The Physics Potential and Performance study at the CEPC Manqi Ruan

SM is **NOT** the end of story...

- Hierarchy: From neutrinos to the top mass, masses differs by 13 orders of magnitude
- Naturalness: Fine tuning of the Higgs mass
- Masses of Higgs and top quark: metastable of the vacuum
- Unification?
- Dark matter candidate?
- Not sufficient CP Violation for Matter & Antimatter asymmetry
- Most issues related to Higgs

m_H² = 36,127,890,984,789,307,394,520,932,878,928,933,023 -36,127,890,984,789,307,394,520,932,878,928,917,398 = (125 GeV)²!?

Key: a precise Higgs factory

- Higgs mass ~ 125 GeV, it is possible to build a Circular e+e- Higgs factory (CEPC), followed by a proton collider (SPPC) in the same tunnel
- Looking for Hints (from Higgs) at CEPC \rightarrow direct search at SPPC

Science at CEPC-SPPC

- Tunnel ~ 100 km
- CEPC (90 250 GeV)
 - Higgs factory: 1M Higgs boson
 - Absolute measurements of Higgs boson width and couplings
 - Searching for exotic Higgs decay modes (New Physics)
 - Z & W factory: 100 Billion 1 Tera Z boson
 - Precision test of the SM Low Energy Booster(0.4Km)

Booster(50Km

- Rare decay
- Flavor factory: b, c, tau and QCD studies
- SPPC (~ 100 TeV)

TP4

- Direct search for new physics
- Complementary Higgs measurements to CEPC g(HHH), g(Htt)
- Heavy ion, e-p collision... 19/03/19

Complementary

e+ e- Linac (240m)

IP₂

IP3

Observables: Higgs mass, CP, $\sigma(ZH)$, event rates ($\sigma(ZH, vvH)^*Br(H \rightarrow X)$), Diff. distributions

Derive: Absolute Higgs width, branching ratios, couplings

xFitter@Minsk

Higgs @ LHC

19/03/19

Higgs measurement at e+e- & pp

Complementary 8

	Yield	efficiency	Comments
LHC	Run 1: 10 ⁶ Run 2/HL: 10 ⁷⁻⁸	~o(10 ⁻³)	High Productivity & High background, Relative Measurements, Limited access to width, exotic ratio, etc, Direct access to g(ttH), and even g(HHH)
CEPC	10 ⁶	~o(1)	Clean environment & Absolute measurement, Percentage level accuracy of Higgs width & Couplings

19/03/19

xFitter@Minsk

Principle of the detector design

- Performance: Precisely reconstruct all the physics objects:
 - lepton, photon, tau, Jet, MET, Jet Flavor-Charge, and Charged Kaon
- Technical: Operational & Tolerable systematic uncertainty
 - Stability, Homogeneity, Robustness, Cost, Integration, In-situ monitoring
- Minimal requirements:
 - Lepton recoil at IIH
 - Jet recoil at qqH
- Essential for the Higgs model-independent analysis, especially, the Higgs inclusive cross section, the Higgs width, the Higgs invisible, Higgs exotic...

Two classes of Detector Concepts

- PFA Oriented concept using High Granularity Calorimeter
 - + TPC (ILD-like, **Baseline**)
 - + Silicon tracking (SiD-like)

Wire Chamber + Dual Readout Calorimeter

https://indico.ihep.ac.cn/event/6618/

19/03/19

https://agenda.infn.it/conferenceOtherViews.py?view=standard&confld=14816

xFitter@Minsk

CEPC Baseline

Performance at
Lepton
Kaon
Photon
Tau
JET

Tracking & ECAL

12

Clustering - Separation

19/03/19

Highly appreciated in flavor physics @ CEPC Z pole TPC dEdx + ToF of 50 ps

Eur. Phys. J. C (2018) 78:464

At inclusive Z pole sample:

Conservative estimation gives efficiency/purity of 91%/94% (2-20 GeV, 50% degrading +50 ps ToF) Could be improved to 96%/96% by better detector/DAQ performance (20% degrading + 50 ps ToF) 19/03/19 xFitter@Minsk 15

