

Status of HO_MCSANC

A. Sapronov, A. Arbuzov, S. Bondarenko, L. Kalinovskaya, V. Yermolchyk

MCSANC, JINR ×Fitter workshop, Minsk 18 - 20 March

19 March 2019

A. Sapronov (MCSANC, JINR xFitter work

Status of HO_MCSANC

19 March 2019 1 / 21

The LHC data on Drell–Yan (DY) processes allows to access final states with very high invariant di-lepton masses, where the photon-induced contributions become substantial relative to the standard quark–antiquark annihilation sub-processes. An accurate estimate of these contributions for hypothetical high mass resonance searches requires the inclusion into the theory predictions sub-processes with photons in the initial *pp* state such as

$$egin{array}{rcl} q\gamma & o & q'\ell^{\pm}
u_{\ell}, \ q\gamma & o & q\ell^{+}\ell^{-} \ \gamma\gamma & o & \ell^{+}\ell^{-}. \end{array}$$

Corrections to the neutral current Drell–Yan (NC DY) cross-section due to photon-induced process $\gamma\gamma \rightarrow \ell^+\ell^-$ can reach up to 10-20% for high invariant mass $M_{\ell^+\ell^-}$ with a choice of kinematic cuts typical for LHC experimental analysis.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

$MCSANC_{pp}$ v.1.00, May 2019

 $MCSANC_{pp}$, new options:

- one-loop EW
- photon-induced contributions:

 $q\gamma \rightarrow q\ell^+\ell^-$ (for NC DY, **NEW: one-loop level**), $\gamma\gamma \rightarrow \ell^+\ell^-$ (for NC DY, **NEW: one-loop level**);

- Higher order corrections (all the best for today : Leading in $G_{\mu}m_t^2$ two-loop EW, mixed EW \otimes QCD radiative corrections, etc.
- forward-backward asymmetry A_{FB}^{ff} for three gauge-invariant sets (ISF, IFI, FSR).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

The best approximation for DY

- The lowest order: PYTHIA
- + QCD partom showers: PYTHIA or HERWIG/SHERPA
- + multiple QED FSR: PHOTOS
- + NNLO QCD: FEWZ or SHERPA-NNLO-FO or DYNNLO (with NNLO PDFs)
- + "missed RC" = pure weak + QED ISR + QED IFI: MCSANC, HORACE, WZGRAD, RADY, POWHEG
- + photon induced RC: MCSANC (one-loop) or RADY (QED)
- + pair corrections: MCSANC, WINHAC
- + higher order EW effects via Δr : MCSANC, HORACE, POWHEG
- + EW Sudakov logs: MCSANC, RADY

Overview, all the best for DY NC in EW sector (EW at one loop + HO trough parameter $\delta \rho$)

- 1. POWHEG-EW own EW library
- 2. HORACE own EW library
- 3. MCSANC_{pp} own EW library
- 4. WZGRAD own EW library
- 4. RADY own EW library
- 5. KK MC DIZET EW library

Possible combining: (PHYTIA+PHOTOS) \longrightarrow reanalyze (1 or 2 or 3 or 4 or 5 ...)

Combining NLO QCD and Electroweak Radiative Corrections

 Bernaciak, C. and Wackeroth, D., Combining NLO QCD and Electroweak Radiative Corrections to W boson Production at Hadron Colliders in the POWHEG Framework, Phys. Rev.D85, 2012, hep-ph-1201.4804
 POWHEG-BOX-V2: NLO QCD &EW (NLOPS EW+QCD accuracy) Barze et al, JHEP 1204 (2012), Barze et al, EPJC 73 (2013) 6, 2474 Combination of QED/EW with QCD results in the POWHEG framework in Alioli et al. Eur. Phys. J. C77 (2017) section 4.1

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Combining NLO QCD and (N0!) Electroweak Radiative Corrections

DY NC + DY CC N.E. Adam et al., JHEP, 09, 2008, 133; JHEP, 05, 2008, 062 NLO QCD(MC@NLO)+ NLO QCD + PS(HERWIG)+QED FSR(PHOTOS)

A. Sapronov (MCSANC, JINR xFitter work

Workshops: Precision studies DY NC&CC, Tools...

