi and ti denote the momenta transferred
in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3,

(7.19)

and ti = q2
i
" −|qi⊥|

2 . The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V
(0)
n−4

are the tree-lev
el Lipatov vertices

describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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Note that for n = 5 we recover
the Lipatov vertex defined in Eq. (7.15),

V
(0)
1

(q2; 4; q1) = V
(0) (q2; 4; q1).

(7.22)

In the limit of more restrict
ive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn

(7.23)

the amplitude must factoriz
e accordingly, which implies that the Lipatov vertices

themselves must

factoriz
e,

V
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n−4(q2; 4, .

. . , n − 1; q1) = V
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(7.24)
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say
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the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,
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gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
n−4

(

q2; 4
+, . . . , (n − 1)+; q1

)

=
q∗2⊥ q1⊥

p4⊥

√

x4

xn−1

1

〈45〉 . . . 〈(n − 2)(n − 1)〉 ,

V (0)
n−4

(

q2; 4
−, . . . , (n − 1)−; q1

)

=
[

V (0)
n−4

(

q2; 3
+, . . . , (n − 1)+; q1

)

]∗
,

(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say
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the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must
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V (0)
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y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)
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(7.19)

and ti = q 2
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Eq. (7.14). The functions V (0)
n−4 are the tree-level Lipatov vertices describing the emission of (n− 4)

gluons with comparable rapidity along the ladder. In the special case where all the gluons have the

same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),

V (0)
n−4

(

q2; 4+
, . . . , (n − 1)+

; q1
)

= q ∗
2⊥ q1⊥
p4⊥

√

x4
xn−1 1〈45〉 . . . 〈(n − 2)(n − 1)〉 ,

V (0)
n−4

(

q2; 4−
, . . . , (n − 1)−; q1

)

=
[

V (0)
n−4

(

q2; 3+
, . . . , (n − 1)+

; q1
)

]∗
, (7.20)

where we defined

xi =
p+
ip+

3 + p+
4 + . . . + p+

n−1
.

(7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2 ; 4; q1).

(7.22)

In the limit of more restrictive kinematics, sayy3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn
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Note that for n = 5 we recover
the Lipatov vertex defined in Eq. (7.15),
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where qi and ti denote the momenta transferred in the t-channel,

q1 = p1 + pn, and q2 = −p2 − p3, (7.19)

and ti = q2
i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,
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i " −|qi⊥|2. The coefficient functions C(0) appearing in Eq. (7.18) are the same as in

Eq. (7.14). The functions V (0)
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Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
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In the limit of more restrictive kinematics, say
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the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must
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same helicity a simple formula valid for arbitrary n can be derived from Eq. (1.19),
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q∗2⊥ q1⊥

p4⊥

√

x4
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1
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V (0)
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(

q2; 4
−, . . . , (n − 1)−; q1
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=
[

V (0)
n−4

(

q2; 3
+, . . . , (n − 1)+; q1

)

]∗
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(7.20)

where we defined

xi =
p+

i

p+
3 + p+

4 + . . . + p+
n−1

. (7.21)

Note that for n = 5 we recover the Lipatov vertex defined in Eq. (7.15),

V (0)
1 (q2; 4; q1) = V (0)(q2; 4; q1). (7.22)

In the limit of more restrictive kinematics, say

y3 % y4 " . . . " ym % ym+1 " . . . " yn−1 % yn (7.23)

the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
n−4(q2; 4, . . . , n − 1; q1) = V (0)

m−3(q2; 4, . . . ,m; q3)
1

t3
V (0)

n−m−1(q3;m + 1, . . . , n − 1; q1), (7.24)
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Figure 7.1: Amplitude in multi-Regge kinematics. The green blobs indicate the coefficient functions
(impact factors) and the Lipatov vertices describing the emission of gluons along the ladder.
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the amplitude must factorize accordingly, which implies that the Lipatov vertices themselves must

factorize,

V (0)
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• The result is in fact even stronger:

|p3⊥|2 � |p4⊥|2 � |p5⊥|2 � |p6⊥|2

y3 � y4 � y5 � y6

• This result is in fact true for Wilson loops with an 
arbitrary number of edges and loops!

• Bottomline: it is enough to perform the computation in 
these simplified kinematics to obtain the two-loop six-
point Wilson loop in arbitrary kinematics!

