

New CMS obtained using xFitter

Oleksandr Zenaiev (Hamburg University)

xFitter Workshop, Minsk 18.03.2019

Overview of new results since March 2018

- "Measurement of associated production of a W boson and a charm quark in proton-proton collisions at \sqrt{s} = 13 TeV" [SMP-17-014, arXiv:1811.10021, submitted to Eur. Phys. J.]
- "Measurements of normalised multi-differential cross sections for top quark pair production in pp collisions at $\sqrt{s} = 13$ TeV and simultaneous determination of the strong coupling strength, top quark pole mass and parton distribution functions" [CMS-PAS-TOP-18-004, paper in a few days]
- "Measurement of the *tī* production cross section, the top quark mass, and the strong coupling constant using dilepton events in pp collisions at \(\sigma s = 13\) TeV" [TOP-17-001, arXiv:1812.10505, submitted to Eur. Phys. J.]
- "Standard Model Physics at the HL-LHC and HE-LHC" [CERN-LPCC-2018-03, arXiv:1902.04070]

•
$$W o \mu, c o D^* o D^0 + \pi_{slow} o K + \pi + \pi_{slow}$$

- In (μ)| < 2.4, p_T(c) > 5 GeV
- Measured total cross section and differential cross section as function of |η(μ)|
- Results are used to probe strange density in the proton at NLO (xFitter)

- Calculations done with MCFM at NLO (O(α²_s))
- $\mu_r = \mu_f = M_W, m_c = 1.5 \text{ GeV}$
- Scales varied simultaneosuly by factor 2 (3%)
- Good agreement with theoretical predictions, except using ATLASepWZ16nnlo

- Study performed using xFitter-2.0.0
- Fitted data:
 - HERA DIS
 - CMS W asymmetry at 7 TeV
 - CMS W asymmetry at 8 TeV
 - CMS W+c at 7 TeV
 - CMS W+c at 13 TeV
- PDF uncertainties estimated using standard HERAPDF approach
- Fit uncertainties estimated using HESSE and MC replica methods

$(u) = A = uB_{10} (1 - u)C_{10} (1 + T - u^2)$	Dataset		χ^2/n_{dp}
$xu_{v}(x) = A_{u_{v}} x^{-u_{v}} (1-x)^{-u_{v}} (1+E_{u_{v}}x^{-}),$	HERA I+II charged current	e ⁺ p	43 / 39
$rd_{-}(r) = A_{1} r^{B_{d_{v}}} (1-r)^{C_{d_{v}}}$	HERA I+II charged current	e ⁻ p	57 / 42
$x \mathbf{u}_{\mathbf{V}}(x) = H_{\mathbf{d}_{\mathbf{V}}}(x) (1 x) ,$	HERA I+II neutral current	e ⁻ p	218 / 159
$x\overline{U}(x) = A_{\overline{11}} x^{B_{\overline{11}}} (1-x)^{C_{\overline{11}}} (1+E_{\overline{11}}x^2),$	HERA I+II neutral current	e^+p , $E_p = 820 \text{ GeV}$	69 / 70
$\overline{\mathbf{x}}$	HERA I+II neutral current	e^+p , $E_p = 920 \text{ GeV}$	448 / 377
$xd(x) = A_{\overline{d}} x^{D_{\overline{d}}} (1-x)^{C_{\overline{d}}}$	HERA I+II neutral current	e^+p , $E_p = 460 \text{ GeV}$	216 / 204
u=(u) $A = BE (1 - u)CE$	HERA I+II neutral current	e^+p , $E_p = 575 \text{ GeV}$	220 / 254
$xs(x) = A_{\overline{s}} x^{-s} (1-x)^{-s}$	CMS W muon charge asymmetry 7 TeV	- 1	13 / 11
$r\sigma(r) = A_{z} r^{B_{g}} (1-r)^{C_{g}}$	CMS W muon charge asymmetry 8 TeV		4.2 / 11
$x_{\mathbf{G}}(x) = 2 \log x + (1 - x)^{-1}$	W + c 7 TeV		2.2 / 5
$o(x) = \overline{o}(x)$	W + c 13 TeV		2.1 / 5
S(x) = S(x)	Correlated χ^2		87
$B_{ar{U}} eq B_{ar{d}} eq B_{ar{s}}$	Total χ^2 / dof		1385 / 1160

 \rightarrow Determined *r*_s agree with earlier results obtained in neutrino scattering experiments, but do not support the hypothesis of an enhanced strange quark contribution in the proton quark sea

Measurement of multidifferential $t\bar{t}$ cross sections [CMS-PAS-TOP-18-004]

Why measure $t\bar{t}$ production?

