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Motivation:
We want to develop an approach in which transverse momentum kinematics will be treated
without any mismatch between matrix element (ME) and PS

Standard MC predictions Alternative approach:
Eur. Phys. J. C19, 351 (2001)

between PDF used by 6 and PS . 6 and PS follow the same TMD

to construct TMDs in a wide range of x, k| and p? L



Plan for today

Plan for today:

e brief reminder of the Parton Branching (PB) method
e TMDs from PB using xFitter

e comparison of PB with other existing approaches



PB in a nutshell



PB as a method to solve DGLAP

evolution equation

dfxp

Ty Z/ dz Pap( u z fb(x/z,u) z=x/X, c 0

xf(x, u?) = F(x, u?)



PB as a method to solve DGLAP

evolution equation
: a
d f(x, %) /1 R o\ 2
— = dz P ,z) fp(x/z z=x/X, c
din 12 ;(x (1”5 2) fo(x/z, 17) /%, n
» b
X,
f(x, n2) = Flx, p?) '
We use:
° to have only splitting functions = abﬁ + Rap
° : to define z < zpm and z > zp branchings
2 2 5
. form factor = exp <7 e di—,; o jOZM dzzPf (,u,'z,z)> which is the probability of
I

an evolution without any resolvable branching



PB as a method to solve DGLAP

DGLAP evolution equation

x,P
a
d fi(x, Hz) ! 2 = 2
_ 7 = = C
dnpE Z/X dz Payp(p®, z) fu(x/z, %) Z=X,/%, n
» b
X,
xf(x, p2) = Flx, u?) '
We use:
e momentum sum rule to have only real splitting functions Pi, = abﬁ + Rap
° H — l_f“"“', zy = 1: to define resolvable z < zy and non-resolvable z > zy branchings
> L2 d 2 ~zpg R 2 . . .
e Sudakov form factor A,(11°) = exp <7 j:z 5—,2 S JoM dzzPy (1'%, z) ) which is the probability of

an evolution without any resolvable branching

~ - 'In/,LZ A, w X
B i) = Bl i)ty + [ din i 24 )Z/ dziP, (1, 2 fb(a,uo)Ab Hy) + -

In 3 i A, (l‘
a, X u a, X n a, X I
[ n
1 b’ . 1
e
X=X, o b, X=X, L C, X,= U5



Transverse momentum in PB

How to connect branching scale p/? and qi !

p -ordering:
virtuality ordering:

angular ordering:

91, =n?
ql =1 —2)u?

7, =1-2)u?

xP' ke,

Z=X,/X, c o, <ok

x,P, ko,



Transverse momentum in PB

How to connect branching scale p/? and qi ! nP ke
= condition on min qi ¢ = z=x/%, ° qu —
x,P', ku,

p | -ordering: g3 .= n?

3

virtuality ordering: qi c=@1- z)p'?

angular ordering: g3 = (1—2)%p"



Transverse momentum in PB

How to connect branching scale p/? and qic? =P ke,
resolvable & non-resolvable = condition on min qijc = zy Z=X/X, c sy o[t
The should be P ke,
p -ordering: qi’c =¥ 2 zp = fixed
virtuality ordering: qivc =1-2)u? zy=1- (%)2
angular ordering: qic =1-2)%u? zy=1- <%)



Transverse momentum in PB

: 2] 2
How to connect branching scale p/? and q1.?
resolvable & non-resolvable = condition on min qi = Zm
The argument of as should be qic

p -ordering: qi = e zp = fixed
virtuality ordering: qic =1-2)u? zy=1- (%

angular ordering:

Bo=0-227 m=1-(%

xP, Ky,
Z=X,/X, c ]
Q. =W

x,P’, Ky,

Qs (“/2)
as (1 - 2)u?)
Qs ((1 _ Z)2M/2)



Transverse momentum in PB

How to connect branching scale p/? and qic? =P ke,
resolvable & non-resolvable = condition on min qi = Zm z=x,/X, < Q. —
The argument of as should be qic %P, ks
p -ordering: qi’c =2 zp = fixed as (,u’2)
2
virtuality ordering: qic =1-2)u? zy=1- (%) as (1= z)u'?)

angular ordering: qi =0 =2)u zy=1-— <@) Qs ((1 — 2)2;/2)

m

I>J_,a - ?J_,b - 7J_,C

e k | , contains the whole history of the evolution

e PB method: effect of every individual part of the ordering definition can be studied separately
e collinear PDFs if and



Highlights




Effect of ordering choice

gluon, x =0.01, u = 100 GeV

and z,, on TMDs

gluon, x = 0.01, u = 100 GeV

gluon, x = 0.01, u = 100 GeV

p. - ordering
qi — 1N/2
NOT stable TMDs

Notel: Everywhere s (11/%)

TMDplotter 2.2.0
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TMDplotter 2.2.0

T
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virtuality ordering
7 =1 - z)u?

