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ToP-QUARK PAIR HADROPRODUCTION

Several observables measured at
Tevatron (few thousand observed
events)

@ Total Cross Section
@ Invariant Mass Distribution

@ Charge / Forward-Backward
Asymmetry

@ .-

» Next 2 years at the LHC ~ few
thousand observed events

» LHC (/s =14TeV,
10fb~1 /year)
—> millions of top-quarks / year

ANDREA FERROGLIA (MAINZ U.) ToP-QUARK PAIRS BEYOND NLO Loops & Leas '10 1/20



Tor QUARK PAIR HADROPRODUCTION & QCD

Top-quark pair production is a hard scattering process which can be
computed in perturbative QCD

hi{p}

h2{p, B}

h1 hy — Z/ Xm/ dX2 thuF)f (X27:UF)UU (5 mtvaS(MR) ,“Fm“R)

Shad = (Ph1 + Phg) ; S = X1X25had

ANDREA FERROGLIA (MAINZ U.) ToP-QUARK PAIRS BEYOND NLO Loops & Leas '10 2 /20



Tor QUARK PAIR HADROPRODUCTION & QCD

Top-quark pair production is a hard scattering process which can be
computed in perturbative QCD

hi{p}

h2{p, B}

partonic cross section

- Shad
tt 2y § . 2 A 2 2 2
O-hhhz(shad)mt) - /4 ) ds Ll_j (Syshadhuf) UU(S7 mtv,”‘f?/l’r)
" m —_———
17 t

partonic luminosity
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TREE LEVEL QCD PARTONIC PROCESSES

q(p1) + G(p2) — t(p3) + t(pa)
P1 Pa

N /
/ N

P2 P3

g(p1) + g(p2) — t(ps) + t(pa)

TOOOO—— ——
A A
TOOOH +—e— —a—
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TREE LEVEL QCD PARTONIC PROCESSES

q(p1) + G(p2) — t(p3) + t(pa)
P1 Pa

N /
N

P3

Dominant at Tevatron
~ 85%

——
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TREE LEVEL QCD PARTONIC PROCESSES

q(p1) + g(p2) — t(ps3) + t(pa

Dominant at LHC
~ 90% at 14 TeV
~ 70% at 7 TeV

/&Wﬂx—b——b—

oo —e— O e
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NLO CORRECTIONS

The NLO corrections to top-quark pair production have been a subject of
active research for more than 20 years
(too many authors to list them all here!)

NLO QCD corrections to the total cross section

NLO QCD corrections to the distributions (p7, rapidity, invariant
mass, ...)

NLL resummation of threshold effects

Mixed QCD-EW corrections

NLO corrections keeping into account top spins and top decays
NLO QCD corrections to tt+ additional hard particles

¢ ©

e © ¢ ¢

(see talks by A. Denner and M. Czakon )
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NLO CORRECTIONS

The NLO corrections to top-quark pair production have been a subject of
active research for more than 20 years
(too many authors to list them all here!)

NLO QCD corrections to the total cross section

NLO QCD corrections to the distributions (p7, rapidity, invariant
mass, ...)

NLL resummation of threshold effects

Mixed QCD-EW corrections

NLO corrections keeping into account top spins and top decays
NLO QCD corrections to tt+ additional hard particles

¢ ©

e © ¢ ¢

(see talks by A. Denner and M. Czakon )

At the LHC some observables (ex. total cross section) will be affected
experimental errors which are smaller than the current NLO + NLL
theoretical uncertainties
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To take full advantage of the LHC potential, we need to go
beyond the current NLO+NLL calculation



To take full advantage of the LHC potential, we need to go
beyond the current NLO+NLL calculation

COMPLETE NNLO
Goal: to calculate all the virtual
and real corrections
Requires to use and develop
cutting edge calculational
techniques
Very time consuming
The only ultimate solution to
the problem



To take full advantage of the LHC potential, we need to go
beyond the current NLO+NLL calculation

COMPLETE NNLO
Goal: to calculate all the virtual
and real corrections

Requires to use and develop
cutting edge calculational
techniques

Very time consuming

The only ultimate solution to
the problem

]

]

APPROXIMATE NNLO
Goal: to capture the numerically
dominant NNLO corrections

Can be done using Effective
Field Theory methods

One can obtain predictions
relatively fast

By construction, one introduces
systematic uncertainties



APPROXIMATE NNLO CALCULATIONS:
Partonic Threshold Expansion (and Resummation) for the Invariant
Mass Distribution

(WARNING: I will not discuss the recent results concerning the total

partonic cross section in the limit 3 = /1 — 4m?/s — 0)

Langenfeld et al. (’09), Beneke et al. (°09)



APPROXIMATE NNLO FORMULAS FOR THE
INVARIANT MASS DISTRIBUTION

Ahrens, AF, Neubert, Pecjak, and Yang (’09)

The distribution in the invariant mass M? = (p; + pz)? can be used to
measure m;, and to search for s-channel heavy resonances

102 e i ‘\ i T T 5

E do(pp - (G ) t)/dmy [pb/20 GeV] 3

L 10, CTEQ6L1, LHC 1

105 = m,=600 GeV 3

[ /M =0.04 |

100 — ---- &/M=0.02 —

E &/M,=0.01 3

1071 = —

1077 z
10-3 o o o o o .

