Analytical derivates of neural networks: making a fit faster

Valerio Bertone

INFN and Università di Pavia (in collaboration with Rabah Khalek)

Istituto Nazionale di Fisica Nucleare

European Research Council Established by the European Commission

xFitter External Meeting 2019

March 19, 2019, Minsk

MAPPING THE PROTON IN 3D

3DSP

• A fit usually entails the **minimisation** of the χ^2 :

$$\chi^2 = \left(\frac{\hat{F} - F}{\sigma}\right)^2$$

• A fit usually entails the **minimisation** of the χ^2 :

Theoretical prediction

$\chi^2 = \begin{pmatrix} \hat{F} - F \\ \sigma \end{pmatrix}^2$ Experimental data

• A fit usually entails the **minimisation** of the χ^2 :

Theoretical prediction

 $\chi^2 = \begin{pmatrix} \hat{F} - F \\ \sigma \end{pmatrix}^2$ Experimental data

• The theoretical prediction is usually computed as a **convolution**:

$$\hat{F} \equiv \sum_{i} C_i \otimes N_i = \mathbf{C} \otimes \mathbf{N}$$

• A fit usually entails the **minimisation** of the χ^2 :

Theoretical prediction $\chi^2 = \begin{pmatrix} \hat{F} + F \\ \sigma \end{pmatrix}^2$

The theoretical prediction is usually computed as a convolution:

– Experimental data

Hard cross sections times evolution (APFELgrid) $\hat{F} \equiv \sum_{i} C_{i} \otimes N_{i} = \mathbf{C} \otimes \mathbf{N}$ Initial-scale distributions Initial-scale distributions

• A fit usually entails the **minimisation** of the χ^2 :

Theoretical prediction $\chi^2 = \begin{pmatrix} \hat{F} + F \\ \sigma \end{pmatrix}^2 = Experimental data$

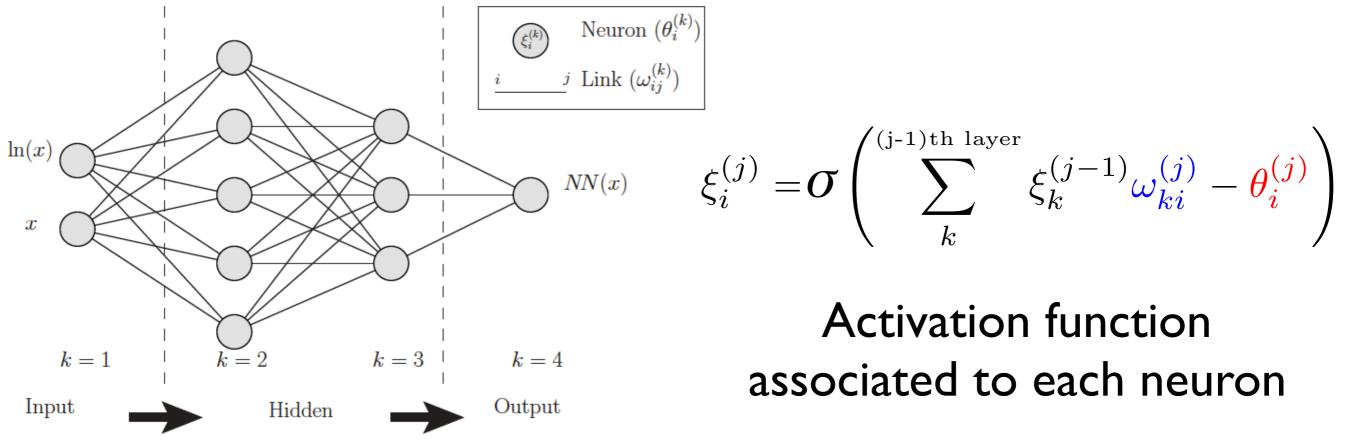
• The theoretical prediction is usually computed as a **convolution**:

