

CEPC TDR Status and Perspectives

J. Gao

Institute of High Energy Physics

March 19, 2019, INP, Minsk, Belarus

Outline

• CEPC CDR and TDR Status

• CEPC accelerator technology R&D towards TDR

• Summary

CEPC Accelerator CDR and TDR Progress Status

CEPC Design – Higgs Parameters

Parameter	Design Goal
Particles	e+, e-
Center of mass energy	2*120 GeV
Luminosity (peak)	>2*10^34/cm^2s
No. of IPs	2

CEPC Design – Z-pole Parameters

Parameter	Design Goal
Particles	e+, e-
Center of mass energy	2*45.5 GeV
Integrated luminosity (peak)	>10^34/cm^2s
No. of IPs	2
Polarization	Z-pole polarization under study

*Be noted that here the luminosities are the lowest reuigrement to accomodate different collider schemes

CEPC CDR Accelerator Chain and Systems

CEPC CDR Baseline Layout

CEPC Linac injector (1.2km, 10GeV)

CEPC Accelerator CDR Completed

CEPC accelerator CDR completed and released on Sept. 2, 2018

- Executive Summary
- 1. Introduction
- 2. Machine Layout and Performance
- 3. Operation Scenarios
- 4. CEPC Collider
- 5. CEPC Booster
- 6. CEPC Linac
- 7. Systems Common to the CEPC Linac, Booster and Collider
- 8. Super Proton Proton Collider
- 9. Conventional Facilities
- 10. Environment, Health and Safety
- 11. R&D Program
- 12. Project Plan, Cost and Schedule
- Appendix 1: CEPC Parameter List
- Appendix 2: CEPC Technical Component List
- Appendix 3: CEPC Electric Power Requirement
- Appendix 4: Advanced Partial Double Ring
- Appendix 5: CEPC Injector Based on Plasma Wakefield Accelerator
- Appendix 6: Operation as a High Intensity γ-ray Source
- Appendix 7: Operation for e-p, e-A and Heavy Ion Collision
- Appendix 8: Opportunities for Polarization in the CEPC
- Appendix 9: International Review Report

CDR Version for International Review June 2018, and formally relased on Sept. 2, 2018:arXiv: 1809.00285, http://cepc.ihep.ac.cn/CDR_v6_201808.pdf

CEPC CDR Parameters

	Higgs	W	Z (3T)	Z (2T)	
Number of IPs		2			
Beam energy (GeV)	120	80	45.5		
Circumference (km)		100			
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.036		
Crossing angle at IP (mrad)	•	16.5×2			
Piwinski angle	2.58	7.0	23.8		
Number of particles/bunch N_e (10 ¹⁰)	15.0	12.0	8.0		
Bunch number (bunch spacing)	242 (0.68µs)	1524 (0.21µs)	12000 (25ns+	10%gap)	
Beam current (mA)	17.4	87.9	461.0		
Synchrotron radiation power /beam (MW)	30	30	16.5		
Bending radius (km)		10.7			
Momentum compact (10-5)		1.11			
β function at IP β_x^* / β_v^* (m)	0.36/0.0015	0.36/0.0015	0.2/0.0015	0.2/0.001	
Emittance $\varepsilon_x / \varepsilon_v$ (nm)	1.21/0.0031	0.54/0.0016	0.18/0.004	0.18/0.0016	
Beam size at IP $\sigma_x/\sigma_v(\mu m)$	20.9/0.068	13.9/0.049	6.0/0.078	6.0/0.04	
Beam-beam parameters ξ_x / ξ_v	0.031/0.109	0.013/0.106	0.0041/0.056	0.0041/0.072	
RF voltage V_{RF} (GV)	2.17	0.47	0.10		
RF frequency f_{RF} (MHz) (harmonic)		650 (216816)			
Natural bunch length σ_z (mm)	2.72	2.98	2.42		
Bunch length σ_z (mm)	3.26	5.9	8.5		
HOM power/cavity (2 cell) (kw)	0.54	0.75	1.94		
Natural energy spread (%)	0.1	0.066	0.038		
Energy acceptance requirement (%)	1.35	0.4	0.23		
Energy acceptance by RF (%)	2.06	1.47	1.7		
Photon number due to beamstrahlung	0.1	0.05	0.023		
Lifetime _simulation (min)	100				
Lifetime (hour)	0.67	1.4	4.0	2.1	
F (hour glass)	0.89	0.94	0.99		
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	10.1	16.6	32.1	

Lattice of the CEPC Collider Ring and MDI

CEPC collider ring DA w/o errors

Performance with magnets' errors

- Relaxed requirement of alignments and filed errors compared with CDR
- Stronger corrections made (Yuanyuan WEI's talk)

Component	Δx (um)	Δ <i>y</i> (um)	$\Delta \theta_z$ (urad)
Arc quadrupole	100	100	100
IR Quadrupole (w/o FF)	50	50	50
Sextupole	100	100	100

Component	Field error
Dipole	0.01%
Arc quadrupole	0.02%

Performance with errors (cont.)

- Dynamic aperture result for **Higgs mode**
 - Tracking in SAD with radiation damping, fluctuation, energy sawtooth and tapering, 145 turns (2 damping times), initial phases=0
 - Horizontal dynamic aperture decreased significantly with errors. But it still fulfils the dynamic aperture requirement of on-axis injection.

Requirement with on-axis injector $8\sigma_x imes 15\sigma_y \& 0.0135$

CEPC Collider Ring SRF Parameters

Collider parameters: 20180222	н	W	Z
SR power / beam [MW]	30	30	16.5
RF voltage [GV]	2.17	0.47	0.1
Beam current / beam [mA]	17.4	87.9	461
Bunch charge [nC]	24	24	12.8
Bunch number / beam	242	1220	12000
Bunch length [mm]	3.26	6.53	8.5
Cavity number (650 MHz 2-cell)	240	2 x 108	2 x 60
Cavity gradient [MV/m]	19.7	9.5	3.6
Input power / cavity [kW]	250	278	276
Klystron power [kW] (2 cavities / klystron)	800	800	800
HOM power / cavity [kW]	0.54	0.86	1.94
Optimal Q _L	1.5E6	3.2E5	4.7E4
Optimal detuning [kHz]	0.17	1.0	18.3
Total cavity wall loss @ 2 K [kW]	6.6	1.9	0.2