500 1000 1500 2000 2500 3000
tt invariant mass [GeV]
Frederix and Maltoni (’07)
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APPROXIMATE NNLO FORMULAS FOR THE
INVARIANT MASS DISTRIBUTION

Ahrens, AF, Neubert, Pecjak, and Yang (’09)

The distribution in the invariant mass M? = (p; + pz)? can be used to
measure m;, and to search for s-channel heavy resonances

Two quantities are relevant:
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APPROXIMATE NNLO FORMULAS FOR THE
INVARIANT MASS DISTRIBUTION

Ahrens, AF, Neubert, Pecjak, and Yang (’09)

The distribution in the invariant mass M? = (p; + pz)? can be used to
measure m;, and to search for s-channel heavy resonances

Two quantities are relevant:

Ld
5—/(\;:?—/\5772 > (L) Gz

ii=(q49.88,99)
We focus on the partonic threshold region s ~ M?; z — 1
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APPROXIMATE NNLO FORMULAS FOR THE
INVARIANT MASS DISTRIBUTION

Ahrens, AF, Neubert, Pecjak, and Yang (’09)

The distribution in the invariant mass M? = (p; + pz)? can be used to
measure m;, and to search for s-channel heavy resonances

Two quantities are relevant:

Ld
5—/(\;:?—/\5772 > (L) Gz

ii=(q49.88,99)
We focus on the partonic threshold region s ~ M?; z — 1

In this limit, there is little phase-space available for real gluon emission:
this is a virtual-soft approximation
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APPROXIMATE NNLO FORMULAS FOR THE
INVARIANT MASS DISTRIBUTION

Ahrens, AF, Neubert, Pecjak, and Yang (’09)
The distribution in the invari 2 _

measurg

2

We can calculate the Cj; up to terms of O(1 — z)
Two qu It will be possible to predict accurately do/dM if:
a) 7 ~ 1; ... but the interesting region is 7 < 0.3

b) Lij — 0 for z — 7; Dynamical Threshold Enhancement

d 8 Ld
ﬁ:%\f T =S LU(E,M)CU(Z,...,M)

ii=(q49.88,99)
We focus on the partonic threshold region s ~ M?; z — 1

In this limit, there is little phase-space available for real gluon emission:
this is a virtual-soft approximation
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HARD SCATTERING KERNELS Cj

In the limit z — 1 we can distinguish three different scales

s, M?, m? > s(1—z) > Ngeo
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HARD SCATTERING KERNELS Cj

In the limit z — 1 we can distinguish three different scales

s, M?, m? > s(1—z) > Ngeo

In the threshold region the hard scattering kernels factor into hard
functions and soft functions (matrices in color space)

Kidonakis, Sterman (’97)

1

C(Z7 M7 mt?l’l‘) :/

dcosOTr [H(I\/l, my,cos 6, 11)S(v/s(1 — z), mg, cos 6, 1)
-1
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HARD SCATTERING KERNELS Cj

In the limit z — 1 we can distinguish three different scales

s, M?, m? > s(1—z) > Ngeo

In the threshold region the hard scattering kernels factor into hard
functions and soft functions (matrices in color space)

Kidonakis, Sterman (’97)

1

C(Z7 M7 mt7lu‘) :/

dcosOTr [H(I\/I, my,cos 0, 1)S(v/s(1 — z), my, cos b, 1)
-1

The same factorization formula can be re-obtained using the language of
Soft-Collinear Effective Theory
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HARD SCATTERING KERNELS Cj-II

The soft functions include plus distributions of the form

an[w] m:07"',2n—1
_l’_

° 1—=z
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HARD SCATTERING KERNELS Cj-II

The soft functions include plus distributions of the form

" [mm(l ~2)

—0,--.,2n—1
*l 1-z ]+ m=Hren

In particular at NNLO

+Cod(1 — z) + R(z)}

D;, Cy are functions of M, my, cos @, u;
(Ds, Dy, Dy first obtained by Kidonakis and Vogt (’03))
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HARD SCATTERING KERNELS Cj-II

The soft functions include plus distributions of the form

" [|nm(1 ~2)

° 1—=z

] m=20,---,2n—-1
_l’_

In particular
H and S obey RGE of the form

d _ T
dInMH =IyH +HIM

CNNLO(5

where T is known up to NNLO
(AF, Neubert, Pecjak, and Yang (’09))

+Cod(1 — z) + R(2)

D;, Cy are functions of M, my, cos @, u;
(Ds, Dy, Dy first obtained by Kidonakis and Vogt (’03))
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HARD SCATTERING KERNELS Cj-II

By exploiting the information encoded in I' and RGEs

it was possible to calculate D3, Dy, D1, Dg and

the scale dependence of Cy

Coo(l—z)+ R(z)}

D;, Cy are functions of M, my, cos @, u;
(D3, D2, Dy first obtained by Kidonakis and Vogt (’03))
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THRESHOLD EXPANSION vS ExacT NLO

do/dM (fb/GeV)

