
Analytical derivates of neural networks:
making a fit faster

xFitter External Meeting 2019
March 19, 2019, Minsk

Valerio Bertone
INFN and Università di Pavia

(in collaboration with Rabah Khalek)

Defining the problem
A fit usually entails the minimisation of the χ2:

Defining the problem
A fit usually entails the minimisation of the χ2:

Theoretical prediction
Experimental data

Defining the problem
A fit usually entails the minimisation of the χ2:

Theoretical prediction
Experimental data

The theoretical prediction is usually computed as a convolution:

Defining the problem
A fit usually entails the minimisation of the χ2:

Theoretical prediction
Experimental data

The theoretical prediction is usually computed as a convolution:

Integral

Initial-scale distributions
Hard cross sections

times evolution
(APFELgrid)

Defining the problem
A fit usually entails the minimisation of the χ2:

Theoretical prediction
Experimental data

The theoretical prediction is usually computed as a convolution:

Integral

Hard cross sections
times evolution

(APFELgrid)
Initial-scale distributions

Therefore the theoretical prediction is a functional of the initial-scale
distributions and so is the χ2:

and

Defining the problem
A feed-forward neural network (NN) is parameterised in terms of links
and biases, e.g.:

Effectively, a NN is nothing but a parametric function:

⇠(j)i = g

(j-1)th layerX

k

⇠(j�1)
k !(j)

ki � ✓(j)i

!
σ

Activation function
associated to each neuron

Defining the problem
In order to minimise the χ2 optimally, we want to be able to compute
the following derivatives:

This boils down to computing the derivative of the NN w.r.t. to its
free parameters.

We can surely do it numerically (incremental ratio).

Can we also do it analytically for a generic architecture?

better numerical stability,

faster.

Deriving a Neural Network
Yes, we can derive a feed-forward NN by using the chain rule:

with:

Tests against numerical derivatives show that it works beautifully!

Exploiting analytic derivatives
Use APFEL/APFELgrid as it give access to the initial-scale PDFs:

Use ceres-solver to assess the impact of different derivation strategies:
analytic derivatives,

numerical derivatives (incremental ratio: forward/backward/central),

automatic derivatives:

F (Q) = C(Q)⌦ �(Q,µ0)| {z }
FK table

⌦f(µ0)

<latexit sha1_base64="8ukdiE4F/tec4tdm4rnKyzvX7d0=">AAACTHicbVBNa9tAFFy5TZoqX0577GWpHXAgGCk5pJdCaCAt9BJDnRgsI57Wz8li7Ursvi0JQn+tP6H3HnrrtT31VgpdOzo0H3MaZuYxu5OVubQURd+C1pOnK6vP1p6H6xubW9vtnRfntnBG4FAUeWFGGVjMpcYhScpxVBoEleV4kc1PFv7FZzRWFvoT3ZQ4UXCp5UwKIC+l7VG3G572Bnv8LU+cnqLJDAisqpPai0lBUqFN3oNS0BvsJ8ql0V6dVonKiuvq9CMn8EV13QT5rHcbCbvdtN2J+tES/CGJG9JhDc7S9vdkWginUJPIwdpxHJU0qcCQFL4jTJzFEsQcLnHsqQZfOKmWC9R811mggpdouMz5UsT/LypQ1t6ozCcV0JW97y3Ex7yxo9mbSSV16Qi1WBSRzHFZZIWRflrkU2mQCBYvRy41F2CACI3kIIQXnd869HvE93//kJwf9OPDfjw46By/a5ZZY6/Ya9ZjMTtix+wDO2NDJtgX9oP9ZL+Cr8Hv4E/w9zbaCpqbl+wOWqv/AFr7sWk=</latexit>

http://ceres-solver.org/automatic_derivatives.html#chapter-automatic-derivatives

Dual numbers and Jets

Automatic derivation
Automatic derivatives are available through ceres if one templates
the function to be derived in such a way to evaluate it, not just on real
numbers, but also on dual numbers/jets:

During the fit ceres takes care of computing the derivatives w.r.t. the free
parameters by evaluating the (jet-valued) function on a jet.

Performance
Fit 100 points of a sine function using a NN with one single hidden
layer with an increasing number of nodes:

Let the code run for 1k iterations (χ2 ≃ 10-9 - 10-12).

Performance

 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95

 100
 105
 110
 115
 120
 125
 130
 135
 140
 145
 150
 155
 160
 165
 170
 175
 180
 185
 190
 195
 200

 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155

NNAGDA Neural Network library for
 Analytical Gradient Descent

Ti
m

e
[s

]
 p

er
 1

k
ite

ra
tio

ns

Parameters

Derivative Strategies Performance benchmark
 using ceres−solver

Analytic
Automatic

Numeric

Performance

100

101

102

 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155

NNAGD A Neural Network library for
 Analytical Gradient Descent

Ti
m

e
[s

]
 p

er
 1

k
ite

ra
tio

ns

Parameters

Derivative Strategies Performance benchmark
 using ceres−solver

Analytic
Automatic

Numeric

Preliminary closure tests

Preli
minary

Use analytic derivatives of a feed-forward NN to extract nuclear
PDFs from DIS pseudo-data (closure test) using APFELgrid and
ceres:

Summary
Feed-forward NNs can be derived analytically by using the chain rule,

this allows one to compute the gradient of the χ2 analytically:

provided that one uses an APFELgrid-like computation.

The analytic knowledge of the gradient of the χ2 makes a fit much faster.

We have used ceres to assess the performance of analytic, numeric, and
automatic differentiation.

Analytic derivatives seem to perform substantially better.

