ATLAS Results / Requests related to PDFs/xFitter

Zhiqing Zhang (LAL, Orsay, Univ. Paris-Saclay)

Outline

- 1. Motivation
- 2. Ongoing analyses
- 3. Other measurements
- 4. Requests to xFitter
- 5. Summary

Motivations

PDF uncertainties

the dominant uncertainty for essentially all precision measurements at the LHC, e.g.

- ► W boson mass
- ► Weak mixing angle

a limiting factor even for BSM searches

W Boson Mass and PDF Uncertainty

Eur. Phys. J. C 78 (2018) 110

	Stat. Unc.	Muon Unc.	Elec. Unc.	Recoil Unc.	Bckg. Unc.	QCD Unc.	EW Unc.	PDF Unc.	Total Unc.	
$\left. \frac{W^+}{W^-} \right $	$8.9 \\ 9.7$	$6.6 \\ 7.2$	8.2 7.8	$3.1 \\ 3.3$	$\begin{array}{c} 5.5 \\ 6.6 \end{array}$	$\begin{array}{c} 8.4\\ 8.3\end{array}$	$5.4 \\ 5.3$	$\begin{array}{c} 14.6\\ 13.6\end{array}$	$23.4 \\ 23.4$	[MeV]
W^{\pm}	6.8	6.6	6.4	2.9	4.5	8.3	5.5	9.2	18.5	

CT10_{NNLO} vs. CT14 & MMHT14

xFitter workshop, Minsk, March 18-20, 2019

Weak Mixing Angle and PDFs

ATLAS-CONF-2018-037

To be compared with 0.23150 ± 0.00006 (global EW fit)

Comparable precision with other experiments PDFs uncertainty is by far the dominant systematic uncertainty source

Channel	eecc	μμ _{CC}	ee _{CF}	$ee_{CC} + \mu\mu_{CC}$	eecc	$+\mu\mu_{CC}+$	ee _{CF}		
Central value	0.23148	0.23123	0.23166	0.23119		0.23140			
				Uncertainties					
Total	68	59	43	49		36			
Stat.	48	40	29	31		21			-
Syst.	48	44	32	38		29		C	-on
		-	Uncerta	inties in measuremer	nts				
PDF (meas.)	8	9	7	6		4		e	sxh
$p_{\rm T}^Z$ modelling	0	0	7	0		5		_	
Lepton scale	4	4	4	4		3		F	PDF
Lepton resolution	6	1	2	2		1			
Lepton efficiency	11	3	3	2		4		C	don
Electron charge misidentification	2	0	1	1		< 1			
Muon sagitta bias	0	5	0	1		2		5	sou
Background	1	2	1	1		2			_
MC. stat.	25	22	18	16		12			
			Uncer	tainties in predictions	s				
PDF (predictions)	37	35	22	33		24		MMHT	-14
QCD scales	6	8	9	5		6			
EW corrections	3	3	3	3		3			

xFitter workshop, Minsk, March 18-20, 2019

Impact of LHC Run-1 data on PDFs

<u>1902.04070</u>

Around the Higgs boson mass, the uncertainty on the PDFs is reduced to a few %
 The uncertainty at large x is still large -> need further improvement

xFitter workshop, Minsk, March 18-20, 2019

ATLAS Results/Analyses using xFitter

Previous publications:

- ► QCD analysis W-lv Z-ll & strange sea density, 1203.4051 → ATLAS-epWZ12
- ► High mass DY at 8 TeV, 1606.01736
- ► W and Z inclusive cross section 2011, 1612.03016 → ATLAS-epWZ16
- > ttbar and Z xsection ratios, 1612.03636
- ► XS ttbar lepton differential 8 TeV, 1709.09407

Ongoing analyses [focus of the talk]:

 \blacktriangleright Determination of the parton distributions functions of the proton from

ATLAS measurements of differential W and Z/y* boson and ttbar cross

sections, ATL-PHYS-PUB-2018-017 → ATLASepWZtop18

First ATLAS QCD analysis of W/(Z)+jets

Simultaneous fit of PDFs and weak mixing angle to Z3D 8 TeV

ATLASepWZtop18 Fit (1)

Input data:

► HERA ep

► ATLAS W/Z inclusive 7 TeV

> ATLAS ttbar lepton+jet (p_T , m_{ttbar}) + dilepton (y_{ttbar})

Theoretical framework

► xFitter

- \blacktriangleright DIS ep NNLO, u_F=u_R=Q
- Inclusive W/Z NNLO QCD + NLO EW (APPLGRID+K-factors), scale: m_{II} (Z)/m_W(W)
- ► ttbar NNLO lepton+jet (FastNLO grids), dilepton (APPLGRID+K-factors), scale: $m_{\rm T}/2$ with $m_{\rm T} = \sqrt{m_t^2 + p_{\rm T}^2}$ for $p_{\rm T}$ and $H_{\rm T}/4$ with $H_{\rm T} = \sqrt{m_t^2 + p_{\rm T}^{t2}} + \sqrt{m_t^2 + p_{\rm T}^{t2}}$ for m_{ttbar}, y_{ttbar}