a) Alioli et al. (incl A. Arbuzov, S. Bondarenko, L. Kalinovskaya). "Precision studies of observables in pp -i W -i $|\nu_l$ and pp -i gamma,Z -iI+I- processes at the LHC", Eur. Phys. J. C77 (2017) 280, [arXiv:1606.02330 [hep-ph]]. b) C.E. Gerber et al. [TeV4LHC-Top and Electroweak Working Group], (incl. A. Arbuzov, D. Bardin, P. Christova, L. Kalinovskaya, R. Sadykov). "Tevatron-for-LHC Report: Top and Electroweak Physics", arXiv:0705.3251 [hep-ph]. c) C. Buttar et al. (incl. A. Arbuzov, D. Bardin, P. Christova, L. Kalinovskaya, R. Sadykov), "Standard Model Handles and Candles Working Group: Tools and Jets Summary Report", Mar 2008. 94pp. e-Print: arXiv:0803.0678.

イロト 不得 とうせい かほとう ほ

One-loop effective form-factors

Z-exchange amplitude in the LQ basis has the following Born-like structure which allows to take the leading higher order corrections into account by means fo effective form-factors:

$$\begin{aligned} \mathcal{A}_{z}^{OLA}(s,t) &= i e^{2} 4 I_{e}^{(3)} I_{f}^{(3)} \frac{\chi_{z}(s)}{s} \rho_{ef}(s,t) \times \\ & \left\{ \gamma_{\mu}(1+\gamma_{5}) \otimes \gamma_{\mu}(1+\gamma_{5}) \right. \\ & \left. -4 |Q_{e}| s_{W}^{2} \kappa_{e}(s,t) \gamma_{\mu} \otimes \gamma_{\mu}(1+\gamma_{5}) \right. \\ & \left. -4 |Q_{f}| s_{W}^{2} \kappa_{f}(s,t) \gamma_{\mu}(1+\gamma_{5}) \otimes \gamma_{\mu} \right. \\ & \left. +16 |Q_{e}Q_{f}| s_{W}^{4} \kappa_{e,f}(s,t) \gamma_{\mu} \otimes \gamma_{\mu} \right\}. \end{aligned}$$

A. Sapronov (MCSANC, JINR xFitter work

One-loop effective form-factors

The effective ff's at the one-loop level are related to the F_{LL} , F_{QL} , F_{LQ} , F_{QQ} formfactors:

$$\begin{array}{lll} \rho_{ef} & = & 1 + F_{_{LL}}\left(s,t\right) - s_{_W}^2 \Delta r, \\ \kappa_{e} & = & 1 + F_{_{QL}}\left(s,t\right) - F_{_{LL}}\left(s,t\right), \\ \kappa_{f} & = & 1 + F_{_{LQ}}\left(s,t\right) - F_{_{LL}}\left(s,t\right), \\ \kappa_{ef} & = & 1 + F_{_{QQ}}\left(s,t\right) - F_{_{LL}}\left(s,t\right). \end{array}$$

appearing from the one-loop amplitude parametrisation:

$$\left[i\gamma_{\mu}\gamma_{+}F_{L}^{e}\left(s\right)+i\gamma_{\mu}F_{Q}^{e}\left(s\right)\right]\otimes\left[i\gamma_{\mu}\gamma_{+}F_{L}^{t}\left(s\right)+i\gamma_{\mu}F_{Q}^{t}\left(s\right)\right],$$

due to 4 independent helicity amplitudes.

The formfactors in turn, can be extended with higher order corrections to the ρ -parameter:

$$\begin{split} F_{LL}^{HO} &= F_{LL}^{1-loop} + \Delta \rho + \Delta \rho^{2} \\ F_{QL}^{HO} &= F_{QL}^{1-loop} + (1 + c_{W}^{2}/s_{W}^{2})\Delta \rho \\ F_{LQ}^{HO} &= F_{LQ}^{1-loop} + (1 + c_{W}^{2}/s_{W}^{2})\Delta \rho \\ F_{QQ}^{HO} &= F_{QQ}^{1-loop} + (1 + 2c_{W}^{2}/s_{W}^{2})\Delta \rho \\ F_{\gamma\gamma}^{HO} &= F_{\gamma\gamma}^{1-loop} + c_{W}^{2}/s_{W}^{2}\Delta \rho \end{split}$$

A. Sapronov (MCSANC, JINR xFitter work

Status of HO_MCSANC

19 March 2019 11 / 21

The ρ -parameter is defined as the ratio of neutral and charged current effective coupling constants at zero momentum transfer:

$$\rho = \frac{G_{\rm NC}(0)}{G_{\rm CC}(0)} = \frac{1}{1 - \Delta\rho} \tag{2}$$