Tevatron LHC
_ 0.8
50 Vs =1.96 TeV
40 < 0.6
S
30 £
3 04
20 =
o
/ 0.2
10 |
0 0.0
350 200 250 500 350 400 450 500
M (GeV) M (GeV)

» Exact NLO result (dark grey band) obtained with MCFM
(Campbell, Ellis)

» The NLO threshold expansion — band between the dashed lines
(200 GeV < p < 800 GeV; close to M/2 < u < 2M)

» The threshold expansion agrees quite well with the exact result, even
in the low invariant mass region
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THRESHOLD EXPANSION AT NNLO

do/dM (pb/TeV)

Invariant Mass Distribution

<¥§#§2M)

1000

10

[ NLO, leading
0.1 I NNLO, leading

0.01

/5 =1.96 TeV

100

10

do/dM(pb/TeV)

0.1

I NLO, leading
1. I NNLO, leading

400 500 600 700 800 900 1000

M (GeV)
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THRESHOLD EXPANSION AT NNLO

__ do(p)/dM
dotO(u = M)/dM
25 25 Lo
Lo V5 =1.96 TeV g Vs=17TeV
] I NLO, leadi
20 [ NLO, leading 2.0 [ ] NNLO,Ie&IIr;ig

I NNLO, leading

x 15 — - 15 ~
_ I | ———

1.0 1.0
0.5 05 .
400 500 600 700 800 900 1000 S 60600 800 1000 1300 1400
M (GeV) M (GeV)

Using MSTW2008 pdfs
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THRESHOLD EXPANSION AT NNLO

do(p)/dM

" dotO(y = M)/dM

Lo Vs =1.96 TeV
20, M NLO, leaing
I NNLO, leading

x 15

0.5

400 500 600 700 800 900 1000
M (GeV)

» Scale dependence still sizable

2.5

2.0

15

1.0

05

LO
I NLO, leading
I \NLO, leading

Vs =7TeV

400 600 800 1000 1200 1400
M (GeV)

» Resummation and/or complete NNLO needed!
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RESUMMATION

By solving the RGE satisfied by H and S it is possible to rewrite the
scattering kernel as

C(Z> Ma me, C0597 /,Lf) = exp [4ay¢ (/1’57 ,uf)]

xTr [U(M, m¢,cos 0, 11y, 11s) H(M, m, cos 0, 11,) UT (M, m¢, cos 0, 11, 115)

5 M?2 e 27VEN Zz=N
XS (ln E + 87], M, my¢, COS 97 ,U/s> ] r(2,,7) (1 _ 2)1—27]

The In(ps/pn) ~ In(1 — z) are exponentiated in U

”w
/!
U(M7 mtacoseauhwu‘) = Pexp/ d—///L FH(M7 mt7cose7lu‘/)
1%

Hh
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RESUMMATION AND MATCHING

All the scales can be fixed (and varied) separately:
o pin~ pf ~ M
® s is chosen to minimize the corrections coming from the soft

function (% < ps < 1—’%)
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RESUMMATION AND MATCHING

All the scales can be fixed (and varied) separately:
o pin~ pf ~ M
® s is chosen to minimize the corrections coming from the soft

function (% < ps < 1—’\3)

RG-impr. PT | log accuracy | [cusp ~P ~? H, s
LO NLL 2-loop | 1-loop | tree-level
NLO NNLL 3-loop | 2-loop 1-loop

All the pieces for the first NNLL calculation are now available

Ahrens, AF, Neubert, Pecjak, and Yang (’10)
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RESUMMATION AND MATCHING

All the scales can be fixed (and varied) separately:

o pin~ pf ~ M

® s is chosen to minimize the corrections coming from the soft

ya.v/i 1IV/AN

funct

All the pi

It is possible to match fixed order NLO and NNLL

do.NLO+NNLL — do.l\'NLL 4

HhsHs; f

Ns_#h_#f>

Ahrens, AF, Neubert, Pecjak, and Yang (’10)

+ <dUNLO — doNNLL

1273
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NLO + NNLL SPECTRUM

Fixed Order (LO and NLO)

< 50 Vs =196 TeV %* 08
O 49 O
Qo = 06
£ 3 N

s 0.4
% 20 S

~
F 10 ) 0.2 MSTW2008LO
RS <

MSTW2008NLO MSTW2008NLO
0355 400 450 500 9350 400 450 500
M (GeV) M (GeV)
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NLO + NNLL SPECTRUM

Resummation (NLL and NLO+NNLL)

. 50 Vs =1.96 TeV <
> .
o =
é 30 N
S 2 %
3 MSTW2008NLO ~
o 10 .g
S
0 0.0
350 400 450 500 350 400 450 500
M (GeV) M (GeV)

@ uf =400 GeV (uf ~ M in the plotted range)
@ reduced scale uncertainty
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THE ToTAL CROSS SECTION

