A new simple PDF parametrization: improved description of the HERA data

M. Bonvini, <u>F. Giuli</u>

xFitter External Workshop, Minsk (Belarus) 18/03/2019

Theoretical motivations

Previous fit based on default HERAPDF parameterisation:

$$xf(x,\mu_0^2) = A x^B (1-x)^C \left[1 + Dx + Ex^2\right] - A' x^{B'} (1-x)^{C'}$$

Negative term (only for gluon)

- Is this parameterisation flexible enough to describe small-x behaviour?
- ➤ Limited structure at small-x → shape strongly dominated by asymptotic behaviour of x^B
- > More flexibility in the small-x regime is needed
- > It is also very important in the light of future higher-energy colliders:
 - Large Hadron-electron Collider (LHeC)
 - Future Circular electron-hadron or hadron-hadron Colliders (FCC-eh and FCC-hh)

New proposed parametrization

> New general parametrization:

Multiplicative option:

$$xf(x,\mu_0^2) = A x^B (1-x)^C \left[1 + Dx + Ex^2\right] \left[1 + F \log x + G \log^2 x + H \log^3 x\right]$$

> Additive option:

$$xf(x,\mu_0^2) = A x^B (1-x)^C \left[1 + Dx + Ex^2 + F \log x + G \log^2 x + H \log^3 x \right]$$

 \succ Difference between the two options in the medium-x region e.g. x ~ 0.1

$$\begin{split} xg(x,\mu_0^2) &= A_g \, x^{B_g} (1-x)^{C_g} \Big[1 + F_g \log x + G_g \log^2 x \Big] \\ xu_v(x,\mu_0^2) &= A_{u_v} \, x^{B_{u_v}} (1-x)^{C_{u_v}} \Big[1 + E_{u_v} x^2 + F_{u_v} \log x + G_{u_v} \log^2 x \Big] \\ xd_v(x,\mu_0^2) &= A_{d_v} \, x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\bar{u}(x,\mu_0^2) &= A_{\bar{u}} \, x^{B_{\bar{u}}} (1-x)^{C_a} \Big[1 + D_{\bar{u}} x + F_{\bar{u}} \log x \Big] \\ x\bar{d}(x,\mu_0^2) &= A_{\bar{d}} \, x^{B_{\bar{u}}} (1-x)^{C_{\bar{d}}} \Big[1 + D_{\bar{d}} x + F_{\bar{d}} \log x \Big], \end{split}$$
 Minimal parametrization
$$xs(x,\mu_0^2) &= x\bar{s}(x,\mu_0^2) = r_s \, x\bar{d}(x,\mu_0^2) \qquad r_s = \frac{f_s}{1-f_s} \quad \text{with} \ \underline{f_s} = 0.4 \text{ fixed} \end{split}$$

New proposed parametrization

- > Our new PDF parametrization:
 - Depends on 18 free parameters that must be fitted
 - > This is to be compared with HERAPDF2.0 (14 free parameters)
 - \succ Two extra parameters for u_V
 - \succ Two extra parameters for \bar{u} and \bar{d}
 - Major improvement comes from the gluon PDF (same number of free parameters)

$$\begin{split} xg(x,\mu_0^2) &= A_g \, x^{B_g} (1-x)^{C_g} \Big[1+F_g \log x + G_g \log^2 x \Big] \\ xu_v(x,\mu_0^2) &= A_{u_v} \, x^{B_{u_v}} (1-x)^{C_{u_v}} \Big[1+E_{u_v} x^2 + F_{u_v} \log x + G_{u_v} \log^2 x \Big] \\ xd_v(x,\mu_0^2) &= A_{d_v} \, x^{B_{d_v}} (1-x)^{C_{d_v}} \\ x\bar{u}(x,\mu_0^2) &= A_{\bar{u}} \, x^{B_{\bar{u}}} (1-x)^{C_a} \Big[1+D_{\bar{u}} x + F_{\bar{u}} \log x \Big] \\ x\bar{d}(x,\mu_0^2) &= A_{\bar{d}} \, x^{B_{\bar{u}}} (1-x)^{C_{\bar{d}}} \Big[1+D_{\bar{d}} x + F_{\bar{u}} \log x \Big], \end{split}$$
 Minimal parametrization
$$xs(x,\mu_0^2) &= x\bar{s}(x,\mu_0^2) = r_s \, x\bar{d}(x,\mu_0^2) \qquad r_s = \frac{f_s}{1-f_s} \quad \text{with} \ \underline{f_s} = 0.4 \text{ fixed} \end{split}$$