CEPC Booster parameters @ injection (10GeV)

		Н	W	Ζ	
Beam energy	GeV	10			
Bunch number		242	1524	6000	
Threshold of single bunch current	μA		25.7		
Threshold of beam current (limited by coupled bunch instability)	mA		127.5		
Bunch charge	nC	0.78	0.63	0.45	
Single bunch current	μA	2.3	1.8	1.3	
Beam current	mA	0.57	2.86	7.51	
Energy spread	%		0.0078		
Synchrotron radiation loss/turn	keV	73.5			
Momentum compaction factor	10-5	2.44			
Emittance	nm		0.025		
Natural chromaticity	H/V		-336/-333		
RF voltage	MV		62.7		
Betatron tune $v_x/v_y/v_s$			263.2/261.2/0.1	l	
RF energy acceptance	%		1.9		
Damping time	S	90.7			
Bunch length of linac beam	mm	1.0			
Energy spread of linac beam	%	0.16			
Emittance of linac beam	nm	40~120			

CEPC Booster parameters @ extraction

		I	I	W	Z
		Off axis injection	On axis injection	Off axis injection	Off axis injection
Beam energy	GeV	12	20	80	45.5
Bunch number		242	235+7	1524	6000
Maximum bunch charge	nC	0.72	24.0	0.58	0.41
Maximum single bunch current	μΑ	2.1	70	1.7	1.2
Threshold of single bunch current	μA	30	00		
Threshold of beam current (limited by RF power)	mA	1	.0	4.0	10.0
Beam current	mA	0.52	1.0	2.63	6.91
Injection duration for top-up (Both beams)	S	25.8	35.4	45.8	275.2
Injection interval for top-up	S	- 73	.1	153.0	438.0
Current decay during injection interval			3	%	
Energy spread	%	0.0	94	0.062	0.036
Synchrotron radiation loss/turn	GeV	1.	52	0.3	0.032
Momentum compaction factor	10-5		2	.44	
Emittance	nm	3.	57	1.59	0.51
Natural chromaticity	H/V		-336	5/-333	
Betatron tune v_x / v_y			263.2	2/261.2	
RF voltage	GV	1.	97	0.585	0.287
Longitudinal tune		0.	13	0.10	0.10
RF energy acceptance	%	1.	.0	1.2	1.8
Damping time	ms	5	2	177	963
Natural bunch length	mm	2	.8	2.4	1.3
Injection duration from empty ring	h	0.	17	0.25	2.2

CEPC Booster Optics & Geometry

CEPC Booster SRF Parameters

10 GeV injection	Н	W	Z
Extraction beam energy [GeV]	120	80	45.5
Bunch number	242	1524	6000
Bunch charge [nC]	0.72	0.576	0.384
Beam current [mA]	0.52	2.63	6.91
Extraction RF voltage [GV]	1.97	0.585	0.287
Extraction bunch length [mm]	2.7	2.4	1.3
Cavity number in use (1.3 GHz TESLA 9-cell)	96	64	32
Gradient [MV/m]	19.8	8.8	8.6
QL	1E7	6.5E6	1E7
Cavity bandwidth [Hz]	130	200	130
Beam peak power / cavity [kW]	8.3	12.3	6.9
Input peak power per cavity [kW] (with detuning)	18.2	12.4	7.1
Input average power per cavity [kW] (with detuning)	0.7	0.3	0.5
SSA peak power [kW] (one cavity per SSA)	25	25	25
HOM average power per cavity [W]	0.2	0.7	4.1
Q ₀ @ 2 K at operating gradient (long term)	1E10	1E10	1E10
Total average cavity wall loss @ 2 K eq. [kW]	0.2	0.01	0.02

Dipole reproducibility requirement@10Gev

- Increase/decrease the strength of all the dipoles by the same amount.
- Decrease/increase the strength of quadrupoles & sextupoles \rightarrow energy mismatch
- Evaluate the influence: working point, closed orbit, DA, energy acceptance
- Working point should not pass through the lower order resonance (<4)
- No shrink for dynamic aperture
- Reproducibility requirement: ~0.02%

	original	+0.01%	-0.01%	+0.05%	-0.05%
nux	263.20376	263.1367	263.271	262.868	263.5397
nuy	261.21034	261.1437	261.277	260.877	261.5437
$\Delta x (um)$	0	-54	54	-270	270
DA (%)	100	100	100	90	90

Booster multi bunch instability @10GeV

- Growth time << damping time (90ms)
- Feedback system is essential at 10 GeV

Damping time of feedback: ~10 turns

CEPC Booster TESLA 9-cavity HOM CBI growth time

				H-injection	W-injection	Z-injection
TM011	2.45	156	5.9E4	149	29.6	11.3
TM012	3.845	44	2.4E5	82.7	16.4	6.3
TE111	1.739	4283	3.4E3	609	120.9	46.1
TM110	1.874	2293	5.0E4	77.4	15.4	5.9
TM111	2.577	4336	5.0E4	40.9	8.1	3.1
TE121	3.087	196	4.4E4	1028.4	204.1	77.8

Parameter design for transverse feedback

J. Yue

• L=450mm, R_s =160k Ω @40MHz

parameter	value
v_x/v_y	263.2/261.2
β(m)	120
E(GeV)	10
Growth time(ms)	3.1
T0(ms)	0.33
Bunch spacing(ns)	25
Bunch frequency(MHz)	40
Kicker impedance(k Ω)	160
Damping time(ms)	2
Vertical oscillatory amplitude (mm)	0.1

- 4-tap filter was considered
- With only one feedback, power for kicker too high
- Two feedback was considered, damping time for each: 4ms

CEPC accelerator chain transport lines

Twiss of the transport line:

Injection from linac to damping ring

Booster injection point:

Injection from linac to Booster

Injection from damping ring to linac

Twiss function of the transport line:

Injection from booster to collider

Kickers and Septa (injection to and extraction from damping ring)

• Since there are two bunches in the ring, the rise time and fall time of the kickers should be less than the bunch spacing 100 ns.