Tau finding at hadronic events

an overall efficiency*purity higher than 70% is achieved for qqTT, and qqTV events

Zhigang Wu, CEPC CDR

19/03/19

xFitter@Minsk

An Analysis Example: g(HTT) at qqH

- TAURUS: di-tau system
- The rest particles are identified as the di-jet: to distinguish the ZZ/ZH background & Improves the accuracy by more than a factor of 2: BMR < 4% (baseline of 3.8%) is crucial
- Isolated tracks are intensionally defined as tau candidate: be distinguished by the VTX

Dan Yu's thesis

Massive Boson Separation

xFitter@Minsk

Plot: the visible mass without the muon

CEPC-RECO-2018-002 (DocDB id-171),

19/03/19

Eur. Phys. J. C (2018) 78: 426

Separation at full hadronic WW-ZZ events

Physics Objects

19/03/19

xFitter@Minsk

Higgs Signals

Clear Higgs Signature in all SM decay modes

Massive production of the SM background (2 fermion and 4 fermions) at the full Simulation level

Right corner: di-tau mass distribution at qqH events using collinear approximation 19/03/19 xFitter@Minsk

Model-independent measurement of $\sigma(ZH)$

CEPC Preliminary Event/2.0 CEPC Preliminary =125 GeV) $pol(e^{-}, e^{+}) = (0, 0)$ $Z \rightarrow e^*e^{-1}; \int Ldt = 5 ab^{-1}$ $Z \rightarrow \mu^{+}\mu^{-}$; Ldt = 5 ab⁻¹ → qaqq 3000 250 Ldt = 5ab⁻¹ 1500 qqqq CEPC Simulation **CEPC Simulation** - qall Entries/0.2 GeV 0001 0001 0001 0001 GeV R Fit +B Fit qq 200 Background Background Entries/0.25 0.9% 0.65% .5% 1000 150 100 500 50 125 $M_{recoil}^{\mu^{\star}\mu^{-}}$ [GeV] **120** 135 140 **120** 125 130 135 140 100 110 120 130 140 150 m_{recoi}[GeV] M^{e*e*}_{recoil}[GeV]

Zhenxing Chen & Yacine Haddad

• Recoil mass measurement: Combined precision: $\delta\sigma(ZH)/\sigma(ZH) = 0.5\% - \delta g(HZZ)/g(HZZ) = 0.25\%$

Higgs width measurement

- $g^{2}(HXX) \sim \Gamma_{H \rightarrow XX} = \Gamma_{total}^{*}Br(H \rightarrow XX)$
- Branching ratios: determined simply by - $\sigma(ZH)$ and $\sigma(ZH)^*Br(H\rightarrow XX)$
- Γ_{total} : determined from:
 - − From σ (ZH) (~g²(HZZ)) and σ (ZH)*Br(H→ZZ) (~g⁴(HZZ)/Γ_{total})
 - From $\sigma(ZH)^*Br(H\rightarrow bb)$, $\sigma(vvH)^*Br(H\rightarrow bb)$, $\sigma(ZH)^*Br(H\rightarrow WW)$, $\sigma(ZH)$

Br(H->ZZ): relative error of 6.9% achieved with ZH->ZZZ*->vv(Z)llqq(H) final states. Extrapolation of TLEP result leads to 4.3% relative error

 $\sigma(vvH)^*Br(H->bb)$: relative error of 2.8%

A combined accuracy of 2.8% for the Higgs total width measurements 19/03/19 xFitter@Minsk

Higgs exotic decays

95% C.L. upper limit on selected Higgs Exotic Decay BR

Applied on Higgs physics, et.al

Precision Higgs Physics at CEPC

Initial assessments of Higgs physics potential at the CEPC based on the white paper (to be submitted)