Hard cross sections times evolution (APFELgrid) $\hat{F} \equiv \sum_{i} C_{i} \otimes N_{i} = \mathbf{C} \otimes \mathbf{N}$ Initial-scale distributions $\hat{F} \equiv \sum_{i} C_{i} \otimes N_{i} = \mathbf{C} \otimes \mathbf{N}$ Integral

Therefore the theoretical prediction is a **functional** of the initial-scale distributions and so is the χ^2 :

 $\hat{F} \equiv \hat{F}[\{N_i\}]$ and $\chi^2 \equiv \chi^2[\{N_i\}]$

A feed-forward neural network (NN) is parameterised in terms of links and biases, e.g.:



Effectively, a NN is nothing but a parametric function:

$$N_{i} \equiv N_{i}(x; \{\omega_{ij}^{(\ell)}, \theta_{i}^{(\ell)}\}) = \sigma_{L} \left(\sum_{j^{(1)}=1}^{N_{L-1}} \omega_{ij^{(1)}}^{(L)} y_{j^{(1)}}^{(L-1)} + \theta_{i}^{(L)}\right)$$
$$= \sigma_{L} \left(\sum_{j^{(1)}=1}^{N_{L-1}} \omega_{ij^{(1)}}^{(L)} \sigma_{L-1} \left(\sum_{j^{(2)}=1}^{N_{L-2}} \omega_{j^{(1)}j^{(2)}}^{(L)} y_{j^{(2)}}^{(L-2)} + \theta_{j^{(1)}}^{(L-1)}\right) + \theta_{i}^{(L)}\right)$$
$$= \dots$$

• In order to minimise the χ^2 optimally, we want to be able to compute the following derivatives:

$$\frac{\partial \chi^2}{\partial \omega_{ij}^{(\ell)}} = 2\left(\frac{\mathbf{C} \otimes \mathbf{N} - F}{\sigma^2}\right) \mathbf{C} \otimes \frac{\partial \mathbf{N}}{\partial \omega_{ij}^{(\ell)}}$$

$$\frac{\partial \chi^2}{\partial \theta_i^{(\ell)}} = 2 \left(\frac{\mathbf{C} \otimes \mathbf{N} - F}{\sigma^2} \right) \mathbf{C} \otimes \frac{\partial \mathbf{N}}{\partial \theta_i^{(\ell)}}$$

- This boils down to computing the **derivative of the NN** w.r.t. to its free parameters.
- We can surely do it **numerically** (incremental ratio).
- Can we also do it **analytically** for a generic architecture?
 - better numerical stability,
 - 🍯 faster.

Deriving a Neural Network

• Yes, we can derive a feed-forward NN by using the **chain rule**:

$$\frac{\partial N_k}{\partial \theta_i^{(\ell)}} = \Sigma_{ki}^{(\ell)} z_i^{(\ell)} \quad \text{and} \quad$$

$$\frac{\partial N_k}{\partial \omega_{ij}^{(\ell)}} = \Sigma_{ki}^{(\ell)} z_i^{(\ell)} y_j^{(\ell-1)}$$

with:

$$\begin{split} x_i^{(\ell)} &= \sum_{j=1}^{N_{\ell-1}} \omega_{ij}^{(\ell)} y_j^{(\ell-1)} + \theta_i^{(\ell)} , \qquad \Sigma^{(\ell)} = \prod_{\alpha=L}^{\ell+1} \mathbf{S}^{(\alpha)} \\ y_i^{(\ell)} &= \sigma_\ell \left(x_i^{(\ell)} \right) , \qquad z_i^{(\ell)} \omega_{ij}^{(\ell)} = S_{ij}^{(\ell)} \left(= \frac{\partial y_i^{(\ell)}}{\partial y_j^{(\ell-1)}} \right) \\ z_i^{(\ell)} &= \sigma_\ell' \left(x_i^{(\ell)} \right) , \end{split}$$

Tests against numerical derivatives show that it works beautifully!