Compone nt	Number	Septum width	Length (m)	Deflection angle (mrad)	Field (T)	Bo Sta cle	eam- ay- ear
						H(m m)	V(m m)
Septum	2	10mm	2	100	0.18	60	60
Kicker	2		0.5	1.5	0.01	60	60

Injection to booster: kickers and septa

- One-turn on-axis injection due to the long damping time of the booster.
- The septum gives a horizontal deflection while the kickers give a vertical bending.

Compone nt	Number	Septum width	Length (m)	Туре	Deflection angle (mrad)	Field (T)	Bo Stay-	eam- ∙clear
							H(m m)	V(m m)
Septum	2	10 mm	2	Lambertson	22	0.366	63	63
Kicker	8		0.3		0.25	0.028	40	40

Extraction kickers and septa from booster

Componen t	Number	Septum width	Length (m)	Туре	Deflection angle (mrad)	Field (T)	Be Stay-	eam- clear
							H(m m)	V(m m)
Septum	2	10 mm	15	Lambertson	26	0.69	20	20
Kicker	4		0.7	0.1	0.06	40	40	4

Injection kickers and septa to collider ring

Compon ent	Number	Septum width	Length (m)	Deflectio n angle (mrad)	Field (T)	Beam-Sta	y-clear
						H(mm)	V(mm)
Septum	2	16mm	8.75	14	0.64	20	20
Septum	2	8mm	8.75	7	0.32	20	20
Septum	2	4mm	8.75	3.5	0.16	20	20
Septum	2	2mm	8.75	1.75	0.08	20	20
Kicker	8		0.7	0.1	0.06	20	20

Injection process

Injection parameters:

Mode	Higgs		W		Z	
Injection Mode	Тор-ир	Full	Тор- ир	Full	Тор-ир	Full
Bunch number in booster	242 1		1524		6000	
Beam Current (mA)	0.5227	0.726	2.63	3.67	6.91	10
Number of Cycles	1	-	1		2	
Ramping Cycle (sec) (Up + Down)	10		6.6		3.8	
Filling time (sec) (e+,e-)	25.84		39.6		275.2	
Injection period (sec)	47		131		438	

CEPC Cryogenic System

Booster ring:

- > 1.3 GHz 9-cell cavities, 96 cavities
- 12 cryomodules
- > 3 cryomodules/each station
- Temperature: 2K/31mbar

Collider ring:

- 650MHz 2-cell cavities, 336 cavities
- 56 cryomodules
- > 14 cryomodules/each station
- Temperature: 2K/31mbar

CEPC Linac Injector-1

Parameter	Symbol	Unit	Baseline	Design reached
e ⁻ /e ⁺ beam energy	E_{e}/E_{e^+}	GeV	10	10
Repetition rate	f_{rep}	Hz	100	100
or /o+ hunch nonulation	N_e/N_{e^+}		$> 9.4 \times 10^9$	$1.9 \times 10^{10} / 1.9 \times 10^{10}$
e /e ⁻ bunch population		nC	> 1.5	3.0
Energy spread (e ⁻ /e ⁺)	σ_{e}		< 2×10 ⁻³	1.5×10 ⁻³ / 1.6×10 ⁻³
Emittance (e^{-}/e^{+})	\mathcal{E}_r	nm∙ rad	< 120	5 / 40 ~120
Bunch length (e^{-}/e^{+})	σ_l	mm		1 / 1
e- beam energy on Target		GeV	4	4
e ⁻ bunch charge on Target		nC	10	10

CEPC Linac Injector Damping Ring

Parameters, lattice and layout

	e and lay	out			Flectron and Positi	hal Indo da			
Circumference [m]	75.4		(u	4.50 Windows	version 8.51/15	25/08/16	17.44.07	(u	
Beam energy [GeV]	1.1		β (i	4.15 - 199 3.80 - 1111				D ()	
SR loss/ turn [keV]	36.3			3.45			- 0.9 - 0.8		
Revolution frequency [MHz]	3.98			2.75			- 0.7 - 0.6		
SR power / beam [W]	433			2.40 - 2.05 -			- 0.5		
Momentum compactor	7.82E-02			1.70 -			0.2		
Beam current [mA]	11.9			1.00	0. 20. 3	30. 40. 50	0.0		
Max Bunch charge [nC]	1.5					Y [ot	s (m)		
Number of bunches stored at a time	2		RF	5 m		150	\square	dp/p dp/p	=-0.75% =-0.5%
RF voltage [MV]	2.0					100	\checkmark	→ dp/p	=0.5%
RF frequency [MHz]	650	<u>9 m</u>		Co=58.5 m 9 m				_ ₹ dp /p	=0.75%
Harmonic number	164							}	
RF energy acceptance [%]	0.95					N/		X [σx]
Acc. Phase [deg]	88.96	Compone	ant I	extraction		-100 -50 0	50 100	Boam	_Stav
Syn. Tune	0.012	Compon		Dengen (m)		a n g l e	riciu (1)	clear	-Stay-
Synchrotron oscillation period [us]	21.7					(mrad)		H(m	V(m
Longitudinal damping time [ms]	7.6	Septum	2	2	DC	77	0.13	63	63
Longitudinal quantum lifetime [s]	177	Kicker	C).5	Half_sin	0.2	0.0013	63	63
Beam storage time [ms]	20.0								

CEPC Damping Ring main RF parameters

Circumference [m]	75.4
Beam energy [GeV]	1.1
SR loss/ turn [keV]	36.3
Revolution frequency [MHz]	3.98
SR power / beam [W]	433
Momentum compactor	7.82E-02
Beam current [mA]	11.9
Max Bunch charge [nC]	1.5
Number of bunches stored at a time	2
RF voltage [MV]	2.0
RF frequency [MHz]	650
Harmonic number	164
RF energy acceptance [%]	0.95
Acc. Phase [deg]	88.96
Syn. Tune	0.012
Synchrotron oscillation period [us]	21.7
Longitudinal damping time [ms]	7.6
Longitudinal quantum lifetime [s]	177
Beam storage time [ms]	20.0

Cavity Type	NCRF
Number of cell/ cavity	5
Cavity effective length [m]	1.15
Cavity number	2
Input coupler/ cavity	1
Total klystron number	2
Cavity voltage [MV]	1.0
Cavity Acc. Gradient [MV/m]	0.87
Q0	33635
R/Q [Ohm]	1100
Beam power/ cavity [W]	216
Wall loss/ cavity [kW]	27.0
Input power/ cavity [kW]	27.2
Coupling Coefficient	1.01
Optimal Q _L	3.34E+04
Cavity bandwidth at optimal Q _L [kHz]	19
Detuning angle [deg]	-12.4
Cavity filling time [us]	16.3
Optimal detuning at optimal Q _L [kHz]	-2.14
Cavity stored energy [J]	0.22

CEPC Damping Ring NC cavity

Fundamental mode: TM010

Electric Field:

Time structure for CEPC DR

The injection beam structure of CEPC Linac is pulsed operation.