Comparison to HERAPDF2.0

Contribution to χ^2	HERAPDF2.0	Our fit (new parametrization)
subset NC e^+ 920 $\bar{\chi}^2/{\rm n.d.p.}$	444/377	403/377
subset NC e^+ 820 $\tilde{\chi}^2$ /n.d.p.	66/70	74/70
subset NC e^+ 575 $\tilde{\chi}^2/\text{n.d.p.}$	219/254	221/254
subset NC e^+ 460 $\tilde{\chi}^2$ /n.d.p.	217/204	222/204
subset NC $e^- \tilde{\chi}^2$ /n.d.p.	219/159	220/159
subset CC $e^+ \bar{\chi}^2/\text{n.d.p.}$	45/39	38/39
subset CC $e^- \tilde{\chi}^2$ /n.d.p.	56/42	50/42
correlation term $+ \log$ term	91 + 5	75-3
Total $\chi^2/d.o.f.$	1363/1131	1301/1127
$\chi^{2} = \sum_{i} \frac{\left[D_{i} - T_{i}\left(1 - \sum_{j}\gamma_{i}\right) - \frac{1}{\delta_{i,\text{uncor}}^{2}T_{i}^{2} + \delta_{i,\text{stat}}^{2}\right]}{\delta_{i,\text{uncor}}^{2}T_{i}^{2} + \delta_{i,\text{stat}}^{2}}$ Exp. term	$\frac{\left[i_{j}b_{j}\right]^{2}}{D_{i}T_{i}} + \sum_{j}b_{j}^{2} + \sum_{j}Corr. \text{ term}$	$+\sum_{i} \log \frac{\delta_{i,\text{uncor}}^2 T_i^2 + \delta_{i,\text{stat}}^2 D_i T_i}{\delta_{i,\text{uncor}}^2 D_i^2 + \delta_{i,\text{stat}}^2 D_i^2}$ Log term

- Richer structure at medium-/high-x than HERAPDF2.0
- Gluon decreases more rapidly for x ~ 10⁻² and starts rising again for x < 10⁻⁴
- Up-valence rather different
- Down-valence is identical (same parametrization as in HERAPDF2.0)
- If compared to NNPDF3.0 (HERA data only), qualitatively same behavior

6

How could the fit quality improve so much?

- In most of the cases the agreement is at the same level
- Exception for low-Q² and low-x data, where a clear improvement of the theoretical description is manifest
- > This region is where the impact of log(1/x) terms is expected to be largest
- > χ^2 improvement of the same size as the one found in our small-x resummation paper Eur. Phys. J. C78 (2018) 621 is resummation really needed?

From TR to FONLL

Various variations studied

First of all, migration from TR scheme to FONLL (to include small-x resummation in a later stage) – as done in <u>Eur. Phys. J. C78 (2018) 621</u>

Differences in the fit setup

heavy flavour scheme	TR	FONLL
initial scale μ_0	$1.38 {\rm GeV}$	$1.6 \mathrm{GeV}$
charm matching scale μ_c	m_c	$1.12m_{c}$
charm mass m_c	$1.43 {\rm GeV}$	$1.46 {\rm GeV}$

- > Raising the initial scale from the HERAPDF2.0 value ($Q_0^2 = 1.9 \text{ GeV}^2$) to $Q_0^2 = 2.56 \text{ GeV}^2$
- > FONLL scheme prefers $m_c = 1.46 \text{ GeV}$ (while $m_c^{HERA} = 1.43 \pm 0.06 \text{ GeV}$)
- > The charm PDF must be generated perturbatively at a matching scale $\mu_c > \mu_0 > m_c$ which needs to be larger than the default value $\mu_c = m_c$
- > So $\mu_c = 1.12 m_c$ (adopted also in Eur. Phys. J. C78 (2018) 621)

From TR to FONLL

Contribution to χ^2	Old parametrization	New parametrization
subset NC e^+ 920 $\tilde{\chi}^2/{\rm n.d.p.}$	451/377	406/377
subset NC e^+ 820 $\tilde{\chi}^2/\text{n.d.p.}$	68/70	74/70
subset NC e^+ 575 $\tilde{\chi}^2$ /n.d.p.	220/254	222/254
subset NC e^+ 460 $\tilde{\chi}^2/\text{n.d.p.}$	218/204	225/204
subset NC $e^- \tilde{\chi}^2$ /n.d.p.	215/159	217/159
subset CC $e^+ \tilde{\chi}^2$ /n.d.p.	44/39	37/39
subset CC $e^- \tilde{\chi}^2$ /n.d.p.	57/42	50/42
correlation term $+ \log$ term	100 + 15	79 + 2
Total χ^2 /d.o.f.	1388/1131	1312/1127