Exploiting analytic derivatives Use **APFEL/APFELgrid** as it give access to the initial-scale PDFs:

$$F(Q) = \underbrace{C(Q) \otimes \Gamma(Q, \mu_0)}_{\text{FK table}} \otimes f(\mu_0)$$

Use **ceres-solver** to assess the impact of different derivation strategies:

- analytic derivatives,
- numerical derivatives (incremental ratio: forward/backward/central),
- automatic derivatives:

Dual Numbers & Jets

Dual numbers are an extension of the real numbers analogous to complex numbers: whereas complex numbers augment the reals by introducing an imaginary unit ι such that $\iota^2=-1$, dual numbers introduce an *infinitesimal* unit ϵ such that $\epsilon^2=0$. A dual number $a+v\epsilon$ has two components, the *real* component a and the *infinitesimal* component v.

http://ceres-solver.org/automatic derivatives.html#chapter-automatic-derivatives

Dual numbers and Jets

For example, consider the function

$$f(x)=x^2,$$

Then,

$$egin{aligned} f(10+\epsilon) &= (10+\epsilon)^2 \ &= 100+20\epsilon+\epsilon^2 \ &= 100+20\epsilon \end{aligned}$$

Observe that the coefficient of ϵ is Df(10) = 20. Indeed this generalizes to functions which are not

A Jet is a *n*-dimensional dual number, where we augment the real numbers with *n* infinitesimal units ϵ_i , i = 1, ..., n with the property that $\forall i, j : \epsilon_i \epsilon_j = 0$. Then a Jet consists of a *real* part *a* and a *n*-dimensional *infinitesimal* part **v**, i.e.,

$$x=a+\sum_{j}v_{j}\epsilon_{j}$$

The summation notation gets tedious, so we will also just write

$$x = a + \mathbf{v}.$$

where the ϵ_i 's are implict. Then, using the same Taylor series expansion used above, we can see that:

$$f(a + \mathbf{v}) = f(a) + Df(a)\mathbf{v}$$

Automatic derivation

Automatic derivatives are available through ceres if one templates the function to be derived in such a way to evaluate it, not just on real numbers, but also on dual numbers/jets:

```
template<class T>
class FeedForwardNN
{
  public:
```

Ouring the fit ceres takes care of computing the derivatives w.r.t. the free parameters by evaluating the (jet-valued) function on a jet.

Performance

Fit 100 points of a sine function using a NN with one single hidden layer with an increasing number of nodes:

> - Exp -**--** NN $\chi^2 = 0.000000$ 0.5 0 -0.55 3 6

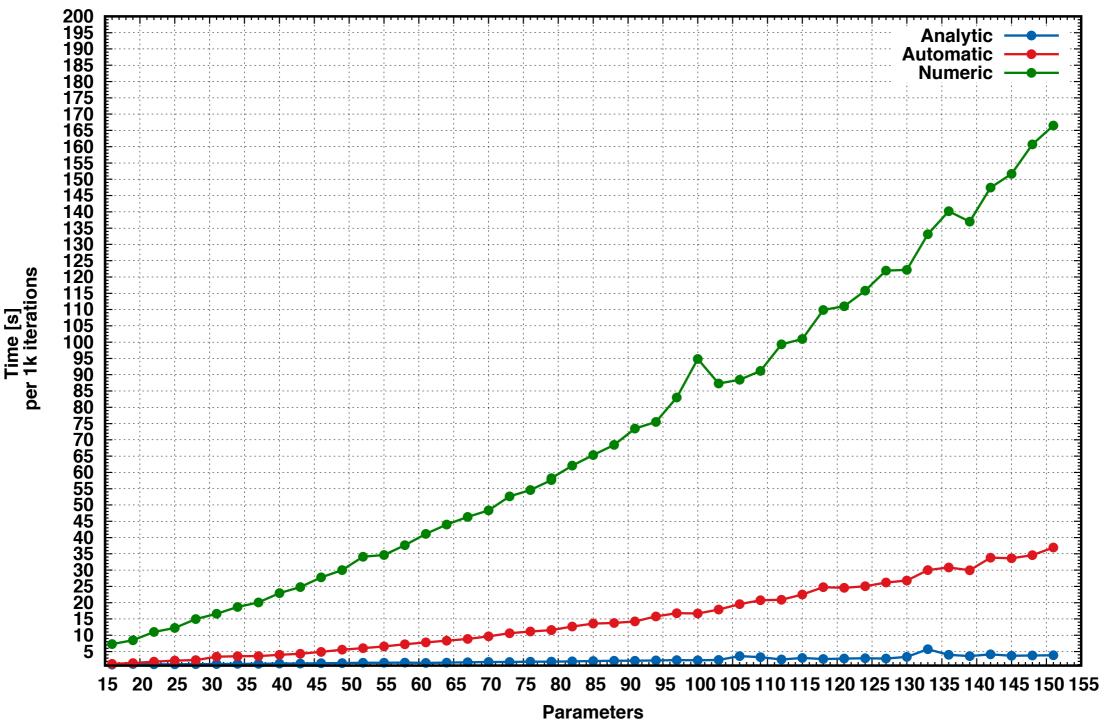
• Let the code run for **1k iterations** ($\chi^2 \approx 10^{-9} - 10^{-12}$).