The total cross section is obtained by integrating the distribution over M

1/ Shad do-
0 (Shaa, Mt) = dM —
(Sss 1) /M @

pur =173 GeV | Tevatron | LHC (7 TeV)
ONLO,lead 6.20157 5% 144+5,%%
ONLO 0.4915% 5% 15015575
ONNLL+NLO | 6.48%911+9% 1461713

@ The NLO total cross section is known analytically

Czakon and Mitov (’08)
@ First error from scale variations, second from PDFs
(MSTW2008NNLO at 90%)
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THE ToTAL CROSS SECTION

The total cross section is obtained by integrating the distribution over M

1/ Shad d
U(Shadv mt) = / dM 7
2

my am
s = 400 GeV Tevatron LHC (7 TeV)
ONLO,lead 5.34 19731028 127714+
oxio | 5645598 | 126757
ONNLL+NLO | 6.30%G5575% 1497775

@ The NLO total cross section is known analytically

Czakon and Mitov (’08)

@ First error from scale variations, second from PDFs
(MSTW2008NNLO at 90%)
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CHARGE ASYMMETRY

The charge asymmetry is the difference in production rate for top and
antitop at fixed angle or rapidity

 Ne(y) + Ne(y) ~ Ne(y > 0) + Ng(y > 0)
differential CA integrated CA

Ay) = MDY= Mely) ) Nely = 0) = Ne(y = 0) (N,-z%f)

Arising at order a2 in the channel qg — tt

ANDREA FERROGLIA (MaINz U.)
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THE FORWARD-BACKWARD ASYMMETRY AT
TEVATRON

Because of QCD charge conjugation invariance, N¢(y) = N¢(—y), and
therefore A is equal to the forward-backward asymmetry

1 ﬁ 1 d20.N1 Ny—ttX 0 dZO.Nl Ny—ttX
Ag = — am dcos——— — dcos ) ———
T /th < /0 Y dMd cos 0 /_ 1 7 IMd cos 0 >

® The measured asymmetry in the lab frame
APP —10.3 +6.9%

@ The predicted LO asymmetry is AFB =b. 1+07/
Kithn and Rodrigo (’08), Bernreuther and Si (’10)
@ In the tt-frame the asymmetry is ~ 30% larger

AL — 24 + 13%
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THE FORWARD-BACKWARD ASYMMETRY AT
TEVATRON

Because of QCD charge conjugation invariance, N¢(y) = N¢(—y), and
therefore A is equal to the forward-backward asymmetry

1 rvs [ rl A2 N Np—tEX 0 A2 Ny Np—tEX
As = 7 >
AFNPY (°10) Ars(%) Ars(%)
o TH partonic frame | (uf = my) | (pur = 400 GeV)
"LO” QCD 7.370¢ 6.6702
‘" " -‘1—11 +06
LO" 4+ NNLL 73757 6.6 g5
o AL =768 LO QCD ; A, =8.0"%7 LO QCD + EW
Bernreuther and Si (°10) (’10)

AL — 24 + 13%
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COMPLETE NNLO CALCULATIONS:
STATUS




NNLO LAUNDRY LIST

@ Two-loop diagrams with a tt in the final state

PR —
Y

"0000000]

4

—»>—
A

Y

0000000

A

A

—_—

0000000

-

@ One-loop diagrams with a ttg(q, @) in the final state
‘0000000

R —

Y

4

A

—»>—
A
(g
A

—_—

0000000

-

o Tree-level diagrams with a ttgg(gq, g4, qq) in the final state
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NNLO LAUNDRY LIST

@ Two-loop diagrams with a tt in the final state

—>—{0000000 = » 200 diagrams in qg — tt
A A
0000000 » 800 diagrams in gg — tt
A A
—<+—"0000000 ==

@ One-loop diagrams with a ttg(q, @) in the final state
Dittmaier, Uwer, Wenzierl (’07,°08)

W‘ Bevilacqua et al. (’10)
Y 000 Melnikov, Schulze (’10)
A

—<+—0000000 "=

o Tree-level diagrams with a ttgg(gq, g4, qq) in the final state
Dittmaier, Uwer, Wenzierl (’07,°08)
Bevilacqua et al. (’10)

Melnikov, Schulze (’10)
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Two-Loop CORRECTIONS TO qq — tt

The two-loop corrections to qg — tt were first evaluated in the limit in
which s, [t], |u] > m?
M. Czakon, A. Mitov, and S. Moch (’07)
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Two-Loop CORRECTIONS TO qq — tt

The two-loop corrections to qg — tt were first evaluated in the limit in
which s, [t], |u] > m?

M. Czakon, A. Mitov, and S. Moch (’07)
Adding more terms in the expansion in powers of m?/s, m?/|t|, m?/|u] it is

not sufficient for phenomenological studies (particularly near threshold)

An exact numerical evaluation of these correction is available J

M. Czakon (’08)
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Two-Loop CORRECTIONS TO qq — tt

The two-loop corrections to qg — tt were first evaluated in the limit in
which s, [t], |u] > m?

