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Status of Tops at NNLO

No double-real radiation



Subtraction Schemes

*NLO

1) Catani-Seymour (smooth interpolation between limits, remapping
of phase space allows for arbitrary phase space generators)

2) FKS (Frixione-Kunszt-Signer) (decomposition of phase space
according to collinear singularities, energy-angle parameterization,
residue subtraction)

* NNLO general and successful
1) Sector Decomposition (Binoth,Heinrich ’04, Anastasiou,Melnikov,Petriello ‘05)
2) Antenna Subtraction (Gehrmann De-Ridder, Gehrmann, Glover ’05)

« NNLO special for colourless particles — Catani, Grazzini 07

* NNLO in the making (main problem - integration of subtraction terms)
1) “generalized” Catani-Seymour — Weinzierl ‘03
2) “generalized” FKS (?) — Somogyi, Trocsanyi, Del Duca ‘06



Antenna Subtraction
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* use matrix elements of complete processes
* use remapping to drop number of particles

* obtain integrated subtraction terms with multi-loop methods
(analytic results)

* drawbacks
1) huge amount of analytic calculations
2) reduced efficiency since no azimuthal correlations
(hybrid method using lower cutoff)



Sector Decomposition

* process independent method working with abstract matrix element

* details tailored to the problem

* parameterize phase space completely depending on the singularity
of given diagram and map to unit hypercube

* factorize divergences as in example
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Sector Decomposition

* typical problems to solve is getting rid of

1) line singularities (occur inside phase space and not at boundaries)
2) quadratic singularities (would need higher orders of expansion in x)

3) complicated phase space parameterizations
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e at first, restrict problem to production of only massive states at LO,
which for NNLO is equivalent to

p1+p2—ki+ke+q+--+qn

pPP=pi=k=k2=0, @Z=m?#0, i=1,...,n, n>?2

e work in the partonic COM system — cross section is no distribution
* decompose phase space into sectors with simplest singularities

e avoid remapping

* use specific parameterization only for relevant kinematics

 sector decompose according to physical singularities

* do not aim for analytic integration



Phase Space

 central role played by the two massless states, since they generate
most of the singular configurations

* factorize phase space accordingly into three particle phase space
and phase of the massive products

invariant mass of composite
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First Decomposition

* due to soft singularities involving the massive states, phase space
split only useful if parameterization includes energies of massless
states

* remaining parameters are best chosen to be relative angles

construction inspired by idée fixe of FKS

* simplify treatment by decomposing according to collinear singularities

* introduce functions that restrict divergences, e.g. f,(k) allows only
divergences, when k parallel to p,, but not p,

* introduce function that screens divergence when k, parallel to k,



First Decomposition

most difficult

non-trivial only because
of soft-collinear divergences
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trivial, because NLO

attach to first sector (contains same divergences)

} non-factorizable double-collinear limits

} factorizable double-collinear limits




Simplest Parameterization Possible

concentrate on double-collinear limits involving p,
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source of problems, since singularities only when
O, = 0, and at the same time ¢ = 0 (classic case of line singularity)
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Three Particle Phase Space
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ignored soft singular propagators of the massive states (treated by
the same procedure)



How to Avoid Line Singularity

* known problem of sector decomposition

* illusory complication, since need only introduce a parametrization
such that all phase space covered, but when O, -> O, then at the
sametime ¢ ->0

* use variable inspired by considerations from
Anastasiou, Melnikov, Petriello 05
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Final Form of Phase Space
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Sector Decomposition
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Subtraction Terms

* subtraction terms generated iteratively with
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e each subtraction term corresponds to a physical limit with known
asymptotic behaviour

Behrends, Giele ‘89 (double-soft)

Campbell, Glover 98 (double-collinear without azimuthal correlations)
Catani, Grazzini ‘99 (double-collinear with azimuthal correlations)

* no need to decompose the amplitude, just the splitting functions
and eikonal terms !!!

e suaranteed locality of subtraction terms and process independence




Factorizable Double-Collinear Limits

* parametrization obtainable by substitution n, ,-> 1-n,,
* no need for variable change for n;, since no divergence

* only two sectors per branch in decomposition tree

£>4

>< soft-collinear split




Conclusions

* Presented general subtraction scheme for massive particle production

* Can be applied to get the last missing difficult contribution to
top quark pair production

* Can be generalized to massless final states