> Worse than the χ^2 presented in Slide 4 but:

- \succ Old parameterisation \rightarrow deterioration of **25 units** wrt TR
- \succ New parameterisation \rightarrow deterioration of just 11 units wrt TR
- PDFs largely compatible (backup)

Stability of our fit

 \succ First, we consider variations of the fit scale:

- > $\mu_0 = 1.38 \text{ GeV}$ and $\mu_c/m_c = 1.12 (\mu_c = 1.46 \text{ GeV}) \text{Down variation}$
- \rightarrow μ_0 = 1.60 GeV and μ_c/m_c = 1.27 (μ_c = 1.85 GeV) Intermediate step
- > μ_0 = 1.84 GeV and μ_c/m_c = 1.27 (μ_c = 1.85 GeV) Up variation
- Strange fraction variations:

> $f_s = 0.5$ (up variation) and $f_s = 0.3$ (down variation) – same as HERAPDF2.0

- Parametrization uncertainties addressed adding or removing parameters that do not change the fit quality. The ones giving the largest effect are:
 - > Adding F_{d_v}
 - > Adding D_g (more flexibility at large-x)
 - > Adding H_g and removing F_g (possible effect at small-x)
- > The effect of all these variations is summarised in the next slide

- > The addition of the log term to d_v has the largest effect (negative for $x \leq 10^{-3}$)
- When D_g is activated, large-x shape changes substantially, but in a region where the gluon PDF is very small and largely unconstrained
- > Effect of H_g (without F_g) very mild
- Up/down variations of f_s have a larger effect on the strange PDF (as expected)
- μ_0 variations have small effects

Francesco Giuli - francesco.giuli@cern.ch

11

18/03/2019

We combined all the uncertainties (exp+th+model) into a (symmetric) uncertainty band

Our final PDF set including the full uncertainty is largely compatible with NNPDF30

Including small-x resummation

➢ Done using HELL (∨3.0 for the first time) – <u>1805.08785</u>, <u>1805.06460</u>, <u>1708.07510</u>

It provides resummed contributions to the DGLAP splitting functions, the heavy quark matching conditions and the DIS coefficient functions at NLLx

Contribution to χ^2	HELL3.0 (NLL)	HELL3.0 (LL')	Hell2.0 (LL')
subset NC e^+ 920 $\tilde{\chi}^2$ /n.d.p.	402/377	403/377	403/377
subset NC e^+ 820 $\tilde{\chi}^2$ /n.d.p.	70/70	69/70	69/70
subset NC e^+ 575 $\tilde{\chi}^2$ /n.d.p.	219/254	219/254	218/254
subset NC e^+ 460 $\tilde{\chi}^2$ /n.d.p.	223/204	224/204	224/204
subset NC $e^- \tilde{\chi}^2/\text{n.d.p.}$	219/159	220/159	220/159
subset CC $e^+ \tilde{\chi}^2/\text{n.d.p.}$	38/39	38/39	38/39
subset CC $e^- \tilde{\chi}^2/\text{n.d.p.}$	49/42	49/42	49/42
correlation term $+ \log$ term	73 - 7	72 - 11	72 - 10
Total $\chi^2/{ m d.o.f.}$	1284/1127	1283/1127	1283/1127

If compared to NNLO fit, further reduction of ~30 units in χ^2

Including small-x resummation

- The difference between two versions of HELL v3.0 is the introduction of a new default treatment of subleading logarithmic contributions
- > HELL v2.0 is the previous version of the HELL code

Including small-x resummation

- The difference between two versions of HELL v3.0 is the introduction of a new default treatment of subleading logarithmic contributions
- > HELL v2.0 is the previous version of the HELL code

Conclusion and outlook

- Paper announced on arXiv and submitted to EPJC <u>1902.11125</u>
- We proposed a new simple parametrization for the PDFs at the initial scale that includes a low degree polynominal in log(x) – more flexibility at low-x
- > Improvement of the fit quality (62 units reduction in χ^2 wrt HERAPDF2.0)
- > Accomplished using **18 parameters** (only 4 more than HERAPDF2.0)
- Stability of our fit tested upon several model and parametrization variations -> results very robust
- Flexibility of our parametrization allows for a more reliable determination of the uncertainties
- > The impact of supplementing the theoretical predictions with the resummation of small-x logarithms investigated \rightarrow gain of ~30 units in χ^2