The Wilson-loop is Regge-exact in this limit, i.e., it is the 
same in this special kinematics and in arbitrary kinematics

[Del Duca, CD, Smirnov]
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A Recipe to compute Wilson loops
• Step 1:

We write down a Mellin-Barnes representation for each 
diagram, i.e., we replace denominators in the Feynman 
parameter integrals by contour integrals,

L.6. The Mellin-Barnes representation 184

L.6 The Mellin-Barnes representation

The Mellin-Barnes techniques rely on the following identity,

1

(A + B)λ
=

1

Γ(λ)

1

2πi

∫ +i∞

−i∞
dz Γ(−z)Γ(λ + z)

Bz

Aλ+z
. (L.32)

The contour in Eq. (L.32) is chosen in the standard way, i.e. it should separate the poles in Γ(−z)

from the poles in Γ(λ + z). We can apply Eq. (L.32) to the F -polynomial in Eq. (L.14), and break

it up into monomials in the Feynman parameters xi. The integration over the Feynman parameters

can now be easily performed in terms of Γ functions,

∫ 1

0

n
∏

i=1

dxi x
ai−1
i δ(1 − x1 . . . − xn) =

Γ(a1) . . . Γ(an)

Γ(a1 + . . . + an)
. (L.33)

In this way we have eliminated all the Feynman parameter integrals in terms of Mellin-Barnes

integrals, and we obtain a representation equivalent to the Mellin-Barnes representation of the

hypergeometric function, Eq. (I.5).

• This turns the Feynman 
parameter integral into residue 
calculus: 

Resz=−nΓ(z) =
(−1)n

n!
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A Recipe to compute Wilson loops
• Step 2:

We exploit Regge exactness and we only compute the 
leading behavior of each integral in the quasi-multi-Regge 
limit

• The Mellin-Barnes approach is 
very suitable for this! 
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A Recipe to compute Wilson loops
• Step 2:

We exploit Regge exactness and we only compute the 
leading behavior of each integral in the quasi-multi-Regge 
limit

• The Mellin-Barnes approach is 
very suitable for this! 

Leading term in the expansion

Dienstag, 27. April 2010



A Recipe to compute Wilson loops
• Step 3:

Iterate the limits: There are six different ways to take the 
limits, corresponding to the six cyclic permutations of the 
external legs.

• Regge-exactness allows us to 
take all six limits at the same 
time!

Leading term in the expansion
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A Recipe to compute Wilson loops
• Step 3:

Iterate the limits: There are six different ways to take the 
limits, corresponding to the six cyclic permutations of the 
external legs.

• Regge-exactness allows us to 
take all six limits at the same 
time!

Leading term in the expansion

in limit1

Leading term in the expansion
in limit 2
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A Recipe to compute Wilson loops

• Step 4:
Sum up the remaining towers of residues:

∞�

n=1

un
i

nk
= Lik(ui)

∞�

n=1

un
i

n
= − ln(1− ui)
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The six-point remainder function

• We applied this recipe to the two-loop six-edged Wilson 
loop.

• In the limit, all integrals are

➡ at most three-fold.
➡ dependent on conformal cross ratios only.

• Hence, the resulting integrals are much simpler and can 
be solved in a closed form, and we can easily extract the 
two-loop six-point remainder function,

exponential,

〈W [Cn]〉 = 1 +
∞
∑

L=1

aLW (L)
n = exp

∞
∑

L=1

aLw(L)
n , (2.3)

where the coupling is defined as

a =
g2N

8π2
. (2.4)

For the first two loop orders, one obtains

w(1)
n = W (1)

n , w(2)
n = W (2)

n −
1

2

(

W (1)
n

)2
. (2.5)

The one-loop coefficient w(1)
n was evaluated in Refs. [11, 12], where it was given in terms

of the one-loop n-point MHV amplitude,

w(1)
n =

Γ(1 − 2ε)

Γ2(1 − ε)
m(1)

n = m(1)
n − n

ζ2

2
+ O(ε) , (2.6)

where the amplitude is a sum of one-loop two-mass-easy box functions [30],

m(1)
n =

∑

p,q

F 2me(p, q, P,Q) , (2.7)

where p and q are two external momenta corresponding to two opposite massless legs,

while the two remaining legs P and Q are massive. The two-loop coefficient w(2)
n has been

computed analytically for n = 4 [13] and n = 5 [14] and numerically for n = 6 [16] and

n = 7, 8 [17].