	Higgs	W	Z-pole
Pulse length $T_{\rm p}$ [s]	12.9	19.8	137.6
Gap length $T_{\rm g}$ [s]	34.1	111.2	300.4
Injection period T_{inj} [s]	47	131	438
Injection repetition $T_{ m rep}$ [ms]	10	10	10
Full injection time [min]	10	15	132

CEPC Linac Injector alternative: Plasma accelerator scheme up to 45GeV (single stage)~120GeV (cascade)

1.25

10

35

5

100

emittance

Trailor energy $E_t(GeV)$

Trailor RMS size $\sigma_t(\mu m)$

normalized

Trailor length $L_t(\mu m)$

Trailor

 $\epsilon_{nt}(mm mrad)$

The	simula	tions	s show	ı that	plasr	na sch	em
sat	isfies	the (CEPC	booste	er rea	uireme	ent

e

CEPC MDI layout and parameters

- The accelerator components inside the detector without shielding are within a conical space with an opening angle of cosθ=0.993.
- The e+e- beams collide at the IP with a horizontal angle of 33mrad and the final focusing length is 2.2m
- Lumical will be installed in longitudinal 0.95~1.11m, with inner radius 28.5mm and outer radius 100mm.

- The Machine Detector Interface (MDI) of CEPC double ring scheme is about ±7m long from the IP
- The CEPC detector superconducting solenoid with 3T magnetic field and the length of 7.6m.

MDI parameters	Values
<i>L</i> * (m)	2.2
Crossing angle (mrad)	33
Strength of QD0 (T/m)	150
Strength of detector solenoid (T)	3.0
Strength of anti-solenoid (T)	7.0

CEPC MDI Parameters

				Minimal		CD	SR power (Vertic al)
L*	♦ The re	quirements of th	e Final Focu	s quadrupoles (QD	0 and QF1) are based		
Crossing an	on the	L* of 2.2 m, bea	am crossing a	angle of 33 mrad in	the interaction region.		
MDI length		Table 1: Require	ments of Interac	tion Region quadrupole	magnets for Higgs		
Detector requirement opening ang	Magnet	Central field	Magnetic	Width of GFR (mm)	Minimal distance between two aperture beam lines		
QD0	U	gradient (1/m)	length (m)		(mm)		292W
QF1 Lumical	QD0	136	2.0	19.51	72.61	7	74W
Anti-solenoi before QD0	QF1	110	1.48	27.0	146.20		
Anti-solenoi						· _	
Anti-solenoi	• OD0 and OF1 magnets are operated full inside the field of the Detector						
Beryllium p	solonoid magnets with a control field of 2 0 T						
Last B upsti	soleno	id magnet with a	a central field	1015.01.			
First B dow	• To minimize the effect of the longitudinal detector solenoid field on the						
Beampipe w QD0	accelerator beam, anti-solenoids before QD0, outside QD0 and QF1, after						
Beampipe w QF1	QFI are needed, so that the total integral longitudinal field generated by the detector solenoid and accelerator anti-solenoid is zero.						

Beampipe b QD0/QF1
CEPC Final Focus Magnets & Cryostat

CEPC Longitudinal polarization of electrons (minimalist option) S. Nikitin CEPC Chinese MOST Fund (II) contents in 2018

Polarized electron **Energy Ramp** photo-gun source $10 \rightarrow 45 \text{ GeV}$ Electrons from gun source are 27 GeV/sec longitudinally polarized. Spins are **10 GeV** Electron rotated to vertical plane in special transport section downstream of \oplus \oplus Linac Booster gun.Variants (CEBAF, NIKHEF): Positron a) Wien's Filter Spin manipulator + b) Z-manipulator includes two bends buncher section + by E-field and solenoids between them. Just fast crossing Mott polarimeter 4 spin resonances? Vertical (a)Timing for CEPC booster@Z, total injection time 260 sec polarization 45 GeV 4 Booster to collider 0.3 ms Dipole field 133 Gs Collider Spin rotator to match 1.33 sec 0.66 sec vertical polarization 0.66 sec 1.33 sec (booster and main ring lie in different planes) **Dipole field** Repeat 5 times 30 Gs Linac to booster(Positron) 21.8 sec Linac to booster(Electron) 21.8 sec Spin rotator to provide Longitudinal longitudinal polarization polarization Cycling period 2 sec at CEPC IP and restore

vertical one in arcs

CEPC Tunnel Design

- Accelerator Region Caverns:
- 1. Surface Buildings of Linac Segment
- 2. Linac Segment
- 3. Transfer Line
- 4. Tunnel Complex of RF Region
- 5. Detector Region Caverns
- 6. Main Ring Tunnel
- 7. Auxiliary Tunnel
- 8. Access Tunnel
- 9. Surface Buildings of Experiment Hall
- 10. Surface Buildings of RF Region
- 11. Surface Buildings of Shaft for Access and Cable
- 12. Shaft for Access and Cable

Detector Region Caverns:

- A. Experiment Hall
- B. Service Cavern
- C. Transport Shaft
- D. Shaft for Access, Cable and HVAC
- E. Booster Bypass Tunnel
- F. Main Ring Tunnel
- G. Traffic Tunnel
- H. Auxiliary Tunnel of RF Region

CEPC Civil Engineering

Electron source

Booster and collider ring tunnel

Booster SCRF

Linac to Booster

Collider ring SCRF

Detector hall

CEPC Power for Higgs and Z

	Custom for Illings	Location and electrical demand(MW)						
	(30MW)	Ring	Booster	LINAC	BTL	IR	Surface building	(MW)
1	RF Power Source	103.8	0.15	5.8				109.75
2	Cryogenic System	11.62	0.68			1.72		14.02
3	Vacuum System	9.784	3.792	0.646				14.222
4	Magnet Power Supplies	47.21	11.62	1.75	1.06	0.26		61.9
5	Instrumentation	0.9	0.6	0.2				1.7
6	Radiation Protection	0.25		0.1				0.35
7	Control System	1	0.6	0.2	0.005	0.005		1.81
8	Experimental devices					4		4
9	Utilities	31.79	3.53	1.38	0.63	1.2		38.53
10	General services	7.2		0.2	0.15	0.2	12	19.75
	Total	213.554	20.972	10.276	1.845	7.385	12	266.032