> ADD THIS NEW PARAMETRIZATION IN THE NEW XFITTER RELEASE

LHAPDF grids available upon request

Backup Slides

18/03/2019

Francesco Giuli - francesco.giuli@cern.ch

17

Some differences are manifest (gluon/sea quarks)

> 1 σ bands overlap or are very close to each other (apart from $\overline{d} + \overline{s}$)

More sensitivity to the gluon PDF

- We also studied the inclusion of HERA Charm combined data (Eur.Phys.J. C78 (2018) no.6, 473)
- These data are directly sensitive to xg(x, Q²)

It is remarkable that the two FO fits are in agreement within uncertainties

A NLO fit

- We also tried a NLO fit (using both TR and FONLL-B) – preliminary
- FONLL-B provides a better description than TR
- At low-x, same structure in the gluon PDF

Reduced cross section, F₂ and F_L

- FO and resumed calculations very similar for the reduced xsec
- NNLO prediction for F₂ decreases at small x (softer gluon and quark singlet), while it rises steadily at resumed level (larger singlet)
- ➢ Resummed F_L is quite flat in x and much larger than the NNLO one (x ≤ 10⁻³)
- Rise of F_L due to the gluon PDF shape (rising for x ~ 10⁻⁴)

-01	

	B_g	C_g	F_{g}	G_g	B_{u_v}	C_{u_v}	E_{u_v}	F_{u_v}	G_{u_v}	B_{dv}	C_{d_v}	C_{u}	D_u	A_d	B_d	C_{d}	D_d	F_d
B_{g}	1.000	0.783	-0.508	-0.465	-0.055	0.055	0.074	-0.094	-0.098	0.000	-0.058	-0.176	0.043	-0.457	-0.525	-0.285		
C_{g}	0.783	1.000	-0.093	-0.070	-0.014	0.038	0.046	-0.100	-0.091	0.061	-0.061	-0.163	0.036	-0.352	-0.383	-0.345		
F_{g}	-0.508	-0.093	1.000	0.989	-0.072	0.117	0.142	-0.150	-0.119	0.051	0.063	0.011	-0.183	0.422	0.494	0.125		
G_{g}	-0.465	-0.070	0.989	1.000	-0.075	0.124	0.149	-0.157	-0.125	0.051	0.061	0.016	-0.218	0.488	0.558	0.110		
B_{u_v}	-0.055	-0.014	-0.072	-0.075	1.000	-0.202	-0.598	0.485	0.897	-0.226	-0.197	-0.127	-0.244	0.126	0.050	-0.634		
C_{u_v}	0.055	0.038	0.117	0.124	-0.202	1.000	0.846	-0.616	-0.381	-0.042	0.030	-0.535	-0.521	0.211	0.178	0.315		
E_{uv}	0.074	0.046	0.142	0.149	-0.598	0.846	1.000	-0.871	-0.777	0.184	0.248	-0.462	-0.443	0.164	0.157	0.646		
F_{uv}	-0.094	-0.100	-0.150	-0.157	0.485	-0.616	-0.871	1.000	0.806	-0.409	-0.445	0.356	0.523	-0.240	-0.206	-0.673		
G_{u_v}	-0.098	-0.091	-0.119	-0.125	0.897	-0.381	-0.777	0.806	1.000	-0.402	-0.384	0.002	0.048	-0.031	-0.064	-0.730		
B_{d_v}	0.000	0.061	0.051	0.051	-0.226	-0.042	0.184	-0.409	-0.402	1.000	0.940	0.390	0.133	0.075	0.069	0.383		
C_{d_v}	-0.058	-0.061	0.063	0.061	-0.197	0.030	0.248	-0.445	-0.384	0.940	1.000	0.262	0.013	0.123	0.112	0.437		
C_{u}	-0.176	-0.163	0.011	0.016	-0.127	-0.535	-0.462	0.356	0.002	0.390	0.262	1.000	0.721	0.005	0.056	-0.126		
D_{a}	0.043	0.036	-0.183	-0.218	-0.244	-0.521	-0.443	0.523	0.048	0.133	0.013	0.721	1.000	-0.595	-0.517	-0.083		
$A_{\bar{d}}$	-0.457	-0.352	0.422	0.488	0.126	0.211	0.164	-0.240	-0.031	0.075	0.123	0.005	-0.595	1.000	0.986	0.078		
B_d	-0.525	-0.383	0.494	0.558	0.050	0.178	0.157	-0.206	-0.064	0.069	0.112	0.056	-0.517	0.986	1.000	0.122		
C_d	-0.285	-0.345	0.125	0.110	-0.634	0.315	0.646	-0.673	-0.730	0.383	0.437	-0.126	-0.083	0.078	0.122	1.000		
$D_{\bar{d}}$	-0.042	0.022	0.029	-0.010	-0.665	0.241	0.571	-0.575	-0.706	0.188	0.215	-0.317	-0.048	-0.304	-0.252	0.752	1.000	
$F_{\bar{d}}$	0.562	0.363	-0.590	-0.652	0.013	-0.142	-0.142	0.166	0.086	-0.061	-0.095	-0.094	0.429	-0.941	-0.983	-0.147	0.200	1.000