PDF parameterisation

$$\begin{aligned} xq_i(x) &= A_i x^{B_i} (1-x)^{C_i} P_i(x) \\ xg(x) &= A_g x^{B_g} (1-x)^{C_g} P_g(x) - A'_g x^{B'_g} (1-x)^{C'_g} \\ \text{with} \quad P_i(x) &= (1+D_i x + E_i x^2) e^{F_i x} \end{aligned}$$

xFitter workshop, Minsk, March 18-20, 2019

Zhiqing Zhang, LAL, Orsay

ATL-PHYS-PUB-2018-017

ATLASepWZtop18 Fit (2)

		lepton+jets p_T^t , m_{tt}	ATL-PHYS-PUB-2018-01
		and dilepton y_{tt} spectra	
total χ^2/NDF		1253.8 / 1061	
Partial χ^2 /NDP	HERA	1149/1016	
Partial χ^2 /NDP	ATLAS $W, Z/\gamma^*$	78.9 / 55	
Partial χ^2 /NDP	ATLAS lepton+jets p_T^t , m_{tt}	16.0/15	
Partial χ^2 /NDP	ATLAS dilepton y_{tt}	5.4 / 5	

Good partial chi2 values for top data sets

Harder gluon density at high x Improved experimental uncertainty in particular at high x

ATLASepWZtop18 Fit (3)

ATL-PHYS-PUB-2018-017

Other sea quarks compatible with epWZ PDF set

Somewhat softer strange quark at high x

Though all difference remain essentially within the new uncertainty bands

W+jets Cross Sections at 8 TeV (1)

Based on data at 8 TeV, 20.2 fb-1

1711.03296

 $W^{+/-}$ +jets cross sections measured as functions of leading jet P_T , $W p_T$, H_T , and rapidity in the e+v channel for events with at least one or two jets

W⁺/W⁻ cross section ratios have improved precision up to a factor 9

The measurements are compared with predictions from different PDF sets and event generators

→ Valuable measurements for constraining u/d-quark & g densities

W+jets Cross Sections at 8 TeV (2)

1711.03296

These data together with others are being used to produce a PDF set ATLASepWZVjet19 Mains results on high-x strange sea and dbar-ubar distributions

xFitter workshop, Minsk, March 18-20, 2019

3D Cross-Section of DY Events at 8 TeV (1)

Also based on data at 8 TeV, 20.2 fb⁻¹ 3d cross sections measured in the m_{II} range 46-200 GeV, $|y_{II}| < 2.4$ for ee & $\mu\mu$ 66-150 GeV, $|y_{ee}| < 3.6$ for ee The precision of combined ee and $\mu\mu$ cross sections better than 0.5%

The 3d cross section are sensitive to both PDFs and weak mixing angle

$$\begin{aligned} \frac{\mathrm{d}^{3}\sigma}{\mathrm{d}m_{\ell\ell}\mathrm{d}y_{\ell\ell}\mathrm{d}\cos\theta^{*}} &= \frac{\pi\alpha^{2}}{3m_{\ell\ell}s}\sum_{q}P_{q}\left[f_{q}(x_{1},Q^{2})f_{\bar{q}}(x_{2},Q^{2}) + (q\leftrightarrow\bar{q})\right] \\ & \text{This terms takes over at } m_{\mathrm{H}}\sim m_{Z} \end{aligned}$$

$$P_{q} = \underbrace{e_{\ell}^{2}e_{q}^{2}(1+\cos^{2}\theta^{*})}_{\mathrm{e}\ell}\underbrace{\gamma \text{ exchange}}_{\mathrm{e}\ell}\underbrace{2m_{\ell\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{\ell\ell}^{2}-m_{Z}^{2})}_{\mathrm{e}\ell}\underbrace{p_{\ell}^{2}(m_{$$

xFitter workshop, Minsk, March 18-20, 2019

3D Cross-Section of DY Events at 8 TeV (2)

Z3D cross sections and A_{FB} are being used in a fit to determine simultaneously the PDFs and weak mixing angle

Zhiqing Zhang, LAL, Orsay

xFitter workshop, Minsk, March 18-20, 2019

Other Measurements

- □ Data used by others e.g. for TMDs (1902.08474):
 - Z transverse momentum at 7 TeV, 1406.3660
 - Z pt and Zphistar with 2012 data, 1512.02192
- \Box Data sensitive to a_s and gluon at high x:
 - Inclusive jets at 7 TeV in 2011, 1410.8857 [already used in global PDF fits]
 - ► Inclusive jets at 8 TeV, 1706.03192
 - ► Inclusive jets and dijets 2015 data, 1711.02692
- □ Data sensitive to quark flavour decomposition:
 - ► W and Z cross sections at 13 TeV, 1603.09222
 - ► 2015 pp 5.02 TeV W and Z, 1810.08424
 - ► W± and Z cross sections at 2.76 TeV, ongoing
 - Z inclusive jets pTy 8 TeV, ongoing
 - ► W cross section (and A₁) at 8TeV, ongoing
- Data sensitive to heavy flavours and gluon:
 - Photon + heavy flavour at 8 TeV, 1710.09560
 - Photon cross-section ratios at 8/13, 1901.10075