Here $G_{\rm CC}(0) = G_{\mu}$ is the Fermi constant defined from the μ decay and $\Delta \rho$ is treated perturbatively:

$$\Delta \rho = \Delta \rho^{(1)} + \Delta \rho^{(2)} + \dots \tag{3}$$

A. Sapronov (MCSANC, JINR xFitter work

- 4 同 6 4 日 6 4 日 6

 $\Delta \rho$ expansion to second order:

$$\rho = 1 + \Delta \rho + \Delta \rho^2 \tag{4}$$

The contribution to $\Delta \rho$ leading in $G_{\mu}m_t^2$ is explicitly given by:

$$\Delta \rho^{(1)}|_{G_{\mu}} = 3X_t = \frac{3\sqrt{2}G_{\mu}m_t^2}{16\pi^2} \tag{5}$$

as in [S. Dittmaier et al., JHEP 1001 (2010) 060]

Dominant RC

Instead of complete calculation of all perturbative orders, the dominant radiative corrections can be absorbed into the shift of the ρ parameter from it's lowest order value $\rho_{Born} = 1$:

$$\Delta \rho = \Delta \rho_{X_t} + \Delta \rho_{\alpha \alpha_s} + \Delta \rho_{X_t \alpha_s^2} + \left(\Delta \rho_{X_t(zt)\alpha_s^2} + \Delta \rho_{X_t(alp)_f^2} \right)$$
(6)
+ $\Delta \rho_{X_t \alpha_s^3} + \Delta \rho_{X_t^2 \alpha_s} + \Delta \rho_{X_t^2(bos)} + \Delta \rho_{X_t^3}$

For simplicity denote the corrections with indices:

notation	order of	DIZET v6.42	MCSANC
$\Delta \rho_1$	$O(\alpha \alpha_s)$	+	+
$\Delta \rho_2$	$O(\alpha^2)$	+	+
Δho_3	$O(\alpha_t \alpha_s^2)$	+	+
Δho_4	$O(\alpha_t^2 \alpha_s)$	-	+
$\Delta \rho_5$	$O(\alpha_t \alpha_s^3)$	-	+

Treatment of dominant RC

There is some freedom in grouping:

• Direct sum:

$$\Delta \rho = \sum_{i=1}^{N} \Delta \rho_i$$

Product:

$$\Delta
ho = \Delta
ho_0 \prod_{i=1}^N (1 + \Delta
ho_i / \Delta
ho_0) - \Delta
ho_0$$

Also a resummation can be applied (G.Degrassi et al., hep-ph/9507286):

$$ho = 1 + \Delta
ho_0 + \sum_{i=1}^N \Delta
ho_i
ightarrow rac{1}{1 - \Delta
ho_0^f} (1 + \Delta
ho_0^b + \sum_{i=1}^N \Delta
ho_i)$$

A. Sapronov (MCSANC, JINR xFitter work

Effective formfactor comparison: 1-loop

The MCSANC 1-loop approximation agrees very well with DIZET (also for down):

up-quark

ρ	1.00649617	-4.19861512 ·10 ⁻³	DIZET v6.42
	1.00649616	$-4.19861353 \cdot 10^{-3}$	MCSANC v1.20
κ_q	1.04157647	$1.39885391 \cdot 10^{-2}$	DIZET v6.42
	1.04157647	$1.39885391 \cdot 10^{-2}$	MCSANC v1.20
κ_l	1.04114329	$1.32567432 \cdot 10^{-2}$	DIZET v6.42
	1.04114330	$1.32567432 \cdot 10^{-2}$	MCSANC v1.20
κ_{ql}	1.08271976	$2.72452822 \cdot 10^{-2}$	DIZET v6.42
	1.08271976	$2.72452822 \cdot 10^{-2}$	MCSANC v1.20