- m_t provides a hard scale ($\alpha_s \approx 0.1$) \Rightarrow ultimate probe of perturbative QCD (NLO, aNNLO, NNLO, ...)
- Produced mainly via gg
 ⇒ constrain gluon PDF at high x
- Production sensitive to α_s and m_t^{pole}
- May provide insight into possible new physics

Why measure multidifferentially?

- differential (1D) tt data provide constraints on gluon PDF [JHEP01 (2015) 082]
- 2D *t*t data: stronger PDF constraints [EPJ C77 (2017) 459]
- 3D [N^{0,1+}_{jet}, M(tt̄), y(tt̄)] cross sections constrain α_s, m^{pole}_t, PDFs:
 - $y(t\bar{t})$ constrains PDFs (boost)
 - N_{jet} constrains α_s (extra radiation)
 - $M(t\bar{t})$ constrains m_t^{pole} (threshold)

Measurement of multidifferential tt cross sections [CMS-PAS-TOP-18-004]

First time measured 3D cross sections as function of $M(t\bar{t})$, $y(t\bar{t})$, N_{jet} :

- $[N_{jet}^{0,1+}, M(t\overline{t}), y(t\overline{t})]$
- $[N_{jet}^{0,1,2+}, M(t\bar{t}), y(t\bar{t})]$

Exploited data for $\alpha_s + m_t$ +PDF extraction at NLO (highest available order for $t\bar{t}$ +jets):

- sensitivity to PDFs from $M(t\bar{t})$, $y(t\bar{t})$ ($x_{1,2} = (M(t\bar{t})/\sqrt{s}) \exp \left[\pm y(t\bar{t})\right]$)
- sensitivity to α_s from N_{jet} and $M(t\bar{t})$, $y(t\bar{t})$ (PDFs)
- sensitivity to m_t from $M(t\bar{t})$ via threshold and cone effects

Data interpretation consists of two parts:

- (1) comparison theory vs data using external PDF sets:
 - extracting α_s keeping m_t^{pole} fixed
 - extracting m_t^{pole} keeping α_s fixed
 - \rightarrow this presents α_s , m_t^{pole} extraction from $t\bar{t}$ data only
- (2) simultaneous fit of PDFs, α_s and m_t^{pole} using $t\bar{t}$ and HERA DIS:
 - \rightarrow this presents fully consistent extraction of α_s , m_t^{pole} and PDFs, but using also HERA data
 - ightarrow important as exercise to understand new $tar{t}$ data, providing baseline for future global fits

$[N_{\text{iet}}^{0,1+}, M(t\bar{t}), y(t\bar{t})]$ compared to NLO predictions with different PDFs

- description depends on PDFs \rightarrow data are sensitive to PDFs
- all modern PDF sets considered
 - best description given by ABMP16

$[N_{\text{iet}}^{0,1+}, \mathcal{M}(t\bar{t}), y(t\bar{t})]$ compared to NLO predictions with different α_s

• \(\alpha_s\) sensitivity comes from different \(N_{jet}\) bins

• further (indirect) sensitivity comes from $[M(t\bar{t}), y(t\bar{t})]$ via sensitivity to PDFs

$[N_{iet}^{0,1+}, M(t\bar{t}), y(t\bar{t})]$ compared to NLO predictions with different m_t^{pole}

- m_t^{pole} sensitivity comes from $M(t\bar{t})$, mainly 1st bin
- this method differs from extracting m^{pole}_t from total tt x-section, and is similar to extracting m^{pole}_t from tt i diff. x-section [EPJ C73 (2013) 2438, CMS-PAS-TOP-13-006, JHEP 1510 (2015) 121]
- previous determination using this method: prelim. D0 results [FERMILAB-CONF-16-383-PPD]

Results: extraction of α_s from $[N_{iet}^{0,1+}, M(t\bar{t}), y(t\bar{t})]$

- used $m_t^{\text{pole}} = 172.5 \text{ GeV}$ in ME for all PDF sets (ABMP16 fitted $m_t^{\text{pole}} = 171.44 \text{ GeV}$)
- precise determination of α_s is possible using these data
- significant dependence on PDF set observed (correlation between g and α_s)