CEPC Cost Breakdwon (no detector)

266MW

149**MW**

		L	Location and electrical demand(MW)						
	System for Z	Ring	Booster	LINAC	BTL	IR	Surface building	(MW)	
1	RF Power Source	57.1	0.15	5.8				63.05	
2	Cryogenic System	2.91	0.31			1.72		4.94	
3	Vacuum System	9.784	3.792	0.646				14.222	
4	Magnet Power Supplies	9.52	2.14	1.75	0.19	0.05		13.65	
5	Instrumentation	0.9	0.6	0.2				1.7	
6	Radiation Protection	0.25		0.1				0.35	
7	Control System	1	0.6	0.2	0.005	0.005		1.81	
8	Experimental devices		· ·			4		4	
9	Utilities	19.95	2.22	1.38	0.55	1.2	20	25.3	
10	General services	7.2	0	0.2	0.15	0.2	12	19.75	
	Total	108.614	9.812	10.276	0.895	7.175	12	148.772	

Green CEPC

CEPC power consumption

CEPC CDR stage : 266MW (H)

CEPC, CERN, FCC, ILC

CEPC TDR stage to reduce power consumption less than 266MW by green design

CEPC Accelerator Submitted to European Strategy:

CEPC accelerator: ArXiv: 1901.03169
CEPC Physics/Detector: 1901.02170

CEPC Accelerator R&D towards TDR

CEPC 650 MHz Cavity Cryomodule

- Structure based on ADS cryomodule. High Q requirement drives new design features (fast cool down and magnetic hygiene).
- Fast cool down rate is supposed to be 10 K/min during 45 K to 4.5 K.
- Ambient magnetic field at cavity surface should be less than 5 mG. Magnetic shielding and demagnetization of parts and the whole module should be implemented for the magnetic hygiene control.

Overall length (flange to flange, m)	8.0
Diameter of vacuum vessel (m)	1.3
Beamline height from floor (m)	1.2
Cryo-system working temperature (K)	2
Number of cavities and tuners	6
Number of couplers	6
Number of RT HOM absorbers	2
Number of 200-POSTs	6
Static heat loads at 2 K (W)	5
Alignment x/y (cavities) (mm)	0.5
Alignment z (mm)	2
Alignment z (mm)	2

1.3 GHz SRF Technology for CEPC Booster

XFEL and LCLS-II type cryomodule, without SCQ. Technology R&D in synergy with Shanghai XFEL (SCLF). No big challenge.

TESLA cavity. Nitrogen-doped bulk niobium and operates at 2 K. $Q_0 > 3 \times 10^{10}$ at 24 MV/m for the vertical acceptance test. $Q_0 >$ 1×10^{10} up to 20 MV/m for long term operation.

XFEL/ILC/LCLS-II or other type **variable power coupler**. Peak power 30 kW, average 4 kW, Q_{ext} 1E7-5E7, two windows.

XFEL/LCLS-II type **end lever tuner**. Reliability. Large stiffness. Piezos abundance, radiation, overheating. Access ports for easy maintenance.

CEPC SRF hardware specifications

1.3 GHz TESLA 9-cell Cavities

- Prepare for mass production (SHINE project ~ 600 cavities)
- + 10 (2+8) prototype cavities in fabrication at IHEP (BCP \rightarrow EP \rightarrow N-dope)
- · 8 cavities dressing this year and install to cryomodule next year

CEPC SRF Technology R&D

CEPC Collider HOM coupler (1 kW CW) by OTIC and HD

CEPC HOM absorber of SiC & AIN (5 kW CW)

High power test of HOM coupler (left) and absorber (right) at room temperature. Up to 100 W transmitted power through the HOM coupler and 1 kW RF power absorbed by the HOM absorber.

Tuner and input coupler (variable 300 kW CW) for CEPC 650 MHz cavity in fabrication

CEPC Booster 1.3 GHz variable double window coupler by HERT (in high power conditioning)

CEPC Collider Test Cryomodule

- Cryomodule with two 650 MHz 2-cell cavities: in fabrication, assemble in 2019
- Beam test with DC photo cathode gun (CW 10 mA) in 2020 at new PAPS SRF

CEPC 650 MHz Cavity Development-1

- Vertical test result: Q₀=5.1E10@26MV/m, which has reached the CEPC target (Q₀=4.0E10@22.0MV/m).
- Next, the CEPC target will be again improved by N-doping and EP, to increas Q₀ and to reduce further AC power

After N-doping, Q₀ increased obviously at low field for both 650MHz 1-cell cavities.

The civil construction of the EP facility is on going, and the commissioning will be at the end of 2018.

CEPC SRF Technology R&D Status

CEPC 650 MHz 2-cell cavity by OTIC

CEPC 650 MHz 2-cell cavity by HERT

CEPC 650 MHz 5-cell cavity with waveguide HOM coupler by HERT

- 650 MHz 2-cell cavity (BCP without Nitrogen-doping) reached 3.2E10 @ 22 MV/m (nearly reached CEPC collider cavity vertical test spec 4E10 @ 22 MV/m)
- Nitrogen-doping and EP on 650 MHz cavity under investigation.
- · EP facility under commissioning.

N-doping of 650 MHz 1-cell Cavity

After N-doping of two 650 MHz single cell cavities, Q_0 increased obviously at low field for both cavities.

- 650S1: Q₀=7e10 @ Eacc=10 MV/m. But Q₀ decreased quickly at high field (>10 MV/m).
- 650S2: Quench at Q₀=6.9e10 @ Eacc=8.8 MV/m.

Flux gate and Helmholtz coil for demagnetization. EP facility necessary for the treatment.

HOM Coupler for 650 MHz Cavity

HOM Propagation through Two 2-cell Cavities

Transmission properties from input port to HOM1 port, HOM2 with matched load.