Title

Performance

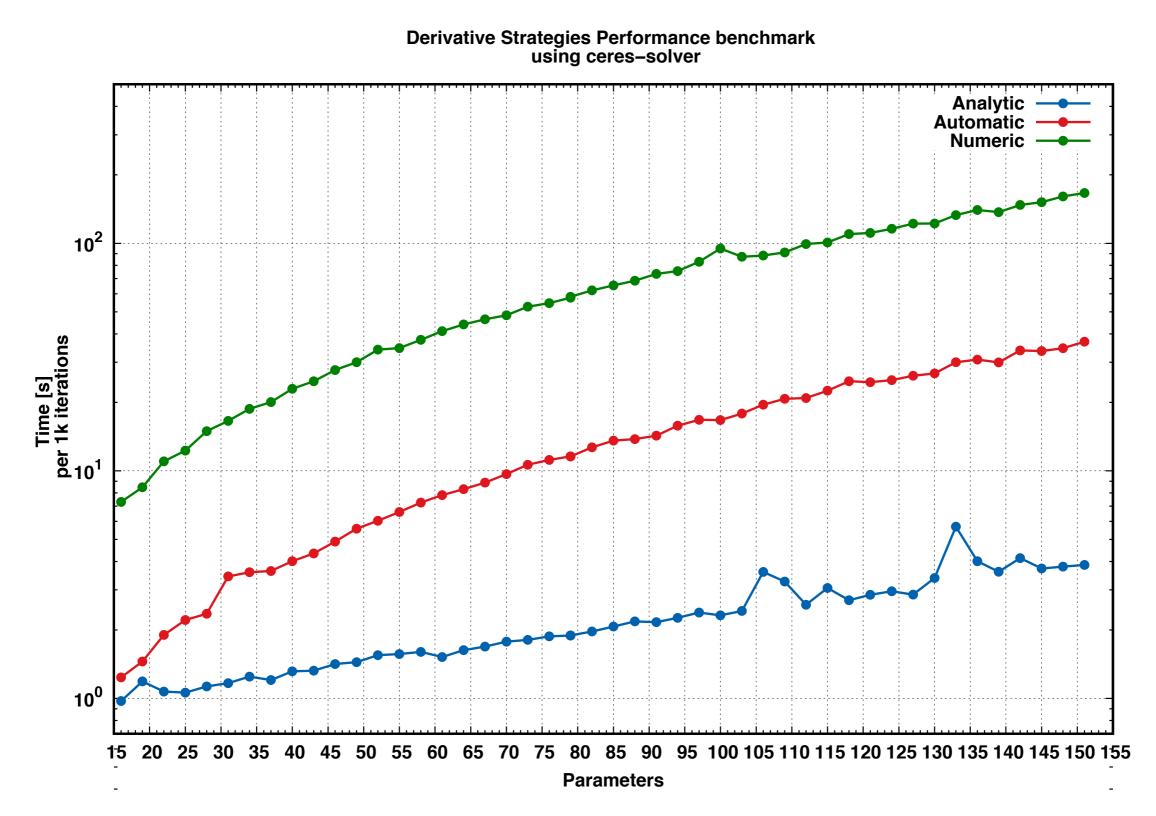
NNAGD^{A Neural Network library for} Analytical Gradient Descent