Results: extraction of m_t^{pole} from $[N_{\text{iet}}^{0,1+}, M(t\bar{t}), y(t\bar{t})]$

- used α_s from each PDF set ($\alpha_s = 0.118$ in CT and HERAPDF, $\alpha_s = 0.119$ in ABMP)
- precise determination of m^{pole}_t is possible using these data
 - \rightarrow uncertainty smaller than world average
- no significant dependence on PDF set

Simultaneous PDF + α_s + m_t^{pole} fit: results

- followed standard approach: using HERA DIS data only, or HERA + tt
 data to demonstrate
 added value from tt
 on PDF and α_s determination
- settings follow HERAPDF2.0 fit (very similar to TOP-14-013), use xFitter-2.0.0

Data sets	χ^2/dof				
	Nominal fit	$+[N_{jet}, y(t\bar{t}), M(t\bar{t})]$		35.9 fb ⁻¹ (13 TeV)	
CMS tī		10/23	Solution 400 500 500 600 700 700 <th 70<="" td=""><td> <400 <500 <100 <100 <100 <100 </td></th>	<td> <400 <500 <100 <100 <100 <100 </td>	 <400 <500 <100 <100 <100 <100
HERA CC e^-p , $E_p = 920 \text{ GeV}$	55/42	55/42			
HERA CC e ⁺ p, $E_p = 920 \text{GeV}$	38/39	39/39		t _a η	
HERA NC e^-p , $E_p = 920 \text{ GeV}$	218/159	217/159		1 ¹ 4 1 ³ 1	
HERA NC e^+p , $E_p = 920 \text{GeV}$	438/377	448/377		L, good fit!	
HERA NC e ⁺ p, $E_p = 820 \text{GeV}$	70/70	71/70			
HERA NC e ⁺ p, $E_p = 575 \text{GeV}$	220/254	222/254		···	
HERA NC e^+p , $E_p = 460 \text{GeV}$	219/204	220/204		* *	
Correlated χ^2	82	90	0.8		
Log-penalty χ^2	+2	-7	1 2 1 2 1 2	1 2 1 2 1 2 y(tt)	
Total χ^2 /dof	1341/1130	1364/1151			

 $\begin{aligned} &\alpha_s(M_Z) = 0.1135 \pm 0.0016(\text{fit})^{+0.002}_{-0.0004}(\text{mod})^{+0.0018}_{-0.0001}(\text{par})^{+0.011}_{-0.0005}(\text{scale}) = 0.1135^{+0.0021}_{-0.0017}(\text{total}) \\ &m_t^{\text{pole}} = 170.5 \pm 0.7(\text{fit})^{+0.1}_{-0.1}(\text{mod})^{+0.0}_{-0.1}(\text{par})^{+0.3}_{-0.3}(\text{scale}) \text{ GeV} = 170.5 \pm 0.8(\text{total}) \text{ GeV} \end{aligned}$

 \rightarrow two SM parameters are simultaneously determined from these data to high precision with only weak correlation between them ($\rho=0.3)$ + constraints on PDFs (next slides)

- constrain α_s (left)
- reduce correlation between α_s and gluon (g) (right)
 - weak correlation $(\alpha_s, m_t) \rightarrow$ weak correlation (g, m_t)

Simultaneous PDF + α_s + m_t^{pole} fit: Impact on PDFs

PDFs (α_s in HERA-only fit set to $\alpha_s = 0.1135 \pm 0.0016$)

- \rightarrow reduced g uncertainty at high x
- \rightarrow smaller impact on other distributions via correlations in the fit

Extraction of α_s and m_t from total $t\bar{t}$ cross section [arXiv:1812.10505]

• α_s and $m_t(m_t)$ extracted from the total $t\bar{t}$ cross section at NNLO using different PDF sets

- Theoretical predictions obtained using Hathor interfaced in xFitter
- Furthermore, m^{pole}_t extracted at NNLO+NNLL using Top++

PDF constraints from double-differential $t\bar{t}$ cross sections [1902.04070]

 Presented projection of CMS differential tt cross section measurements in e/µ+jets channel with 3 ab⁻¹ at 14 TeV

O. Zenaiev

PDF constraints from differential tt
 cross sections as functions of M(tt
) and y(tt
) are estimated using profiling technique implemented in xFitter