M. Czakon, A. Mitov, and S. Moch (’07)

Adding more terms in the expansion in powers of m?/s, m?/|t|, m?/|u] it is
not sufficient for phenomenological studies (particularly near threshold)

An exact numerical evaluation of these correction is available
M. Czakon (’08)

Analytic calculations:
o Diagrams with a closed (light or heavy) quark loop

Bonciani, AF, Gehrmann, Maitre, Studerus (’08)

o Leading color coefficient in the N, expansion (planar diagrams only)

Bonciani, AF, Gehrmann, Studerus (’09)
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SOME TECHNICAL DETAILS

The leading color coefficient involves planar diagrams only

AL LA = b
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SOME TECHNICAL DETAILS

The leading color coefficient involves planar diagrams only

AL LA = b

A new GiNaC/C++ implementation of the Laporta Algorithm was
developed for this project: REDUZE (Studerus (’09))

It involves 6 new irreducible box topologies

| 2Mmis| | 2Mmis] | 2Mmis| | 2Mmis] | 2Mmis| | 3mis|
C. Studerus (’09)

ANDREA FERROGLIA (MaINz U.) ToP-QUARK PAIRS BEYOND NLO Loops & LEeas '10 18 / 20



SOME TECHNICAL DETAILS

The leading color coefficient involves planar diagrams only

AL LA = b

A new GiNaC/C++ implementation of the Laporta Algorithm was
developed for this project: REDUZE (Studerus (’09))

It involves 6 new irreducible box topologies

| 2Mmis| | 2Mmis] | 2Mmis| | 2Mmis] | 2Mmis| | 3mis|
C. Studerus (’09)

The use new two-dim HPLs is unavoidable to obtain analytic expressions;
they can be expanded analytically and evaluated numerically with a GiNaC
package (Vollinga and Weinzierl (’04))
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Two-LoorP CORRECTIONS TO gg — tt

@ The two-loop diagrams in the gg — tt channel are available only in

the s > m? limit
Czakon, Mitov, and Moch (’08)

@ The coefficients of all the IR poles are know analytically (see talk by

L. Yang
) AF, Neubert, Pecjak, and Yang (’09)

@ The diagrams involving massless quark loops can be calculated
analytically in the usual way

Bonciani, AF, Gehrmann, Studerus (in progress)

o Part of the virtual corrections involve many MI which cannot be
expressed in terms of HPLs only

Elliptic Functions

1 Ix
(D = K&=h e

Laporta Remiddi (’04)
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SUMMARY & CONCLUSIONS

@ The top-quark pair production cross section will eventually be
measurable with a 5 — 10% uncertainty at the LHC; This requires the
complete computation of the NNLO QCD corrections to the
top-quark pair production cross section

o Approximate NNLO results are available for the total cross section
and some distributions; they are a useful tool for phenomenology
(estimate of the NNLO corrections, studies of the scale dependence,
resummation of large logarithmic corrections, etc)

@ Complete NNLO computations: The calculation of the two-loop
corrections in both the gqg and gg channels is major technical
challenge; several results were obtained in the last two years, good
perspective for the future
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SUMMARY & CONCLUSIONS

@ The top-quark pair production cross section will eventually be
measurable with a 5 — 10% uncertainty at the LHC; This requires the
complete computation of the NNLO QCD corrections to the
top-quark pair production cross section

o Approximate NNLO results are available for the total cross section
and some distributions; they are a useful tool for phenomenology
(estimate of the NNLO corrections, studies of the scale dependence,
resummation of large logarithmic corrections, etc)

@ Complete NNLO computations: The calculation of the two-loop
corrections in both the gqg and gg channels is major technical
challenge; several results were obtained in the last two years, good
perspective for the future

The moral of the story is always the same:
there is a lot of work to do ...
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WHEN WILL YOU FINISH?

“Obviously some team of theorists must have computed this at NLO a
decade ago, and probably is close to having it at NNLO? Unfortunately not

Part of the problem, by the way, is sociological: there are 300 string theory
students at this school, but only ~ 30 people in the world working on
Standard Model calculations of basic importance for LHC discover.”

LHC phenomenology for string theorists,
J. Lykken (’07)
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THRESHOLD EXPANSION vS ExacT NLO

_ doNO(u)/dm
~ dotO(u =2m;)/dM
2 2.5

Vs =1.96 TeV Vs =10 TeV

I I I I 1 I I I
400 600 800 1000 1200 500 1000 1500 2000
M (GeV) M (GeV)

0.5

» Exact result obtained with MCFM (Campbell, Ellis)
» The threshold expansion agrees quite well with the exact result, even
in the low invariant mass region



REVIEWS

M. Beneke et al Top quark physics hep-ph/0003033

S. Dawson The top quark, QCD, and new physics hep-ph/0303191
W.
A
W
J

Wagner Top quark physics in hadron collisions hep-ph /0507207

. Quadt Top quark physics at hadron colliders EJPC (2006)
. Bernreuther Top-quark physics at the LHC 0805.1333
. R. Incandela et al Status and Prospects of Top Quark