Derivative Strategies Performance benchmark using ceres-solver



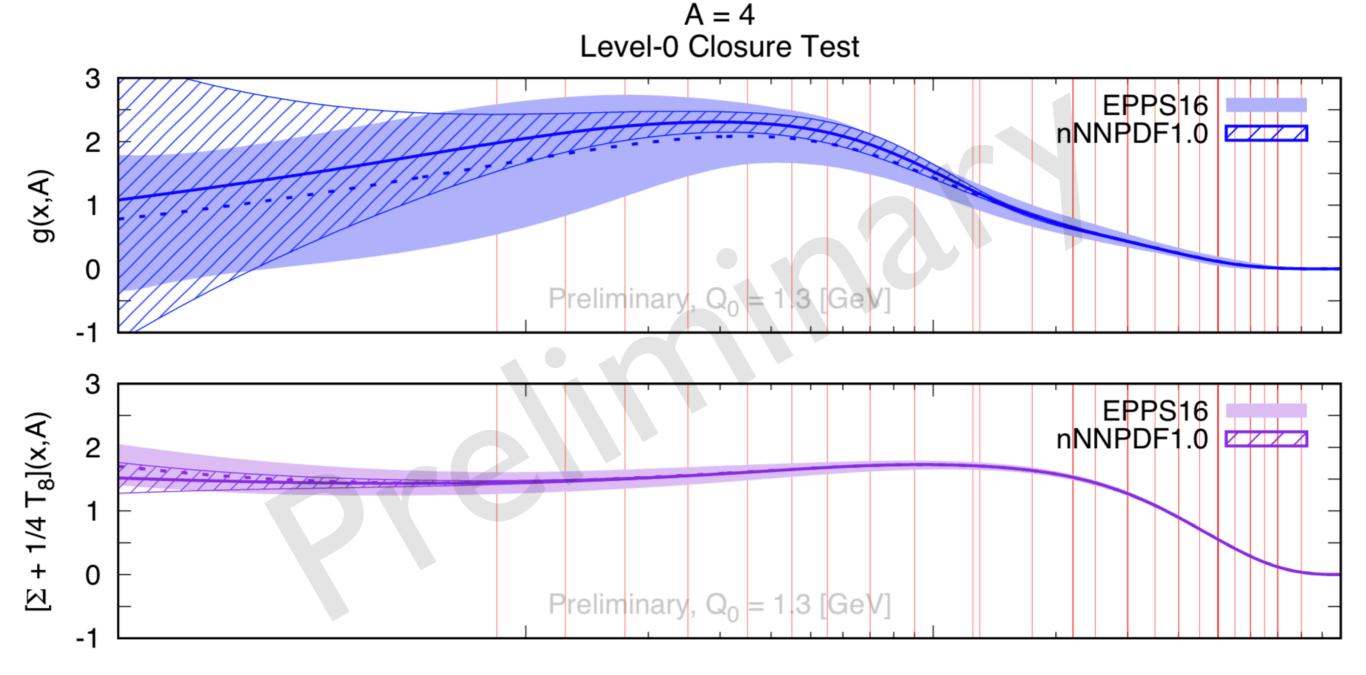
Performance

NNAGD A Neural Network library for Analytical Gradient Descent



Preliminary closure tests

Use analytic derivatives of a feed-forward NN to extract nuclear PDFs from DIS pseudo-data (closure test) using APFELgrid and ceres:



- Feed-forward NNs can be derived analytically by using the chain rule,
- for this allows one to compute the gradient of the χ^2 analytically:
 - provided that one uses an **APFELgrid-like computation**.
- The analytic knowledge of the gradient of the χ^2 makes a fit much faster.
- We have used ceres to assess the performance of analytic, numeric, and automatic differentiation.
- Analytic derivatives seem to perform substantially better.