 \rightarrow strong impact on gluon PDF at high x in any modern PDF set

xFitter at CMS Data Analysis School

- xFitter was presented at CMS Data Analysis School at DESY in September 2018
- The exercises were about getting familiar with PDF fitting using xFitter and studying impact of CMS measurements on PDFs
- The team of young people (new to xFitter) created a "new PDF set" in two days

- New CMS measurements of tt
 and W+c production facilitate improved determination of proton PDFs
- xFitter as unique open source platform for PDF fitting plays crucial role in data interpretation
- New CMS analyses provide and exploit new developments in xFitter:
 - ▶ 3D tt measurement used recent developments in xFitter theory interface
 - new reaction (KMatrix) was implemented in the context of this analysis
- Future synergy between xFitter team and experimental collaborations is important to fully reveal potential of LHC data

BACKUP

NLO calculations

NLO predictions for inclusive tt
 t t + 1 jet and tt
 t t + 2 jets are computed and compared to data using MadGraph5_aMC@NLO + aMCfast + ApplGrid + xFitter:

$$\begin{bmatrix} N_{jet}^{0,1+}, M(t\bar{t}), y(t\bar{t}) \end{bmatrix} \text{ with } 2 N_{jet} \text{ bins:} \\ \star \sigma^{NLO}(N_{jet} = 0) = \sigma^{NLO}(t\bar{t}) - \sigma^{NLO}(t\bar{t} + 1jet) \\ \star \sigma^{NLO}(N_{jet} > 0) = \sigma^{NLO}(t\bar{t} + 1jet) \\ \end{bmatrix} \\ \begin{bmatrix} N_{jet}^{0,1,2+}, M(t\bar{t}), y(t\bar{t}) \end{bmatrix} \text{ with } 3 N_{jet} \text{ bins:} \\ \star \sigma^{NLO}(N_{jet} = 0) = \sigma^{NLO}(t\bar{t}) - \sigma^{NLO}(t\bar{t} + 1jet) \\ \star \sigma^{NLO}(N_{jet} = 1) = \sigma^{NLO}(t\bar{t} + 1jet) - \sigma^{NLO}(t\bar{t} + 2jets) \\ \star \sigma^{NLO}(N_{jet} > 1) = \sigma^{NLO}(t\bar{t} + 2jets) \\ \end{bmatrix}$$

• $\mu_r = \mu_f = H'/2$, $H' = \sum_i m_{T,i}$ where the sum runs over all final-state partons (t, \bar{t} and up to three light partons in the $t\bar{t} + 2$ jets calculations) and $m_T = \sqrt{m^2 + p_T^2}$. Uncertainties:

- μ_r , μ_f are varied by factor 2 (6 variations in total)
- alternative functional form $\mu_r = \mu_f = H/2$, $H = \sum_i m_{T,i}$ with the sum runs over t and \overline{t}
- $m_t^{\text{pole}} = 172.5 \pm 1 \text{ GeV}$ (sometimes $\pm 5 \text{ GeV}$ for presentation purposes)
- PDFs and α_s from several groups via LHAPDF, $\alpha_s \pm 0.001$ for uncertainties (sometimes ± 0.005 for presentation purposes)
- multiplied with non-perturbative corrections (< 5%) from parton to particle jet level (BACKUP)

Data and theory uncertainties $[N_{iet}^{0,1+}, M(t\bar{t}), y(t\bar{t})]$

- Bins are grouped for $y(t\bar{t}), M(t\bar{t})$ and N_{iet} (separated by different vertical lines)
- NLO scale uncertainties are comparable to PDF, α_s and m_t uncertainties

 \rightarrow data can constrain PDF, α_s and m_t

Scale uncertainties are considerably smaller for $[N_{\text{iet}}^{0,1+}, M(t\overline{t}), y(t\overline{t})]$

 $\rightarrow [N^{0,1,2+}_{i
m et}, M(t\bar{t}), y(t\bar{t})]$ is used for cross check only

Cross checks

Cross checks of α_s and m_t^{pole} extraction (all results in backup):

- using $[N_{jet}^{0,1,2+}, M(t\bar{t}), y(t\bar{t})]$
- using single-differential N_{jet} , $M(t\bar{t})$ or $y(t\bar{t})$ cross sections
- using $[p_T(t\bar{t}), M(t\bar{t}), y(t\bar{t})]$ cross sections with 2 $p_T(t\bar{t})$ bins
- using unnormalised cross sections
- → consistent results obtained in all cross checks
- → in this analysis, observables $(\frac{1}{\sigma} \frac{d\sigma}{d..})$ have been chosen to have maximum sensitivity to QCD parameters and minimum experimental and scale uncertainties