Physics 0904.2499



THE LAPORTA ALGORITHM

The set of denominators Dy, --- , D; defines a topology; for each topology



THE LAPORTA ALGORITHM

The set of denominators Dy, --- , D; defines a topology; for each topology

» The scalar integrals are related via Integration By Parts identities (10
identities per integral for a two-loop four-point function)
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THE LAPORTA ALGORITHM

The set of denominators Dy, --- , D; defines a topology; for each topology

» The scalar integrals are related via Integration By Parts identities (10
identities per integral for a two-loop four-point function)
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» Building the IBPs for growing powers of the propagators and scalar
products the number of equations grows faster that the number of
unknown: one finds a system of equations which is apparently
over-constrained



THE LAPORTA ALGORITHM

The set of denominators Dy, --- , D; defines a topology; for each topology

» The scalar integrals are related via Integration By Parts identities (10
identities per integral for a two-loop four-point function)

dy md, O SPt--Sq°
/9 kD k26k”’ [Vupfl...pfr} =0 v =k, k,p1,p2,p3
i 1 t

» Building the IBPs for growing powers of the propagators and scalar
products the number of equations grows faster that the number of
unknown: one finds a system of equations which is apparently
over-constrained

» Solving the system of IBPs (in a problem with a small number of
scales) one finds that only a few of the scalar integrals above (if any)
are independent: the Mls.



THE LORENTZ INVARIANCE IDENTITIES (LIS)

T. Gehrmann, E. Remiddi (’99)

A scalar integral is invariant under Lorentz transformation of the external

momenta:
p/l N p/l + 6p/l — p/l + (5€5p1/ 6(5/1 — 76(;
I(p1, P2, p3) = I(p1 + 6p1, p2 + dp2, p3 + 0p3)

implying the following 3 identities for a 4-point functions

3 - -
L UV 14 L v 8 8
(Pi'ps — pé);1 P g pﬁapg_ I(pi) =0
LI B El
(Pyp5 — P pk) ; P B P B I(pi) =0
309 Fl
(N ) '1; _ ﬁ | : =0
(Pi'py — pips) D P gor P | 1P

n=1



THE GENERAL SYMMETRY RELATIONS IDENTITIES

Further identities arise when a Feynman graph has symmetries

It is in those cases possible to perform a transformation of the loop
momenta that does not change the value of the integral but allows to
express the integrand as a combination of different integrands

Some relations are immediately seen:

others are more involved
s 1
0= 4@-@%4;31«#4@«1@ 4+5 @



EQUATIONS AND UNKNOWNS

In two-loop 2 — 2 processes there are two integration momenta and three
external momenta — 9 possible scalar products
Consider the integrals /; , . where

» t — # of propagators
» O-t — # of irreducible scalar products
» r — sum of the powers of all propagators

» s — sum of the powers of all irreducible scalar products

The number of integrals belonging to the /;, s set is

w0 ()

It is possible to build (Njgp + Ny )N(/t,s) identities



CALCULATION OF THE MISs:
DIFFERENTIAL EQUATION METHOD

For each Master Integral belonging to a given topology
Fl(q) - {Dh T 7Dq}
» Take the derivative of a given integral with respect to the external
momenta p;
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CALCULATION OF THE MISs:
DIFFERENTIAL EQUATION METHOD

For each Master Integral belonging to a given topology
Fl(q) - {Dh T 7Dq}
» Take the derivative of a given integral with respect to the external
momenta p;

» The integrals are regularized, therefore we can apply the derivative to
the integrand in the r. h. s. and use the IBPs to rewrite it as a linear

combination of the Mls

n

n
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CALCULATION OF THE MISs:
DIFFERENTIAL EQUATION METHOD

For each Master Integral belonging to a given topology
Fl(q) - {le" 7Dq}
» Take the derivative of a given integral with respect to the external
momenta p;

» The integrals are regularized, therefore we can apply the derivative to
the integrand in the r. h. s. and use the IBPs to rewrite it as a linear

combination of the Mls
» Rewrite the diff. eq. in terms of derivatives with respect to s and t

2,:/(‘1)(57 t) — ZCJ(S t 5 t)—|—ZZk/ s, t)F )

P
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CALCULATION OF THE MISs:
DIFFERENTIAL EQUATION METHOD

For each Master Integral belonging to a given topology
Fl(q) - {D1>"' 7Dq}
» Take the derivative of a given integral with respect to the external
momenta p;

» The integrals are regularized, therefore we can apply the derivative to
the integrand in the r. h. s. and use the IBPs to rewrite it as a linear
combination of the Mls

» Rewrite the diff. eq. in terms of derivatives with respect to s and t

» Fix somehow the initial condition(s) (ex. knowing the behavior of the
integral at s = 0) and solve the system of DE(s)



FivE DENOMINATOR MIS

The most complicated irreducible topology in the calculation of the heavy
fermion loop corrections is a five denominator box with two Mls
(thick lines indicate massive propagators, thin lines massless ones)

PL—» — P3

P2 —» —> P4

M(c o ):/ DDk (P2 - k)™ (Pr - k) (p2 - ka)**(ps - ko)™
e Q0T LIPSy + pr) PO (ka + py + p2)Poy (ko) Pt (ko — ko) Pt (ki + pa)

Po(q) = ¢ Pn(q) = q* + m?



