

QCDNUM Status and Plans

Michiel Botje Nikhef, Amsterdam

xFitter external workshop Minsk March 18, 2019

QCDNUM releases

- <u>17-01/14</u>: Released 21-Dec-2017
 - C++ interface for out-of-the-box, ZMSTF and HQSTF

arXiv:1712.08162

17-01/15: Will be released today

- Out-of-the-box evolution routine with intrinsic heavy flavours
- New out-of-the-box singlet/non-singlet evolution routine
- New routine to set cuts in the kinematic plane
- More flexibility in setting thresholds
- Evolution start scale can be anywhere in μ^2
- Pdf access not anymore restricted to those with current parameters

Backward compatible (almost)

Just install 17-01/15 and enjoy the <u>added</u> features

Scheme selection and threshold settings

Scheme	nfix	Thresholds		
FFNS	3/4/5/6	No flavour thresholds		
VFNS 0		iqc	Boundary nf = 3/4	
		iqb Boundary nf = 4/5 must be iqb ≥ iqc+2		
		iqt	Boundary nf = 5/6 must be iqt ≥ iqb+2	

Settings in SETCBT more flexible than before

 EVOLFG has no start point restriction so that one may put any single threshold, or any two consecutive thresholds, or all three thresholds

- nfix = 0: select VFNS with dynamic heavy flavours
- nfix = 1 : select VFNS with intrinsic heavy flavours (see later)

Reminder: two μ^2 grids

- Internally a threshold is stored twice
 - With n_f above threshold
 - With n_f below threshold
- The user sees two grids

```
-iq = +iqh : n_f above threshold (456-grid)
```

- $-iq = -iqh : n_f$ below threshold (345-grid)
- To see charm matching discontinuity, for instance:

```
FVALIJ(iset,id,ix,+iqc,1) - FVALIJ(iset,id,ix,-iqc,1)
```

<u>Updated EVOLFG routine</u>

```
call EVOLFG(itype,func,def,iq0,epsi)
```

Same argument list as before but more flexible

- itype now allows you to select the output pdf set
- iq0 can be anywhere within the grid or cuts
- func accepts parameterisation of intrinsic heavy flavours

Output pdf set selection in EVOLFG

 Evolution type selection via itype allows for direct storage of evolved pdfs into any pdf set [1-24]

- Thus itype=52 stores polarised pdfs in set 5, etc.
- This provides an alternative to copying pdf set 1, 2, 3 to another set with PDFCPY

Start scale in EVOLFG

- Previously the VFNS start scale had to be below the charm threshold: evolution always started at nf = 3
- Now the VFNS start scale can be anywhere inside the grid: evolution can start at nf = 3, 4, 5, 6 NEW
- When you start the evolution at a threshold iqh:

<u>Reminder</u>

QCDNUM back evolution is iterative but reasonably accurate

To see what EVOLFG does exactly

call SETINT('edbg',1)

```
NEW
```

```
forward -----
                    9 	 nf = 3 	 start
EVOLVE iq1,2 =
                9 9 nf = 3 4
JUMPNF iq1,2 =
                9 18 nf = 4
EVOLVE iq1,2 =
                   18 \quad nf = 4 \quad 5
JUMPNF iq1,2 =
               18
EVOLVE iq1,2 =
               18 	 44 	 nf = 5
                       nf = 56
JUMPNF iq1,2 = 44
                   44
EVOLVE iq1,2 =
                       nf =
EVOLVE iq1,2 = 9 1 nf =
                             3 start
```

```
----- forward -----
EVOLVE iq1,2 =
                  18
                      nf =
                            4 start
JUMPNF iq1,2 =
              18
                  18
                      nf =
EVOLVE iq1,2 =
                      nf =
              18
                  44
                      nf = 5 6
JUMPNF iq1,2 =
              44 44
EVOLVE iq1,2 =
                      nf =
           --- reverse ----
EVOLVE iq1,2 = 9 9 nf = 4 start
JUMPNF iq1,2 =
               9 9 nf = 4 3
                      nf =
EVOLVE iq1,2 =
```

$$iq0 = -iqc$$

3 -> 4 transition forward evolution

Here is an example showing what happens when we start the evolution at the charm threshold with 3 (-iqc) or 4 (+iqc) flavours

New EVSGNS routine

```
call EVSGNS(itype,func,isns,n,iq0,epsi) NEW
```

```
isns(i) Type of evolution (singlet/gluon, non-singlet)
n Number of evolutions
```