- Correlation matrix between fit parameters
- Most of them are poorly correlated
- When present, F and G parameters strongly correlated (they probe the same x regime)
- > They are also correlated to B parameters (same reason as above)
- > Down-valence parameters highly correlated (same as for HERAPDF2.0)

Local minima

- While fitting data with fixed-order theory, we found a local minimum pretty far away from the global minimum presented in the paper
- > Main difference in the gluon PDF: global minimum with $B_g < 0$, while local minimum with $B_g > 0$
- > The fit converged in the local minimum has an extra parameter in it: cubic logarithmic term in the gluon PDF (H_g)
- > Even though very significant differences in some parameters, χ^2 really similar
- > When transitioning from one minimum to the other in the parameter space, the χ^2 becomes much larger \rightarrow with a standard minimization routine it is highly unlikely that once the local minimum is found, it could converge to the global minimum
- > The physical expectation $B_g < 0$ was crucial to guide us

23

				gluon
				NNLO fit, global min
				4
Ditted	NNLO (DONLL)	NNLO (DONLL)	NNLO INLL	Q ² -3 GeV ²
Fitted	NNLO (FONLL)	NNLO (FONLL)	NNLO+NLLx	3
parameter	local minimum	global minimum	HELL 3.0 (NLL)	
B_{g}	0.34 ± 0.07	-0.55 ± 0.03	-0.52 ± 0.04	§ 1
C_{g}	8.8 ± 1.0	4.5 ± 0.5	4.5 ± 0.5	× 1-
F_{g}	0.76 ± 0.04	0.230 ± 0.003	0.217 ± 0.005	
G_{g}	0.22 ± 0.02	0.0131 ± 0.0004	0.0112 ± 0.0005	0
H_{g}	0.017 ± 0.002			
B_{u_v}	0.85 ± 0.06	0.83 ± 0.06	0.76 ± 0.06	1
C_{u_v}	4.5 ± 0.1	4.6 ± 0.2	4.6 ± 0.1	
E_{uv}	1.7 ± 0.8	1.9 ± 1.0	2.6 ± 1.1	10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹ 10 ⁰
F_{u_v}	0.38 ± 0.04	0.37 ± 0.05	0.35 ± 0.04	
G_{u_v}	0.062 ± 0.011	0.058 ± 0.012	0.049 ± 0.010	NNLO fit, local min
B_{d_v}	1.01 ± 0.09	0.98 ± 0.10	0.99 ± 0.09	15
C_{d_v}	4.7 ± 0.4	4.7 ± 0.5	4.7 ± 0.5	$Q^2 = 3 \text{ GeV}^2$
$A_{\bar{d}}$	0.070 ± 0.008	0.13 ± 0.02	0.14 ± 0.02	
$B_{ar{d}}$	-0.45 ± 0.02	-0.34 ± 0.02	-0.33 ± 0.02	
$C_{ar{d}}$	28 ± 3	24 ± 2	24 ± 3	***()
$D_{ar{d}}$	76 ± 17	40 ± 12	38 ± 10	1 0.5 - · · · · · · · · · · · · · · · · · ·
$F_{ar{d}}$	0.084 ± 0.001	0.072 ± 0.004	0.071 ± 0.004	45 X
$C_{ar{u}}$	11 ± 1	11 ± 1	11 ± 1	
$D_{ar{u}}$	33 ± 6	20 ± 4	18 ± 4	0
χ^2 /d.o.f.	1314/1126	1312/1127	1284/1127	
•				-0.5 10 ⁻⁴ 10 ⁻³ 10 ⁻² 10 ⁻¹ 10 ⁰