Remarks on limitations in theory calculations

NLO is the only available theory publicly available today, but there are limitations:

- impact of missing threshold resummation is $\Delta m_t \sim 0.7$ GeV [Eur.Phys.J. C60 (2009) 375]
- impact of missing FSR resummation is $\Delta m_t \sim 0.5$ GeV [Eur. Phys. J. C73 (2013) 2438]
 - in general, good agreement between NLO and NLO+PS [Fig. 1 in Eur. Phys. J. C73 (2013) 2438]
- EW corrections could be a few % near threshold [Phys. Rev. D91 (2015) 014020] [JHEP10 (2017) 186]

most wanted is NNLO QCD

α_s and m_t^{pole} from $[N_{\text{jet}}, mtt, y(t\bar{t})]$ with 3 N_{jet} bins

α_s and m_t^{pole} from $[p_T(t\bar{t}), mtt, y(t\bar{t})]$ with 2 $p_T(t\bar{t})$ bins

α_s and m_t^{pole} from single-differential cross sections

29/21

Simultaneous PDF+ $\alpha_s + m_t^{\text{pole}}$ fit: settings

- followed standard approach: using HERA DIS data only, or HERA + $t\bar{t}$ data to demonstrate added value from $t\bar{t}$ on PDF and α_s determination
- settings follow HERAPDF2.0 fit (very similar to TOP-14-013), use xFitter-2.0.0
- input data: combined HERA DIS [1506.06042] + tt
- RTOPT, $M_c = 1.47$ GeV, $M_b = 4.5$ GeV, $Q_{min}^2 = 3.5_{-1.0}^{+1.5}$ GeV²
- predictions fot tt data via MadGraph5_aMC@NLO + aMCfast + ApplGrid,

 $\mu_r = \mu_f = H_t/4, H_t = \sqrt{m_t^2 + (p_T(t))^2} + \sqrt{m_t^2 + (p_T(\bar{t}))^2}$ varied by factor 2

- dependence on \(\alpha_s\) and scales written in ApplGrid tables
- dependence on m^{pole}_t derived by linear interpolation between tables generated with different values of m^{pole}_t (new feature for xFitter)
- ▶ kinematic range probed by $t\bar{t}$: $x = (M(t\bar{t})/\sqrt{s}) \exp[\pm y(t\bar{t})] \Rightarrow 0.01 \leq x \leq 0.1$
- 15-parameter form (backup) determined using parametrisation scan (one extra g parameter required by $t\bar{t}$ data) at $Q_0^2 = 1.9 \text{ GeV}^2$, $f_s = 0.4 \pm 0.1$
- DGLAP NLO PDF evolution via QCDNUM-17.01.14
- PDF uncertainties: fit (Δχ² = 1 via HESSE, cross checked with MC replica method), model and parametrisation; in addition for α_s and m^{pole}_t scale uncertainties for tt are considered

Determined using parametrisation scan:

$$\begin{split} x_{g}(x) &= A_{g} x^{B_{g}} \left(1-x\right)^{C_{g}} \left(1+E_{g} x^{2}\right) - A_{g}' x^{B_{g}'} \left(1-x\right)^{C_{g}'},\\ x_{u_{\nu}}(x) &= A_{u_{\nu}} x^{B_{u_{\nu}}} \left(1-x\right)^{C_{u_{\nu}}} \left(1+D_{u_{\nu}} x\right),\\ x_{d_{\nu}}(x) &= A_{d_{\nu}} x^{B_{d_{\nu}}} \left(1-x\right)^{C_{d_{\nu}}},\\ x \overline{U}(x) &= A_{\overline{U}} x^{B_{\overline{U}}} \left(1-x\right)^{C_{\overline{U}}} \left(1+D_{\overline{U}} x\right),\\ x \overline{D}(x) &= A_{\overline{D}} x^{B_{\overline{D}}} \left(1-x\right)^{C_{\overline{D}}}, \end{split}$$

- additional gluon parameyter (E_g) required by new $t\bar{t}$ data
- PDF parametrisation uncertainties given by $A'_g = 0$ (13p) and $E_g = 0$ (14p), and $Q_0^2 = 1.9 \pm 0.3$ GeV² variation