Transmission properties from input port to HOM2 port, HOM1 with matched load.

Plan to collaborate with Rostock University on the simulation technique.

Tuners for 650 MHz Cavity

Cavity + Coupler + HOM Coupler + Tuner

- · Space tight due to the HOM coupler
- Improved from Saclay type tuner
- Cavity will be stretched

Main parameters of tuner

Parameters	Unit	Collider tuners
	kHz/mm	310
	kN/mm	16
Operating Pressure	Torr	<5E-5
Operating lifetime	Year	20
	kHz	340
Coarse tuner frequency resolution	Hz	< 20
Fine (fast) tuner frequency range	kHz	> 1.5
Fine tuner frequency resolution	Hz	3
Motor and Piczo temperature	K	5~10
Motor number		1
Plezo number		2

Helium Vessel

434.5 mm

CEPC booster SRF R&D progress-1

1.3 GHz TESLA 9-cell Cavities

- Prepare for mass production (SHINE project ~ 600 cavities)
- + 10 (2+8) prototype cavities in fabrication at IHEP (BCP \rightarrow EP \rightarrow N-dope)
- · 8 cavities dressing this year and install to cryomodule next year

CEPC booster SRF R&D progress-2

N-doping of 1.3 GHz 1-cell Cavity

- After N-doping, a 1.3 GHz 1-cell cavity reached 3.3E10 @ 18 MV/m, twice of baseline Q₀.
- Processing and vertical test at KEK.

CEPC booster SRF R&D progress-3

1.3 GHz Variable Coupler with Double Window

- Design for 70 kW CW power. Can be used for CEPC booster cavity (< 20 kW peak).
- High power conditioning in a resonance ring (up to 10 times of the 8 kW SSA power). Forward CW power 30 kW for 1 hour. Max power above 50 kW.

CEPC Key SCRF Technology Breakthrough 2018.9.12

Cavity inner surface reparing system

IHEP EP System

IHEP New SRF Infrastructure

- 4500 m² SRF lab in the Platform of Advanced Photon Source Technology R&D (PAPS), Huairou Science Park, Beijing.
- **Mission** to be World-leading SRF Lab for Superconducting Accelerator Projects and SRF Frontier R&D.
- **Mass Production:**
 - 200 ~ 400 cavities & couplers test per year
 - 20 cryomodules assembly and horizontal test per year.
- **Construction : 2017 2020**
 - 3 VT dewars, 2 HT caves,
 - ⇒ 500m2 Clean Room

Shanghai city government decided to built Shanghai Coherent Light Facility(SCLF).

- 432 1.3 GHz cavities
- 54 Cryomodules
- IHEP plans to provide > 1/3 of cavities and cryomodules, an excellent exercise for CEPC

2018-09-23, KEK visitors (red)

N-doping/N-infusion furnace

IHEP EP in commissioning at Ningxia

High Efficiency Klystron Development

Established "High efficiency klystron collaboration consortium", including IHEP & IE(Institute of Electronic) of CAS, and Kunshan Guoli Science and Tech.

- 2016 2018: Design conventional & high efficiency klystron
- 2017 2018: Fabricate conventional klystron & test
- 2018 2019 : Fabricate 1st high efficiency klystron & test
- 2019 2020 : Fabricate 2nd high efficiency klystron & test
- 2020 2021 : Fabricate 3rd high efficiency klystron & test

 \Rightarrow 73%/68%/65% efficiencies for 1D/2D/3D

Parameters	Conventional efficiency	High efficiency
Centre frequency (MHz)	650+/-0.5	650+/-0.5
Output power (kW)	800	800
Beam voltage (kV)	80	-
Beam current (A)	16	-
Efficiency (%)	~ 65	> 80

Mechanical design of conventional klystron

650MHz klystron mechanical assembly and manufacture facilities

Assembly workshop

Baking furnace

CEPC Collider and Booster Ring Conventional Magnets

CEPC collider ring magnets

Astronotics Department 508			Dipole	Quad.	Sext.	Correcto r	Total	
Institute participates		Dual aperture	2384	2392	-	-		
CEPC magnets mechanical		Single aperture	80*2+2	480*2+172	932*2	2904*2	13742	
designs		Total length [km]	71.5	5.9	1.0	2.5	80.8	
		Power [MW]	7.0	20.2	4.6	2.2	34	
The first and the last segments -	sextupole <u>com</u> l				Quadr			

China

Dipole

Booster ring low field magnets

Quantity	16320
Magnetic length(m)	4.711
Max. strength(Gs)	338
Min. strength(Gs)	28
Gap height(mm)	63
GFR(mm)	55
Field uniformity	5E-4

Sextupole

CEPC collider ring dual aperture dipole, quadrupole and sextupole magnet design progress

Magnets R&D:-SR Analysis

Total power 870 W/m							
Beam direction	n: left W/m	Beam direction: right W/m					
Al chamber	Al chamber 199		186				
Cu chamber	308	Cu chamber	332				
Dipole	186	Dipole	182				
Lead A	60.6	Lead A	29.2				
Lead B	33.5	Lead B	80.0				
Lead C	46.8	Lead C	18.8				
Lead D	14.3	Lead D	20.4				
Quadrupole	279	Quadrupole	268				
Lead A	37.8	Lead A	36.4				
Lead B	18.1	Lead B	21.7				
Sextupole	179	Sextupole	174				
Lead A	95.1	Lead A	107				
Lead B	60.3	Lead B	43.1				

Booster high precision low field dipole magnets

One kind of the dipole magnet with diluted iron cores is proposed and designed

Two kinds of the dipole magnets without iron cores called Cos Theta (CT) and Canted Cos Theta (CCT) are proposed and designed

Booster quadrupole and sextupole designs

At Higgs energy: 120GeV Quarople number: 2036 Maximum power(MW):12.26 At Higgs energy: 120GeV Sextupole number: 448 Maximum power(kW: 270.61

Booster sextupole designs

六极磁铁

对于SF与SD两种磁铁,由于磁场要求相差较大,故分为 两种类型来进行磁铁的初步设计,选择空心铜导线,单 层绕线,总体为上下二合一结构。两种类型的磁铁,极 面设计相同,匝数及磁极与磁轭不同。

在最大引出能量为120GeV时, 磁铁数量 448 总最大功率(kW) 270.61 导线质量(Ton) 4.52 铁芯质量(Ton) 76.38
CEPC Collider Ring Electro-Magnet Separator

The Electrostatic-Magnetic Deflector is a device consisting of perpendicular electric and magnetic fields, just like Wien filter.

