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The theoretical prediction is usually computed as a convolution:

Integral

Hard cross sections
times evolution

(APFELgrid)
Initial-scale distributions

Therefore the theoretical prediction is a functional of  the initial-scale 
distributions and so is the χ2:

and



Defining the problem 
A feed-forward neural network (NN) is parameterised in terms of  links 
and biases, e.g.:

Effectively, a NN is nothing but a parametric function:
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Defining the problem 
In order to minimise the χ2 optimally, we want to be able to compute 
the following derivatives:

This boils down to computing the derivative of  the NN w.r.t. to its 
free parameters. 

We can surely do it numerically (incremental ratio). 

Can we also do it analytically for a generic architecture? 

better numerical stability, 

faster. 



Deriving a Neural Network 
Yes, we can derive a feed-forward NN by using the chain rule:

with:

Tests against numerical derivatives show that it works beautifully!



Exploiting analytic derivatives
Use APFEL/APFELgrid as it give access to the initial-scale PDFs:

Use ceres-solver to assess the impact of  different derivation strategies: 
analytic derivatives, 

numerical derivatives (incremental ratio: forward/backward/central), 

automatic derivatives:

F (Q) = C(Q)⌦ �(Q,µ0)| {z }
FK table

⌦f(µ0)
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http://ceres-solver.org/automatic_derivatives.html#chapter-automatic-derivatives



Dual numbers and Jets



Automatic derivation 
Automatic derivatives are available through ceres if  one templates 
the function to be derived in such a way to evaluate it, not just on real 
numbers, but also on dual numbers/jets:

During the fit ceres takes care of  computing the derivatives w.r.t. the free 
parameters by evaluating the (jet-valued) function on a jet.



Performance
Fit 100 points of  a sine function using a NN with one single hidden 
layer with an increasing number of  nodes:

Let the code run for 1k iterations (χ2 ≃ 10-9 - 10-12).
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Preliminary closure tests

Preli
minary

Use analytic derivatives of  a feed-forward NN to extract nuclear 
PDFs from DIS pseudo-data (closure test) using APFELgrid and 
ceres:



Summary 
Feed-forward NNs can be derived analytically by using the chain rule, 

this allows one to compute the gradient of  the χ2 analytically: 

provided that one uses an APFELgrid-like computation. 

The analytic knowledge of  the gradient of  the χ2 makes a fit much faster. 

We have used ceres to assess the performance of  analytic, numeric, and 
automatic differentiation. 

Analytic derivatives seem to perform substantially better. 