Creates a user-pdf set with n+1 pdfs

- It is not possible to match arbitrary sets of pdfs so that the evolution can only run in the FFNS or MFNS
- There is also a routine to import arbitrary pdf sets

call USRPDF(func, iset, n, offset, epsi)

Input pdfs for n_f active flavours

Input pfs are parameterised in func(j,x)

```
function func(j,x)

if(j.eq.-1) initialise func

if(j.eq. 0) func = gluon(x)
   if(j.eq. 1) func = pdf01(x)
   ...
   if(j.eq.12) func = pdf12(x)

return
end
Dummy call with j = -1

NEW
```

- Called for the $j = 0, ..., 2n_f$ input pdfs at μ_0^2
- Parameterisations for $j > 2n_f$ are ignored

Flavour composition of input pdfs

Contribution of flavour i to f; is given in def(i,j)

	$\overline{\mathrm{t}}$	$ar{\mathrm{b}}$	$\bar{\mathrm{c}}$	$\overline{ ext{S}}$	$\bar{\mathrm{u}}$	$ar{\mathrm{d}}$	g	d	u	\mathbf{S}	\mathbf{c}	b	\mathbf{t}
i	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6
j=1	6	5	4	3	3	3	•	3	3	3	4	5	6
2	6	5	4	3	3	3	•	3	3	3	4	5	6
3	6	5	4	3	3	3	•	3	3	3	4	5	6
4	6	5	4	3	3	3	•	3	3	3	4	5	6
5	6	5	4	3	3	3	•	3	3	3	4	5	6
6	6	5	4	3	3	3	•	3	3	3	4	5	6
7	6	5	4	4	4	4	•	4	4	4	4	5	6
8	6	5	4	4	4	4	•	4	4	4	4	5	6
9	6	5	5	5	5	5	•	5	5	5	5	5	6
10	6	5	5	5	5	5	•	5	5	5	5	5	6
11	6	6	6	6	6	6	•	6	6	6	6	6	6
12	6	6	6	6	6	6	•	6	6	6	6	6	6

- EVOLFG takes $2n_f \times 2n_f$ sub-matrix and ignores the rest
- Independent pdf input requires non-singular sub-matrix

VFNS with intrinsic heavy flavours

Set nfix = 1 in upstream call to SETCBT

- Provide parameterisation in func(j,x) for $j > 2n_f$
- Specify flavour composition in def(i,j) for j > 2n_f
 - Accepts only a linear combination of h and hbar without admixture of other flavours
 - Row of zero's terminates the heavy flavour input
- Input provides scale-independent density below threshold and evolution start point at threshold

NB: input heavy flavours at μ_0^2 are <u>always</u> intrinsic

Matching with intrinsic heavy flavours

R.D. Ball et al. PLB754, 49 (2016) arXiv:1510.00009

More complicated since heavy quark enters the game at NLO

$$\Delta g = a_{s} A_{gh} \otimes h^{+} + a_{s}^{2} \{A_{gq} \otimes q_{s} + A_{gg} \otimes g\}$$

$$\Delta h^{+} = a_{s} A_{hh} \otimes h^{+} + a_{s}^{2} \{A_{hq} \otimes q_{s} + A_{hg} \otimes g\}$$

$$\Delta h^{-} = a_{s} A_{hh} \otimes h^{-}$$

$$\Delta q_{i}^{\pm} = a_{s}^{2} A_{qq} \otimes q_{i}^{\pm}$$

$$BMSN (NNLO)$$

- <u>Difficulty</u>: the QCDNUM pdf basis maximally decouples DGLAP but not the matching equations
- Therefore transform to a basis that better decouples the ME
- Reverse matching is numerically unstable ⇒ iterative solution
- All this is documented in the write-up Appendix C and D

Cuts in the kinematic plane

call SETLIM(ixmin, iqmin, iqmax, dum)

- Set kinematic cuts for
 - Next evolution by EVOLFG or EVDGLAP (toolbox)
 - Next pdf import by EXTPDF
- To release cut set parameter to zero
- Useful for speeding-up pdf fits
 - In χ^2 loop limit evolution to kinematic range of the data
 - After convergence evolve, only once, on full grid
- Useful to define kinematic range of imported pdf set