Challenges: To maintain E/B ration in fringe field region

Reduce the impedance and loss factor of the separator

Vacuum System R&D

First test vacuum chamber

- The vacuum pressure is better than 2 x 10-10 Torr
- Total leakage rate is less than 2 x 10-10 torr.1/s.

Positron ring

Copper vacuum chamber (Drawing) (elliptic 75×56, thickness 3, length 6000)

NEG coating suppresses electron multipacting and beam-induced pressure rises, as well as provides extra linear pumping. Direct Current Magnetron Sputtering systems for NEG coating was chosen.

NEG coating

- NEG coating suppresses electron multipacting (SEY < 1.2) and beaminduced pressure rises, as well as provides extra linear pumping.
- The setup of NEG coating has been built, and some experiments have been done.
- The thickness of the NEG films are about 1.4 μm.
- The proportion of Ti, Zr and V is 1: 1.1 :2.5.
- The more tests will be done to improve the performance of the films.

CEPC Beam instrumentation

The electronics of beam position monitor

The result of DDD tune system

The BPM of storage ring

The BPM of Booster

er The BPI

The BPM of Linac and BT

CEPC Linac Injector R&D

• S-band accelerating structure design

-Accelerating structure design

Accelerating structure under cold test

• Positron flux concentrator design

The mechanical design of FLUX concentrator

The finished FLUX concentrator

solid-state pulsed power generator

The output of 10kA measurement

MDI RVC design

- **CEPC MDI Lumical and** accelerator components conflict in both position and alignment accuracy has been fixed: Lumical can be separated into 2 parts, one part with high precision installed and aligned with Be vacuum chamber, the other part ~50~100kg can be installed and aligned with cryostat. And can be calibrated with IP BPM(<1um, Be pipe installed with detector.
- Position conflict with HOM absorber, IP BPM should be solved.

CEPC MDI SC Magnets and Mechanical Study

Huanghe Company, Huadong -Shenyang Huiyu Company participats in CEPC MDI mechanical connection design China Astronotics Department 508 Institute participates in CEPC MDIsupporting design

Schematic of support system of superconducting magnets

CEPC IR Superconducting magnets

Superconducting QD coils

• 2D field cross talk of QD0 two apertures near the IP side.

Bmod distribution

QF1 Integral field harmonics with shield coils $(\times 10^{-4})$

n	$B_n/B_2@R=13.5mm$
2	10000
6	1.08
10	-0.34
14	0.002

Superconducting QF coils

There is iron yoke around the quadrupole coil for QF1. Since the distance between the two apertures is larger enough and there is iron yoke, the field cross talk between two apertures of QF1 can be eliminated.

Room-temperature vacuum chamber with a clearance gap of 4 mm

Magn et	Central field gradient (T/m)	Magnetic length (m)	Width of Beam stay clear (mm)	Min. distance between beams centre (mm)
QD0	136	2.0	19.51	72.61

CEPC IR Superconducting magnet cryostat design

Design progress of magnet cryostat

Magnet-cryostat design:

- superconducting magnets are assembled in the helium vessel.
- Two beam pipes at room temperature pass completely through the helium vessel at 4.2K.
- Self-centered supports are designed to make the magnet positions after cool-down to be the nominal positon for the beam operation.

Four Button Electrodes IP BPM

satisfied by CEPC MDI requirement.

MDI HOM absorter

Support System of MDI-1

Scheme 1: small yoke

Scheme 1: big yoke

Support System of MDI-2

- Adjustment mechanism: push-pull bolts for horizontal, wedge jacks for vertical.
- Movement mechanism: tracks & screw rod for baseline, tracks & pinions also under consideration.

CEPC Mechanical Studies

China Astronotics Department 508 Institute participates in CEPC movable collimators mechanical design

Collimator of SKEKB

Schematic of movable collimators

Schematic of transport vehicle of magnets

CEPC accelerator chain injection/extraction R&D

Lambertson Septum: Injected beam Injecting Lambertson kicker beam Lambertson Lambertson septum deflects beam Kicker deflects beam vertically horizontally Injection into the collider: Bumped Septum Injected beam Stored beam • A standard off-axis Deflection 2mm injection in the direction horizontal plane. · It's important to reduce requirement

Acceptance > $4\sigma_{xc} + 6\sigma_{xi} + S$

Bump Height

on the DA in collider.

Circulating

beam

Future Work: from 10kW@4.5K cryosplant to 18kW@4.5K cryosplant

A first 20kW@4.5K cryosplant will be completed in five years from 2019 in China

Experimental Verification Planfor CEPC Plasma Injector Scheme

Electron plasma acceleration will be tested in Shanghai's Soft XFEL Facility

Positron plasma acceleration scheme will be tested at FACET-II at SLAC

Alignment technologies

• CEPC large scale, high precision and high efficiency

 R&D on 3µm+3ppm camera, target and million capacity coded targets

Coded target

Heilongjiang

laiwan

3

Jillin

Liaoning

Heb

Jiangxi

Guangdong

Shanxi

Hubei

Hunan

Henan

5

2) Huangling, Shanxi Province (Completed in 2017) 3) Shenshan, Guangdong Province(Completed in 2016) 4) Baoding (Xiong an), Hebei Province (Started in August 2017) 5) Huzhou, Zhejiang Province (Started in March 2018) 6) Chuangchun, Jilin Province (Started in May 2018) 7) Changsha, Hunan Province (Started in Dec. 2018)

CEPC Industrial Promotion Consortium (CIPC) Collaboration Status

Established in Nov. 7 , 2017 CIPC Annual Meeting, July 26 , 2018

- 1) Superconduting materials (for cavity and for magnets)
- 2) Superconductiong cavities
- 3) Cryomodules
- 4) Cryogenics
- 5) Klystrons
- 6) Vacuum technologies
- 7) Electronics
- 8) SRF
- 9) Power sources
- 10) Civil engineering
- 11) Precise machinary.....

