

DTS at DESY

With contributions from many members of particle physics, photon science, astroparticle physics, accelerator science

Ties Behnke, Heinz Graafsma

Detector development

Results from the center review spring 2018

Observations:

Particular strengths of the RU

- Skilled and competent people
- High Quality of the infrastructure
- Strong connection between developers and end-users.

A few specific aspects would however need to be further developed:

- Serious need for data acquisition, management, and analysis resources
- Lack of a few really concrete development goals for particle physics beyond LHC.

Specific recommendations

- Take full advantage of opportunities offered by DMA creation.
- Consider building a test-beam facility for photon detector R&D and characterization.
- Consider getting involved in R&D for particle physics detectors beyond 2025.Consider getting involved in developments for medium-term experiments to fill the gap between LHC and future colliders.
- Continue to keep a well-balanced programme of developments w.r.t. MU and MML programs and to foster cross-fertilization and interaction between their communities.

Develop a concrete plan for a "Distributed Detector Laboratory" (DDL) for the entire program topic DTS to be realized with highest priority. DESY. | DTS at DESY | Ties Behnke, 12.12.2018

Numbers

Distribution of personnel

experiments on- and offsite DESY

Number of "detector" publications

Part I: Milestones

DESY. | DTS at DESY | Ties Behnke, 12.12.2018

Overall goals: Detectors at DESY

Detector Development:

 Enable scientific excellence by developing detector systems for science applications for DESY

Short/ medium-term perspective:

- Focus on detectors for XFEL.EU, PETRA, FLASH, HL-LHC and CTA, foresight program
- Build common infrastructure
- 4D detectors: spatial, energy and time

Longer-term vision

- In all areas, make detector development at DESY an activity which is recognised around the globe for its leadership and quality
- Strengthen fundamental detector development at DESY

Short-term perspective: Milestones

Short-term milestones

Detectors for XFEL.EU, PETRA, FLASH, HL-LHC and CTA, foresight program

XFEL detectors AGIPD, DSSC: (2019/2020)

Commissioning, new systems, larger systems

PERCIVAL @ PETRA and FLASH (spring 2019)

Demonstrate system with beam

LHC (around 2025)

Deliver the LHC detector upgrades (with MU), strong R&D into large scale silicon systems, calorimetry

DDL (2021)

Establish the distributed detector laboratory with strong contributions from DESY in

- Postprocessing
- Novel detector materials
- Cryogenics platform
- Test infrastructure (e.g, electron, photon)

Significantly increase the access to a broad range of cutting edge technologies at DESY and for DESY

Sucessful projects

Recent Highlights

AGIPD detector: sucessful commisioning and operation at the European XFEL

Granular calorimeters

- Game changing technology
- DESY driving force
- Developed for ILC, now used e.g. at CMS

"Material tomography" using the DESY testbeam

DSSC prototype

Longer-term perspective: Strategy

Longer-term perspective:

in all areas, make detector development at DESY an activity which is recognised around the globe for it's leadership and quality.

Longer-term perspective: Milestones

Longer-term perspective

Detectors with ultimate spacial resolution (um), time resolution (ns) and excellent energy resolution in one system

Detector Roadmap:

- Detectors for CW-XFEL+DLSR (2026)
 - Push the limits towards faster readout and larger data rates
- 4D tracking detector (2025)
 - Pico-second timing in silicon sensors
- New detector concepts (continuous) foresight program
 - Highly granular calorimeters,
 - CTA upgrade, new colliders, noncollider, neutrino, others

DESY. | DTS at DESY | Ties Behnke, 12.12.2018

Technology roadmap:

- CMOS sensors (2026)
 - Next generation sensors, design, postprocessing
- Fast Readout/ Data Transfer
- Develop new sensor technologies (continuous)
 - sensors, materials, concepts
- Find new applications (2023):
 - Digital SiPM for tracking and more.
- Push existing technologies (2022)
 - Highly-granular gaseous detectors, others
 Seite 9

New Detector Technologies

Pushing the limits

Cryogenic detectors have arrived at DESY: **ALPSII** use of TES detectors

Cryostats just arrived at DESY

Percival:

low energy detector for FLASH and PETRA, Postprocessing for low energy operation done at JBL

Picture of a pin-hole diffraction pattern at 91ev at FLASH

ELAD Sensor

Innovative Sensors:

Push for speed, resolution, etc.

Note: this relies on post-processing which only very few places around the world can do: One central issue for DDL.

DESY. | DTS at DESY | Ties Behnke, 12.12.2018

Part II: DESY perspective

Facilities

DESY facilities and platforms	Cooperation at DESY
We strongly rely on and use the DESY	Our science groups in photon science,
facilities.	particle physics, astro-particle are among the
We intend to significantly expand our local	best in the world.
capabilities through the DDL	Very dynamic development of the campus
We anticipate a very close and fruitful	and the science done here in all fields
collaboration with DMA on site.	Very close integration of detector
- Goal is a close integration of DMA into the	development into the overall science
detector design process, and vice versa	program

Questions/Issues

Distributed Detector Laboratory

- Currently develop concrete plan for DESY
 - Post processing, including 3D
 - Center for detector materials
 - Cryogenic platform at DESY
 - Test beams at DESY (electron, photon)

General concerns:

- Long term technical "service" support
- Maintain the support in case the DDL flies beyond the lifetime of the DDL extra funding
- Need to further develop the cooperation with DMA

Timeline: Proposal ready spring 2019