FivE DENOMINATOR MIs-I1




FivE DENOMINATOR MIs-I1

B

@ the two Mls satisfy two independent first order differential equations

d/\/l,-(s, t)

ar = C,'(S, t)l\/l,-(s, t)—i—Qi(S, t)



FivE DENOMINATOR MIs-I1

B

=
[

S
I

@ the two Mls satisfy two independent first order differential equations

d/\/l,-(s, t)
dt
@ One of the two needed initial conditions can be fixed by imposing the
regularity of the integrals in t =0
The second integration constant can be fixed by calculating the
integral in t = 0 with MB techniques

= Ci(s, t)M(s, t) + Qi(s, t)



EULER METHOD

9 £(x) + CF(x) = Q)

dx

@ find the solution of the homogeneous equation

%h(x) + C(x)h(x) = 0



EULER METHOD
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@ find the solution of the homogeneous equation
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&h(x) + C(x)h(x) =0

@ build the general solution of the non-homogeneous equation

F(x) = h(x) [k + / dx%]



EULER METHOD

9 ) + COF() = )

@ find the solution of the homogeneous equation

%h(x) + C(x)h(x) = 0

@ build the general solution of the non-homogeneous equation

F(x) = h(x) [k + / dx%]

@ fix the integration constant k



EULER METHOD-II

d2
dx? dx

F(x) + AG)-2 £(x) + BGOF(x) = Q(x)

@ find the two solution of the homogeneous equation

:722/71,2()() + A(X)%hl,Z(X) + B(X)h172(X) =0
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d2
dx? dx

F(x) + AL F(x) + B()F(x) = Q(x)

@ find the two solution of the homogeneous equation

:722/71,2(’() + A(X)di)’(hlg(X) + B(x)h12(x) =0

@ build the Wronskian
d
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EULER METHOD-II

d2
dx? dx

F(x) + AL F(x) + B()F(x) = Q(x)

@ find the two solution of the homogeneous equation

:722/71,2(’() + A(X)di)’(hlg(X) + B(x)h12(x) =0

© build the Wronskian
W(x) = h()-S ha(x) — hax)- ()
dx dx
© build the solution
X dw

F(x) = h(x) <k1 - th(w)Q(w)) ha(x) (k2 + OX%M(W)Q(W))



EULER METHOD-II

d2
dx? dx

F(x) + AL F(x) + B()F(x) = Q(x)

@ find the two solution of the homogeneous equation

:722/71,2(’() + A(X)di)’(hlg(X) + B(x)h12(x) =0

@ build the Wronskian

d d
W(X) = hl(X)&hz(X) — h2(X)$h1(X)
@ build the solution
F(x) = h(x) <k1 _ OX%M(W)Q(W)) () (k2 + OX%M(W)Q(W))

@ fix the integration constants ki and k»



2-DIMENSIONAL HARMONIC POLYLOGARITHMS
(2DHPL)-II

The 2dHPLs share the properties of the HPLs

The analytic properties of both HPLs & 2dHPLs are know
Codes for their numerical evaluation are available

E. Remiddi, T. Gehrmann (2001-2002)

Up to w = 3 (our case) the 2dHPLs can be expressed in terms of
|n,|_i2,|_i3,51*2

G(-1/y;x) = In(l+xy),
G(-1/y,0; x) In(x) In(xy 4+ 1) + Li2(—xy),

G(-y,1Iix) = % In*(y +1) — In(1 — x) In(y +1) — In(y) In(y + 1)

H+In(1 = x)In(x + y) — Lia(~y) + Li (%) -z

G(-y,1,0;x) —%|n3(1—x)—|n(x)|n2(1—x)+---



HPLs As MULTIPLE SUMS

S. Weinzierl and J. Vollinga (’04)

We defined (2-d)HPLs in terms of iterated integrations

Y ody f dts th—1 dty
G(zlj...7zk;y):/‘ / /
o h—21Jo L2—2 0 te — zk

but they can be written also in terms of multiple sums

G(Ou 707217"' 7Zk—1707"' 707Zk;}’) = Gml,“',mk(zl"" 7Zk;y)
~—— ~——
mi—1 m,—1
Gm1 mk(zla"' ,Zk;}/) = ; “\m <_> X
" 1
A=l h=1 (Jl+ +Jk) 21

" 1 (1)” L L <1>jk
(o +-+jK)™ \ z1 i \z1



IR PoLeEs IN QCD AMPLITUDES

IR poles in QCD amplitudes can be removed by a multiplicative

renormalization
enormalizatio Becher and Neubert (’09)

27 (e, {p}, {m ) [Male, {6}, {m}) ageo _g,, = FINITE




IR PoLeEs IN QCD AMPLITUDES

IR poles in QCD amplitudes can be removed by a multiplicative
renormalization

Becher and Neubert (’09)

M = asMO + a2 MO + a3 MO 4+ O(a?)