In Ref. [14] it was established that the Wilson loop fulfils a special conformal Ward

identity, whose solution is the BDS ansatz plus, for n ≥ 6, an arbitrary function of the

conformally invariant cross-ratios, defined in Eq. (2.11). Thus, the two-loop coefficient w(2)
n

can be written as

w(2)
n (ε) = f (2)

WL(ε)w(1)
n (2ε) + C(2)

WL + R(2)
n,WL + O(ε) , (2.8)

where the constant is the same as in Eq. (1.2), C(2)
WL = C(2) = −ζ2

2/2, and the function

f (2)
WL(ε) is [13, 17, 31]2,

f (2)
WL(ε) = −ζ2 + 7ζ3ε − 5ζ4ε

2 . (2.9)

With the two-loop coefficient w(2)
n given by Eqs. (2.8) and (2.9) and the two-loop MHV

amplitude given by Eqs. (1.2) and (1.3), the duality between Wilson loops and amplitudes

is expressed by the equality of their remainder functions [17],

R(2)
n,WL = R(2)

n . (2.10)

Defining the conformally invariant cross ratios as,

uij =
x2

ij+1x
2
i+1j

x2
ijx

2
i+1j+1

, (2.11)

2Note that because of the different normalisation between the one-loop amplitude and the Wilson loop

(2.6), f
(2)
WL

differs from the analogous function for the amplitude, given after Eq. (1.2).

– 4 –

[Del Duca, CD, Smirnov]

Dienstag, 27. April 2010



The six-point remainder function
• The result is completely expressed in terms Goncharov’s 

multiple polylogarithm,

explicitly dependent on the conformal cross ratios only3. We checked numerically that the

sum of the Mellin-Barnes integrals in the QMRK is equal to the sum of all the original

parametric integrals, the latter being evaluated numerically using FIESTA [40].

The resulting Mellin-Barnes integrals are then evaluated by directly closing contours

and summing up residues or by exchanging a Mellin-Barnes integration with an integral of

Euler type. The infinite sums which appear in the intermediate steps of the computation

are typically generalised harmonic sums [41, 42] as well as multiple binomial sums [43, 44].

The convergence of the series requires the conformal cross ratios to be less than 1, and

in the following we concentrate on this kinematic region, within the Euclidean region.

Details on the explicit computation of the integrals will be presented in a forthcoming

publication [45]. Here it suffices to say that, except for the contribution coming from

the hard diagram with six light-like edges, all the integrals can be expressed in terms of

harmonic polylogarithms [46] in one conformal cross ratio. In turn, the six-edged hard

diagram constitutes the bulk of the final result, and can be written as a linear combination

of Goncharov’s multiple polylogarithms [47], whose arguments are functions of conformal

cross ratios. These polylogarithms are defined by the iterated integration,

G(!w; z) =

∫ z

0

dt

t − a
G(!w′; t) and G(!0n; z) =

1

n!
lnn z , (4.2)

where we define !w = (a, !w′), and for z = 1 they are manifestly real, if all the elements

in the weight vector !w are either greater than 1 or negative. The number of elements of

!w is called the (transcendental) weight of G(!w; z). The polylogarithms we obtain can be

divided into several classes, corresponding to the elements wi of the weight vector,

1. wi = 1/uj , 1/(1 − uj), (1 − uj)/(1 − uj − uk).

It is easy to see that in this case wi > 1 or wi < 0, for 0 < ui, uj < 1.

2. wi = 1/(ui + uj).

In this case wi could be smaller than 1, i.e., the polylogarithms can develop an

imaginary part. However, we checked numerically that the imaginary parts cancel in

the final answer.

3. wi = 1/u(±)
jkl , 1/v

(±)
jkl , where we define

u(±)
jkl =

1 − uj − uk + ul ±
√

(uj + uk − ul − 1)2 − 4 (1 − uj) (1 − uk) ul

2 (1 − uj) ul
,

v(±)
jkl =

uk − ul ±
√

−4ujukul + 2ukul + u2
k + u2

l

2 (1 − uj) uk
.

(4.3)

3Note however that the coefficients of the integrals do not only depend on the conformal cross ratios,

but on logarithms of Mandelstam invariants. This is to be expected since the BDS contribution to w
(2)
6

depends on such quantities.
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Lin(z) =
� z

0

dt

t
Lin−1(t)

• For some values of the u’s, the square roots can become 
complex.

• They however always come in pairs such that the full 
result is real.
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The six-point remainder function

• We checked that our result has all the properties required
 for the remainder function: 

✓ the result is of uniform transcendental weight 4.

✓ no new transcendental numbers appear (only              ).                    

✓ explicitly dependent on conformal cross-ratios.

✓ symmetric in all its arguments.

✓ vanishes in all collinear and multi-Regge limits.

✓ we checked numerically several points.

ζ2, ζ3, ζ4
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Conclusion

• Planar N = 4 SYM displays a lot of nice features related 
to scattering amplitudes and Wilson loops, both at strong 
and at weak coupling.

• Regge-exactness of the Wilson loops gives a powerful tool  
for analytic computations.

• We applied this tool and performed the first analytic 
calculation of the two-loop six-point BDS remainder 
function in terms of generalized polylogarithms.
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