Now:

-Huanghe Company, Huadong Engineering Cooperation Company, on CEPC civil engineering design, site selection, implementation... -Shenyang Huiyu Company on CEPC MDI mechanical connection design -Zhongxin Heavy Industry on Elecletricmagnetic seperator design -China Astronotics Department 508 Institute on CEPC MDI supporting design and CEPC magnets mechanical designs... -Kuanshan Guoli on CEPC 650MHz high efficiency klystron -Huadong Engineering Cooperation Company, on CEPC alignement and installation logistics...

R&D of the 1st High Field Dipole Magnet in China

The 1^{st} high field dipole magnet (NbTi+Nb₃Sn) in China successfully fabricated and tested in Feb 2018. Reached 10.2T @ 4.2K dipole field in the two apertures.

> NbTi Nb3Sn

> > 3x

Coil 5 Coil 6

■3**■■**4**■**56

3x

CERN & China Collaboration

MoU formally signed for CCT magnets in September 2018

CEPC timeline

CEPC New Parameters @Z

20190226	Z (2T) - CDR	Z (2T) - new1	Z (2T) - new2	Z (2T) - new3	
	W/O ante-chamber	W/O ante-chamber	W ante-chamber	W ante-chamber	
Beam energy (GeV)	45.5				
Synchrotron radiation loss/turn (GeV)	0.036				
Crossing angle at IP (mrad)	•	16.	5×2		
Piwinski angle	23.8	27.9	27.9	33.0	
Number of particles/bunch N_e (10 ¹⁰)	8.0	12.0	12.0	15.0	
Bunch number (bunch spacing)	12000 (25ns+10%gap)	8570 (35ns+10%gap)	14564 (20.6ns+10%gap)	11682 (26ns+10%gap)	
Beam current (mA)	461.0	494.3	839.9	842.2	
Synchrotron radiation power /beam (MW)	16.5	17.7	30	30	
Bending radius (km)	10.7				
Momentum compact (10-5)	1.11				
β function at IP $\beta_x * / \beta_v *$ (m)	0.2/0.001				
Emittance $\varepsilon_{\rm v}/\varepsilon_{\rm v}$ (nm)	0.18/0.0016				
Beam size at IP $\sigma_x/\sigma_v(\mu m)$	6.0/0.04				
Beam-beam parameters ξ_x/ξ_v	0.004/0.079	0.004/0.093	0.004/0.093	0.004/0.098	
RF voltage V_{RF} (GV)	0.10				
RF frequency f_{RF} (MHz) (harmonic)	650 (216816)				
Natural bunch length σ_z (mm)	2.42				
Bunch length σ_z (mm)	8.5	10.0	10.0	11.8	
HOM power/cavity (kw)	1.94 (2cell)	1.35 (1cell)	2.29 (1cell)	2.45 (1cell)	
Energy spread (%)	0.080	0.1	0.1	0.115	
Energy acceptance requirement (%)	0.49	0.6	0.6	0.7	
Energy acceptance by RF (%) 1.7			.7		
Photon number due to beamstrahlung	0.023	0.03	0.03	0.032	
Lifetime (hour)	2.5	2.0	2.0	1.8	
<i>F</i> (hour glass)	0.99	0.97	0.97	0.97	
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	32.1	43.9	74.5	79.2	

CEPC collider SCRF system optimization designs (preliminary)

D.J. Gong

CDR SCRF parameters	Higgs30	w	z
Cavity material	N-doped bulk Nb	N-doped bulk Nb	N-doped bulk Nb
Cavity operating temperature [K]	2	2	2
Cell number / cavity	2	2	2
Cavity effective length [m]	0.46	0.46	0.46
R/Q [Ω]	213	213	213
Cavity operating voltage [MV]	9.0	4.4	1.7
Cavity operating gradient [MV/m]	19.7	9.5	3.6
Q ₀ @ 2 K	1.5E+10	1.5E+10	1.5E+10
Input power / cavity [kW]	250	278	275
Cavity number / klystron	2	2	2
HOM power / cavity [kW]	0.57	0.75	1.94
Wall loss / cavity @ 2 K [W]	25.7	6.0	0.9
Total cavity wall loss @ 2 K [kW]	6.2	1.3	0.10
Optimal Q∟	1.5E+06	3.2E+05	4.7E+04
Cavity bandwidth at optimal Q _L [kHz]	0.4	2.0	13.7
Optimal detuning at optimal Q _L [kHz]	-0.2	-1.0	-17.8
Cavity time constant at optimal Q _L [µs]	752	157	23
Cavity stored energy [J]	94	22	3
Max cavity voltage drop	1.2%	0.7%	10%
Max phase shift [deg]	1.2	0.6	6.2

Single cell option	Higgs30	W	z
Cavity material	LG Nb	LG Nb	LG Nb
Cavity operating temperature [K]	2	2	2
Cell number / cavity	1	1	1
Cavity effective length [m]	0.23	0.23	0.23
R/Q [Ω]	106	106	106
Cavity operating voltage [MV]	9.0	4.4	1.7
Cavity operating gradient [MV/m]	39.3	18.9	7.2
Q ₀ @ 2 K	3.0E+10	3.0E+10	3.0E+10
Input power / cavity [kW]	250	278	275
Cavity number / klystron	2	2	2
HOM power / cavity [kW]	0.57	0.75	1.94
Wall loss / cavity @ 2 K [W]	25.7	6.0	0.9
Total cavity wall loss @ 2 K [kW]	6.2	1.3	0.10
Optimal Q _L	3.1E+06	6.4E+05	9.5E+04
Cavity bandwidth at optimal Q _L [kHz]	0.2	1.0	6.8
Optimal detuning at optimal Q _L [kHz]	-0.1	-0.5	-8.8
Cavity time constant at optimal Q_L [µs]	1511	315	47
Cavity stored energy [J]	189	44	6
Max cavity voltage drop	0.6%	0.4%	5%
Max phase shift [deg]	0.6	0.3	3.1

Summary

- CEPC Accelerator CDR has been completed and released with all systems reaching the CDR design goals with new ideas beyond CDR
- CEPC TDR optimization design has started, hardware design and key technologies' R&D progress well with financial funds towards TDR to be completed in 2022
- CEPC siting and engineering implementation progress well
- CEPC executive plan from 2019-2030 has been made (preliminary)
- CEPC both accelerator and physics/detector have been submitted to European Strategies
- International collabotaion and collaboration with indusries progress well