IR PoLeEs IN QCD AMPLITUDES

IR poles in QCD amplitudes can be removed by a multiplicative

renormalization
enormalizatio Becher and Neubert (’09)

Z7Y(e. {p}. {m}) [Ma(c. {p}, {m})) oc0_¢,, = FINITE

therefore
M E) = [z@) - (z<1>)2] M)+ (20 M)

poles

But what is Z7?



EVOLUTION MATRIX
Z satisfies the evolution equation
_ d
27 (e.{p} (m}. ) gy Z(e.{p) m). ) = ~T({p}. (m}. )

where, in the color space formalism

T T, s j
P o= 2 5 ramlad nZo+ ) v(ed)
() i

T T, my
_ Z > ’Ycusp(ﬁlh Oés) —+ Z ’}/I(Ols) + Z T Tj '}/cu5p(Ols) In _—:
(1,9 1 1j ’

b T TR (G, B )

(1,4,K)
+ ZZ i T TE T fz(ﬁu, In w) +0(a2)
0 —0Olk VI * Pk

Becher and Neubert (’09)



EvoLUTION MATRIX

Z satisfies the evolution equation

y4

where,

r

e oh dmb ) g Z(e (o) {mbo) = ~T({p) (). 10

in the color space formalism

_ }: T, -T; L\ ll2 S i
T; (T,) are color generators associated
to massless (massive) particles

_ EE: s)|nfﬁﬂf
(1,9) ! 1. o
+ Z it T T Tk FL(Bu, B, Bra)
(1,0,K)
+ Y T T TL A (B, I 2P 4 0(ad)
i x —OIk VI - Pk

Becher and Neubert (’09)



EvoLUTION MATRIX

Z satisfies the evolution equation

ZY(e, {p}, {m} 1) =2 Z(e, {p}. {m}. 1) = ~T({p}. {m}. 1)

dlnu
where, in the Staring at two-loop order one finds
three particle correlators
Z The explicit expression for the coefficient
()| functions F; and f, was recently obtained
_ Z AF, Neubert, Pecjak, Yang ('09)
(1,9)

b T T TR (O, B )

)

) In Mg
.

(1,4,K)
+ Z Z s i i A (B/J, In w) +0(a2)
0 —0Olk VI * Pk

Becher and Neubert (’09)



HARMONIC POLYLOGARITHMS (HPLS)

E. Remiddi, J. Vermaseren (1999)
E. Remiddi, T. Gehrmann (2001)

Functions of the variable x and a set of indices 3 with weight w; each
index can assume values 1,0, —1

H(a; x)
Definitions: w =1
Hix) = [ 295~ -
o 1-
H(0;x) = Inx
*dt
H(—l X) ; m—ln(1+X)
1
d—H(aX):f(a,x) f(1;x) = — f(0 x):; f(—1 X):l—|—x



HPLs: DEFINITIONS

Definitions: w > 1
if #=0,0,...,0 (wtimes) H(0y;x) = i In" x
else H(i,3x) = dtf(i; t)H(3; t)

d "
consequences: d—H(i7 3 x)="f(i;x)H(3;x) H(E¢0,0)=0
x

a few examples @ w = 2
H(O,l;x):/ dtF(0: OH(: £) = —/ del In(l—t)—ng( )
0

H(l,O;x)—/OX dtf(1;t / dt

InXIn( x) + Lia(x)

Int




HPLs As A GENERALIZATION OF THE NIELSEN’S
PovryLogas

The HPLs include the Nielsen's PolylLogs

n+p 1

Spp(x) = (n+p ol / = In""'tInP(1 = xt) Li,(x) =S, 1.1(x)

Li,(x) = H(0, 1,1;x)
Snp(x) = H(0n1,x)

but the HPLs are a larger set of functions: from w = 4 one finds things as

X dt
H(-1,0,0,1;x) = /
0

14t

Lis(x) ¢ Z Nielsen’s PolyLogs



THE HPLS ALGEBRA

@ Shuffle Algebra:

some examples

H(a;x)H(b;x) = H(a, b;x)+ H(b, a; x)
H(a; x)H(b,c;x) = H(a,b,c;x)+ H(b,a,c;x)+ H(b,c,a;x)
® Product Ids:
H(mi,...,mg;x) = H(my;x)H(mo, ..., mg; x)

— H(my,my; x)H(ms, ..., mg; x)
+ e (DI H(my, . my;x)



2-DIMENSIONAL HARMONIC POLYLOGARITHMS
(QDHPLS)

E. Remiddi, T. Gehrmann (2000)

As for the HPLs, they are obtained by repeated integration over a new set of
factors depending on a second variable.

f(—yix) =

1
f(—=1/y;x) =
xX+y (=1/y:x) x+1/y

G(i, 3 x) = /OX dtf(i; t)G(3; t)

a few examples:

G(—yix) = Oxchy =In (1+§) G(fl/y;x):/oxzfi/y =In(1+xy)

G(—y,0;x) = Inx1n (1 + ;) L <_§)
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