Chinese Physics C Vol. XX, No. X (201X) 010201

Precision Higgs Physics at the CEPC^{*}

Fenfen An^{4,21} Yu Bai⁹ Chunhui Chen²¹ Xin Chen⁵ Zhenxing Chen³ Joao Guimaraes da Costa⁴
 Zhenwei Cui³ Yaquan Fang^{4,6} Chengdong Fu⁴ Jun Gao¹⁰ Yanyan Gao²⁰ Yuanning Gao⁵
 Shao-Feng Ge^{15,27} Jiayin Gu¹³ Fangyi Guo^{1,4} Jun Guo^{10,11} Tao Han^{5,29} Shuang Han⁴
 Hong-Jian He^{10,11} Xianke He¹⁰ Xiao-Gang He^{10,11} Jifeng Hu¹⁰ Shih-Chieh Hu¹⁰ Shan Jin⁸
 Maoqiang Jing^{4,7} Ryuta Kiuchi⁴ Chia-Ming Kuo¹⁹ Pei-Zhu Lai¹⁹ Boyang Li⁵ Congqiao Li³ Gang Li⁴
 Haifeng Li¹² Liang Li¹⁰ Shu Li^{10,11} Tong Li¹² Qiang Li³ Hao Liang^{4,6} Zhijun Liang⁴
 Libo Liao⁴ Bo Liu^{4,24} Jianbei Liu¹ Tao Liu¹ Zhon Liu^{4,2,28} Xinchou Lou^{4,6,31} Lianliang Ma¹²
 Bruce Mellado¹⁷ Xin Mo⁴ Mila Pandurovic¹⁶ Jianming Qian² Zhuoni Qian¹⁸
 Nikolaos Rompotis²⁰ Manqi Ruan⁴ Alex Schuy³⁰ Lian-Yao Wang^{4,5} Yuqian Wai⁴
 Shufang Su²³ Dayong Wang⁵ Jing Wang⁴ Lian-Tao Wang³⁵ Yifang Wang^{4,6} Yuqian Wei⁴
 Yue Xu⁵ Haijun Yang^{10,11} Weiming Yao²⁶ Dan Yu⁴ Kaili Zhang^{4,6} Zhaoru Zhang⁴

https://arxiv.org/pdf/1810.09037.pdf xFitter@Minsk

Pheno-studies: EFT & Physics reach

precision reach at CEPC with different sets of measurements

The Physics reach could be largely enhanced if the EW measurements is combined With the Higgs measurements (in the EFT)

xFitter@Minsk

Summary

- CEPC, a super Higgs/W/Z factory
- Physics Potential
 - Higgs:
 - Absolute determination of Higgs couplings, width...
 - 1 order of magnitude improvement w.r.t HL-LHC (Signal Strength)
 - Exotic decay: 2-3 orders of magnitude better than HL-LHC
 - EW: boost by at least 1 order of magnitude
 - Rich program on Flavor physics
- Performance at the baseline design
 - High efficiency/accuracy reconstruction of all key physics objects
 - Clear Higgs signature in all SM Higgs decay modes
 - Clear distinguish between the Signal and SM backgrounds
 - Fulfills the physics requirements of the CEPC Higgs operation

Summary

- CDR in finalization: long to do list towards the TDR
 - Physics Potential study:
 - Pheno Study & Systematic control
 - Higgs Differential measurements
 - QCD, Flavor, EW...
 - Dedicated discussion on July 1-5th, at Peking University of Beijing
 - Detector design & optimization:
 - Lots of efforts needed, to bridging the CDR design to TDR & construction: especially the integration & systematic controls
 - Multiple IP: new ideas are always welcome
 - Software, Reconstruction, Algorithms, Analysis tools...

• You ideas, supports & participations are essential!

backup

The Simu-Reco Chain at CEPC

Higgs benchmark analyses

Tracking

Clustering - Separation

Hang Zhao. CEPC CDR

19/03/19

xFitter@Minsk

Reconstruction of $Ks(\Lambda)$ at Z pole (Preliminary)

Efficiency = Correctly reconstructed $Ks(\Lambda)/Ks(\Lambda)$ with 2 tracks reconstructed Purity = Correctly reconstructed $Ks(\Lambda)/All$ reconstructed $Ks(\Lambda)$

Perfect PID = Perfect identification of pions, charged kaons, and (anti-)protons 19/03/19 *Taifan Zhen, Preliminary* xFitter@Minsk

Photons – conversion & efficiency

In the barrel region: Roughly 6-10% of the photons converts before reaching the Calorimeter.