Effective formfactor comparison: HO corrections

The DIZET legacy resummation is difficult to reversely engineer. Here we are comparing the results for the first three components: $O(\alpha \alpha_s)$, $O(\alpha^2)$, $O(\alpha_t \alpha_s^2)$

ff values, up-quark				correction diff	
ff	DIZET	sum $\delta \rho_{1-3}$	prod $\delta \rho_{1-3}$	sum ε	prod ε
ρ	1.00540	1.00521	1.00526	-0.0351852	-0.0259259
κ_q	1.03670	1.03640	1.03654	-0.00817439	-0.00435967
κ_l	1.03622	1.03596	1.03611	-0.00717835	-0.003037
κ_{ql}	1.07424	1.07236	1.07266	-0.0253233	-0.0212823
down-quark					
ρ	1.00589	1.00567	1.00571	-0.0373514	-0.0305603
κ_q	1.03670	1.03640	1.03654	-0.00817439	-0.00435967
κ_l	1.03565	1.03545	1.03560	-0.0056101	-0.00140252
κ_{ql}	1.07365	1.07185	1.07215	-0.0244399	-0.0203666

$$\varepsilon = rac{
ho_{
m mcsanc} -
ho_{
m dizet}}{
ho_{
m dizet} - 1}$$

A. Sapronov (MCSANC, JINR xFitter work

ff values, up-quark

correction diff

ff	DIZET	sum $\delta \rho_{1-3}$	prod $\delta \rho_{1-3}$	sum ε	prod ε
ρ	1.00540	1.00529	1.00541	-0.0203704	0.00185185
κ_{q}	1.03670	1.03664	1.03709	-0.00163488	0.0106267
κ_l	1.03622	1.03621	1.03665	-0.000276091	0.0118719
κ_{ql}	1.07424	1.07286	1.07374	-0.0185884	-0.00673491
down-quark					
ρ	1.00589	1.00574	1.00586	-0.0254669	-0.00509338
κ_{q}	1.03670	1.03664	1.03709	-0.00163488	0.0106267
κ_l	1.03565	1.03570	1.03614	0.00140252	0.0137447
κ_{ql}	1.07365	1.07235	1.07323	-0.0176511	-0.00570265

The product combination with resummation gives closest values to the DIZET results.

All MCSANC corrections for ρ

Inclusion of the full list of HO corrections available in the MCSANC with resummation:

	up-quark		down-qua	nrk	
ρ	1.00540	$-4.16376 \cdot 10^{-3}$	1.00589	$-3.40169 \cdot 10^{-3}$	DIZET v6.42
	1.00538	$-4.16678 \cdot 10^{-3}$	1.00583	-3.40462 ·10 ⁻³	sum $\delta \rho_{1-5}$
	1.00549	$-4.16678 \cdot 10^{-3}$	1.00594	$-3.40462 \cdot 10^{-3}$	prod $\delta \rho_{1-5}$
κ_q	1.03670	$1.35206 \cdot 10^{-2}$	1.03670	$1.35206 \cdot 10^{-2}$	DIZET v6.42
	1.03696	$1.36787 \cdot 10^{-2}$	1.03696	$1.36787 \cdot 10^{-2}$	sum $\delta \rho_{1-5}$
	1.03736	$1.36787 \cdot 10^{-2}$	1.03736	$1.36787 \cdot 10^{-2}$	prod $\delta \rho_{1-5}$
κ_I	1.03622	$1.27903 \cdot 10^{-2}$	1.03565	$1.19328 \cdot 10^{-2}$	DIZET v6.42
	1.03653	$1.29483 \cdot 10^{-2}$	1.03602	$1.20909 \cdot 10^{-2}$	sum δho_{1-5}
	1.03693	$1.29483 \cdot 10^{-2}$	1.03642	$1.20909 \cdot 10^{-2}$	prod $\delta \rho_{1-5}$
κ_{ql}	1.07424	$2.63109 \cdot 10^{-2}$	1.07365	$2.54534 \cdot 10^{-2}$	DIZET v6.42
	1.07349	$2.66271 \cdot 10^{-2}$	1.07298	$2.57696 \cdot 10^{-2}$	sum $\delta \rho_{1-5}$
	1.07429	$2.66271 \cdot 10^{-2}$	1.07378	$2.57696 \cdot 10^{-2}$	prod $\delta \rho_{1-5}$

Summary

- A set of HO leading corrections are introduced to the MCSANC framework.
- Multiple options for combining together with resummation are allowed
- The best comparison with DIZET corresponds to product-like combination with resummation.
- The difference between DIZET and MCSANC can be attributed to theoretical uncertainties, since there is no defined rule for the combination of the corrections.
- The HO corrections are implemented in the MCSANC integrator for *pp* processes. *e*⁺*e*⁻ processes to follow.
- The photon-induced at one-loop level + Sudakov logarithms in MCSANC