Evolution parameter keys

There are 12 parameters divided in 6 groups

```
1. order (1) 3. thresholds (4-7) 5. cuts (10-12) 2. \alpha_s (2-3) 4. scale (8-9) 6. all (1-12)
```

- All settings are stored in a repository and given a version number (key): (un)equal keys means (un)equal parameters
- Handy for quick checks on parameter groups

E.g. pdf sets with the same threshold settings have

```
KEYGRP(iset1,3) == KEYGRP(iset2,3)
```

Summary of new subroutines

WTFILE	Maintain an up-to-date weight file on disk

NFRMIQ Number of flavours vs μ^2 for a given pdf set

SETLIM Set evolution limits

GETLIM Get current limits

KEYGRP Key (version number) of a parameter group

EVSGNS Evolve an arbitrary set of singlet/non-singlet pdfs

USRPDF Import an arbitrary pdf set

IEVTYP Get evolution type of a pdf set

FFPLOT Generate plot file (for gnuplot)

Pdf access

- PDF tables are somewhat complicated objects with a μ^2 subgrid structure, depending on the threshold settings
- Subgrids are handled by fast pointer-tables
- There used to be <u>one</u> pointer-table for the current settings which restricted pdf access to those settings only
- Now every pdf set has its own pointer-table so that access is not anymore restricted

Change of basis

- There are two changes in the basis definition
 - $-e_2 = u d$ has changed to d u
 - $-e_h = h^{\pm}$ for heavy quarks below threshold
- This should not affect your code unless you use the basis pdfs instead of the flavour pdfs
- The reason for these changes is the introduction of a fast transformation algorithm, including transformation to a special basis for intrinsic heavy quark matching

<u>Performance</u>

- Standard timing test of 1000 evolutions and 2M structure function calculations (mimic a pdf fit)
- On a MacBook Pro 2018 this gives

5.7 sec	QCDNUM-17-01/14
6.2 sec	QCDNUM-17-01/15

- About 10% speed penalty for 17-01/15
- Modest price for a lot of increased flexibility

Accuracy of iterative reverse evolution

- Do NNLO VFNS evolution
- Evolve from 2 to 10⁴ GeV²
 and then back to 2 GeV²
- Compare forward and reverse evolution for all 13 basis pdfs

id =	0	dif =	0.0014
id =	1	dif =	0.0019
id =	2	dif =	0.0018
id =	3	dif =	0.0019
id =	4	dif =	0.0016
id =	5	dif =	0.0001
id =	6	dif =	0.0000
id =	7	dif =	0.0019
id =	8	dif =	0.0018
id =	9	dif =	0.0019
id =	10	dif =	0.0000
id =	11	dif =	0.0000
id =	12	dif =	0.0000

Small hiccup

- Pomeron evolution with input gluon peaked at very large x
- Multiple x-grids show up in the evolved gluon (and singlet)
- Will be improved in the next QCDNUM release

Thanks to Daniel Britzger for spotting the problem

EVOLSG threading with OpenMP

- At fixed nf, the 2nf singlet and nonsinglet evolutions can in principle be run in parallel (up to 12 evolutions)
- OpenMP directives are not yet implemented but by design the new EVOLSG routine should be thread-safe
- Proof of principle in MickeyMouse code: fake evolution of 6 pdfs distributed over 4 threads on my MacBook

```
PDF 1 NF 6 evolved up in thread 0
PDF 2 NF 6 evolved up in thread 0
PDF 3 NF 6 evolved up in thread 1
PDF 4 NF 6 evolved up in thread 1
PDF 5 NF 6 evolved up in thread 2
PDF 6 NF 6 evolved up in thread 3
```

Might become quite a CPU saver when it all works ...

QCDNUM short-term todo list

- Put OpenMP directives in EVOLSG for parallel running
- Better handling of multiple x-grids
- Upgrade polarised and time-like evolution to NNLO
- Turn Renats QCD-QED code into a QEDEVOL package (this is after a re-design of the toolbox)

Long-term code development

- QCDNUM memory is a collection of table sets stored in a large linear array (workspace)
- Routines that operate on a set only care about the position (base address) of table sets in the workspace
- Thus we can have one large workspace with many sets (FORTRAN) or many workspaces with one set (C++)
- In this way table sets can become objects of a C++ class and C++ wrappers of FORTRAN routines can become member functions of that class

Long-term program structure

- There are a lot of internal changes in 17-01/15
- Code passes all my tests
- But please stress-test the program in xFitter and report problems to me