Inclusive jets at 8 TeV

Based on data at 8 TeV, 20.2 fb⁻¹

<u>1706.03192</u>

Measurement of double differential cross section with anti-kt R=0.4 or 0.6 in 6 rapidity bins between 0 and 3 for jet p_T between 70 GeV and 2.5 TeV

Theory/data ratio is shown here, the data itself varies over 9 order of magnitude

xFitter workshop, Minsk, March 18-20, 2019

Inclusive jets and dijets 2015 data

Based on data at 8 TeV,

effective luminosity value varies from 81 nb⁻¹ (prescaled low p_T jet) to 3.2 fb⁻¹

Measurement of inclusive and dijet differential cross section with anti-kt R=0.4 in 6 rapidity bins between 0 and 3 for inclusive jet p_T between 100 GeV and 3.5 TeV and dijet mass between 300 GeV and 9 TeV

ATLAS Dijet theory/ Theory/Data Theory/Data 1.4F y*<0.5 $1.5 \le y^* < 2.0$ data ratio is $L=81 \text{ nb}^{-1}$ - 3.2 fb⁻¹ shown here as 0.8 0.8 √s = 13 TeV 0.6 0.6 an example anti-k, R=0.4 1.6 $2.0 \le y^* < 2.5$ 1.4E $0.5 \le y^* < 1.0$ (scale error Data 14 1.2E dominates NLO QCD 0.8 $\otimes k_{FW} \otimes k_{NP}$ the theory 0.8 0.6 $\mu = p_{\perp} \exp(0.3y^*)$ uncertainty) $2.5 \le y^* < 3.0$ 1.0≤y*<1.5 1.4F CT14 1.2 1.5 MMHT 2014 ***** 0.8 NNPDF 3.0 0.6 0.5H $10^3 2 \times 10^3$ 7×10²10³ 2×10³ 3×10² 10⁴ 10^{4} m_{ii} [GeV] m_{ii} [GeV]

xFitter workshop, Minsk, March 18-20, 2019

Zhiqing Zhang, LAL, Orsay

1711.02692

W and Z cross sections at 13 TeV

Small data set at 13 TeV, 81 pb⁻¹

Measurements of fiducial W, Z cross sections and their ratios. W^+/W^- cross section ratio has a precision of 0.8%

The measurements are compared with predictions of NNLO QCD + NLO EW

xFitter workshop, Minsk, March 18-20, 2019

1603.09222

2015 pp 5.02 TeV W and Z

1810.08424

Small data set at 5.02 TeV, 25 pb⁻¹

Measurements of differential W, Z cross section vs rapidity as well as W charge asymmetry

xFitter workshop, Minsk, March 18-20, 2019

Photon + Heavy Flavor at 8 TeV

Based on data at 8 TeV with 4.58 pb⁻¹ at E_T^{γ} trigger threshold of 20 GeV up to 20.2 fb⁻¹ at 120 GeV

Central: E_T^v: 25-400 GeV, |n_v|<1.37 Forward: E_T^v: 25-300GeV, |n_v|: 1.56-2.37

Measurements of differential cross sections γ + b/c vs. E_T^{γ} in two eta regions as well as the ratio of central over forward cross section.

PC: perturbative charm FC: fitted charm BHPS: intrinsic charm model (1, 2 refer to different fractions)

Photon Cross-Section Ratios at 8/13

1901.10075

Based on data samples: 8 TeV, 20.2 fb⁻¹ 13 TeV, 3.2 fb⁻¹

Measurements of cross section ratios of inclusive isolated photon production of 13 TeV over 8 TeV as well as double ratios over fiducial cross section ratios of Z boson production in 4 photon pseudorapidity ranges for photon E_T of 125 - 1500 GeV

The dominant production process qg->qy is sensitive to the gluon density

Requests to xFitter

Is there a tool to convert a data set from HEPData to the format needed by xFitter [Juan Tafoya]?

- To have TOP++ interfaced to xFitter as an alternative to Hathor [Artur Trofymov started, was it done?]
- Any plan to interface with <u>Ploughshare</u> [Mark Sutton]?
- □ Is it possible to generate/share grid files?
- Extension to perform combined PDFs (QCD) + EW fits

Summary

Early LHC Run-1 data already helped to constrain the PDFs

A few fits are being performed mainly to improve the uncertainty of the gluon density and assess the behaviour of the strange quark

More data are available to further constrain the PDFs as well as other (EW) parameters

Important to have higher order QCD (and EW) calculations and (jet) production grid files ready in parallel