For the unconverted photon: A critical energy of 200 MeV is observed.

Photon: resolution

19/03/19

Pi0: efficiency & mass resolution (Preliminary)

Arbor parameter & Photon Id parameters need further optimization...

xFitter@Minsk

Jets – color singlet

- Boson Mass Resolution: Total reconstructed mass of hadronic events
 - 3.8% at baseline (benchmarked with vvH, $H \rightarrow$ gluons process)
 - Applied to event with one color singlet fragments into jets
 - W, Z, H signal separation at lvqq, II(vv)+qq events (Appreciated in Triplet Gauge Boson Coupling measurements)
 - Analysis of qqH, Higgs decays into non-jet final states, for example, qqH, H→taus, inv, photons, muons...
 - ...
- Single Jet Response (Jet energy scale/resolution)
 - Differential measurements with jet directions
 - Applied to events with more than one color singlet fragment into jets
 - WW/ZZ/ZH event separation in 4-jet final state
 - ...

Jet confusion: the leading term

- Separation be characterized by
- Final state/MC particles are clustered into Reco/Genjet with ee-kt, and paired according to chi2
- WW-ZZ Separation at the inclusive sample:
 - Intrinsic boson mass/width lower limit: Overlapping ratio of 13%
 - + Jet confusion Genjet: Overlapping ratio of 53%
 - + Detector response Recojet: Overlapping ratio of 58%

overlapping ratio =
$$\sum_{bins} min(a_i, b_i)$$

 $\chi^2 = rac{(M_{12}-M_B)^2+(M_{34}-M_B)^2}{\sigma_B^2}$

Jet Energy Scale & Resolution

- JER ~ 3.5% 5.5% for E ~ 20 100 GeV Jets
- Both Superior to LHC experiments by 3-4 times xFitter@Minsk 40

Peizhu LAI

Separation of full hadronic WW-ZZ event

- Low energy jets! (20 120 GeV)
- Typical multiplicity ~ o(100)
- WW-ZZ Separation: determined by
 - Intrinsic boson mass/width
 - Jet confusion from color single reconstruction jet clustering & pairing
 - Detector response

Separation of full hadronic WW-77 event

The CEPC Baseline could separate efficiently the WW-ZZ with full hadronic final state.

Critical to develop color singlet reconstruction: improve from the naive Jet clustering & pairing.

Quantified by differential overlapping ratio.

Control of ISR photon/neutrinos from heavy flavor jet is important.

Summary

- The Particle Flow oriented detector is well established and serves as the baseline detector for the CEPC CDR studies
 - High efficiency/accuracy reconstruction of all key physics objects;
 - Clear Higgs signature in all SM Higgs decay mode
 - Mature software/reconstruction tool/team
- APODIS, Optimized for the CEPC collision environments
 - Significantly reduced B-Field (15%), #readout channels (75% in ECAL) & HCAL layer-thickness (20%) & cost (15%/30% w.r.t CEPC-v1/ILD)
 - Same Higgs performance & enhanced Pid Performance
 - Iterate with hardware studies
- Todo:
 - Physics study, especially flavor tagging & EW measurements (τ leptons)
 - Towards the TDR, Integration, Sub detector modeling, Systematic Studies

软件队伍

成栋:几何及 寻迹

 新人:赵祥虎
 于丹:轻子甄别
 新人:赖培筑
 安芬芬:

 软件-计算
 PFA, tau
 喷注
 Pid, 软件

吴志刚 顶点优化

Benchmark detector for CDR: APODIS (A PFA Oriented Detector for HIggS factory. a.k.a CEPC_v4)

	qqH au au	<i>qqH</i> inclusive bkg	ZH inclusive bkg	ZZ	WW	singleW	singleZ	2f
total generated (scaled to 5 ab^{-1})	45597	678158	357249	5711445	44180832	17361538	7809747	418595861
1st preselection	45465	677854	310245	5039286	42425195	1267564	1398362	148401031
2nd preselection	45145	174650	226059	293306	12452091	125735	117306	547402
$N_{ au^+} > 0, N_{ au^-} > 0$	24674	7342	33721	93955	723989	33887	54386	103642
$20 GeV < M_{\tau^+ \tau^-} < 120 GeV$	24284	6290	32344	88245	597480	24927	36039	56615
$70 GeV < M_{qq}$ <110 GeV	22937	2103	4887	65625	21718	738	1893	556
$100 GeV < M_{qq}^{Rec} < 170 GeV$	22703	2045	4524	23789	13154	315	306	193
efficiency	49.97%	0.31%	1.26%	0.41%	0.04%	<0.01%	<0.01%	< 0.01%

Table 9 Cut Flow of MC sample for $qqH \rightarrow \tau\tau$ selection on signal and inclusive SM backgrounds

Benchmark measurements

Key SOFT ingredients

http://cepcsoft.ihep.ac.cn/

CEPC Software	Guides Releases Packages News GitLab	E
Introduction - Installation and Quick Start - Quick Start Install CEPC Software	Install CEPC Software Estimated reading time: 3 minutes This page will guide you on fully installing CEPC software on the local machine. Install CEPCEnv	 Edit this page Request docs changes Issues in GitLab C
CEPC Software on CVMFS Docker Image CEPCEnv	CEPCEnv is a tool used for managing the installation and environment of CEPC software. In order to install CEPC software, the CEPCEnv toolkit should be installed first. Install CEPCEnv with the following command:	Install CEPCEnv Initialize CEPCEnv Initialize CEPCEnv Install CEPC Software
Software Architecture	curl -sSL http://cepcsoft.ihep.ac.cn/package/cepcenv/sc	Requirements Available CEPC Software Versions
Performance - Analysis Examples -	Change [CEPCENV_DIR] to where you want to install. If CEPCENV_DIR is omitted, CEPCEnv will be installed in the current directory.	Install CEPC Software Configure CEPC Software Root Setup CEPC Software Envi <u>ronment</u>
Computing •	The setup scripts setup.sh and setup.csh could be found in the directory after the installation. They are used for the initialization of cepcenv command.	Frequently Asked Questions

19/03/19

5 commands & you got the cepcsoft installed on an SL6 machine

Higgs measurement at e+e- & pp

	Yield	efficiency	Comments	
LHC	Run 1: 10 ⁶ ~o(10 ⁻³) Run 2/HL: 10 ⁷⁻⁸		High Productivity & High background, Relative Measurements, Limited access to width, exotic ratio, etc, Direct access to g(ttH), and even g(HHH)	
CEPC	10 ⁶	~o(1)	Clean environment & Absolute measurement, Percentage level accuracy of Higgs width & Couplings	

Example Working Points & Performance for Object identification (Preliminary)

	Efficiency	Purity	Mis-id Probability from Main Background
Leptons	99.5 – 99.9%	99.5 – 99.9% at Higgs Runs(c.m.s = 240 GeV), Energy dependent	$P(\pi^{\pm} \rightarrow leptons) < 1\%$
Photons*	99.3 – 99.9%	99.5 – 99.9% at Higgs Runs Energy Dependent	P(Neutron → γ) = 1-5%
Charged Kaons**	86 - 99%	90 – 99% at Z pole Runs (c.m.s = 91.2GeV, Track Momentum 2- 20 GeV)	$\mathbb{P}(\pi^{\pm} \rightarrow K^{\pm}) = 0.3 - 1.1\%$
b-jets	80%	90% at Z pole runs $(Z \rightarrow qq)$	P(uds → b) = 1% P(c → b) = 10%
c-jets	60%	60% at Z pole runs	P(uds → c) = 5% P(b → c) = 15%