XAk 1)

050
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angular ordering
gl =(1-20°u?
stable TMDs

o 10"
! k [GeV]

TMDplotter 2.2.0



Effect of ordering choice and z,, on TMDs

gluon, x =0.01, u = 100 GeV gluon, x = 0.01, u = 100 GeV gluon, x = 0.01, u = 100 GeV
5 0.005¢ 7 z 0 T T T T = 0 T T T T
3 " 3 A Ex 5
20,0045 e = - <
% p—et X 007 pr—_ 0 1 <
< < o5f
% <

ST

i

il

v H I , L E
10" 1 10 107 w:k,[Ge\}]o‘ Ojkl[Gev‘]oA 10" 1 10 10° Ujk‘[Ge\}]o‘
p. - ordering virtuality ordering angular ordering
2 2 A 2 2 _ 2,12
ql =1lp g =(1—-2z)u g1 =(1—z)p
NOT stable TMDs stable TMDs
gluon at 2 = 10000 GeV*
-~ PtOrd
2 Virt Ord
Notel: Everywhere as (11/?) ag ond
. . —— QCDNum
Note2: All these TMDs after integration
B I Bt e
over k, give the same collinear PDF 5
8,
More details: g -
Phys.Lett. B772 (2017) 446-451, JHEP 1801 (2018) 070 s - ~
g
£ 5
T




Renormalization scale

angular ordering:
as ((1— z)zp,z) = as(p?) — a2(1?)BoIn (= 2)2) + ...

2 G 2, 2 2.2
Pas(i?, 2) = 2 PLO (2, 2) — 25U g in((1 — 2))PEO (2, 2) + 224 PNLO(2 2) 4 ..

analogous for virtuality ordering



Renormalization scale

angular ordering:

s ((1 — z)zpz) = ag(p?) — 03(112)[30 In ((1 - 2)2) + ...
a2(

Pus(i?, 2) = S PLY(12, 2) — “U7) gy n((1 — 2Y)PLS (12

analogous for virtuality ordering

10000 GeV*

gluon at 2 =

Ang Ord, ay((1-2)°H?)

XA(X, k‘,u)

Virt Ord, ay((1-2)u?)

—— HERAPDF

05
Loa1000

ratio PB/HERAPDF

05
Log1000

significantly by the change of renormalization scale

. 2) + 4( )PNLO(/

gluon, x = 0.01, u-100 GeV

z)+...

‘ o ?)
o((1-2fn?)

® TMDplotter 2.2.0

10 10
k [GeV]

angular ordering, the same conclusions for virtuality ordering.



Prediction for Z boson p, spectrum using TMDs

Procedure:

e DY collinear ME



Prediction for Z boson p, spectrum usi

q
D
k,#0
...................... 7
Procedure: kT +#0
e DY collinear ME >
e Generate k| of qq according to TMDs q

(mpy fixed, x1, x2 change)

e compare with the 8 TeV ATLAS

measurement



Prediction for Z boson p, spectrum using TMDs

here: DY LO matrix element from Pythia: q¢ — Z

Z — ee, dressed level, 66 GeV < my; < 116GeV, || < 2.4

—— Data
Virt, as(42)

—— Ang (i)

Q
; 8
e e e

MC/Data

axﬁ{m
O nllananllananllonnnllonnds
10 20 30 B

o 50
i 1GeV]
e difference between angular and virtuality ordering visible

e angular ordering: the shape of Z boson p; spectrum reproduced



Prediction for Z boson p,

MC/Data

Bt v b v b v b v 10 3
0 10 20 30 4

DY LO matrix element from Pythia: qqg — Z

Z — ee, dressed level, 66 GeV < my; < 116GeV, || < 2.4

—— Data
Virt, as(42)

—— Ang (i)

o 50
i 1GeV]

spectrum using TMDs

1/ do/dp}!

MC/Data

Z — ee, dressed level, 66 GeV < my; < 116 GeV, yy| < 24

—— Data
—— Virt, a,((1 - 2)p?)
—— Ang, a.((1-2)%)

o 10

J—,Jiwwwf
s B3

40 50
i [Gev]

difference between angular and virtuality ordering visible

angular ordering: the shape of Z boson p| spectrum reproduced

with as ((1 — z)?u'?) agreement within the data much better than for as(u/?)
e All the

prediction for the whole spectrum from one method
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o define stable (zy independent) TMDs

e predict Z boson p spectrum

we performed



Fit

Based on the facts that PB with the angular ordering allows to:

o define stable (zy independent) TMDs

e predict Z boson p spectrum

we performed

Two scenarios, both very similar x2 ~ 1.21:

e Setl: as (,u’Q), reproduces HERAPDF2.0
o Set2: as ((1— z)?p'2), different HERAPDF2.0
details of the fit presented last year by Hannes Jung and given in

Physical Review D soon)

https://indico.desy.de/indico /event/19213 /session/12/contribution /27 /material /slides/0.pd

TMDs available in TMDIib

(to be published in



Fit

Based on the facts that PB with the angular ordering allows to:

o define stable (zy independent) TMDs

e predict Z boson p spectrum
we performed fits of TMDs using angular ordering
Two scenarios, both very similar x2 ~ 1.21:

o Setl: as (,u’Q), reproduces HERAPDF2.0 v’
o Set2: as ((1— z)2p'2), different HERAPDF2.0

details of the fit presented last year by Hannes Jung and given in arXiv:1804.11152 (to be published in
Physical Review D soon)

https://indico.desy.de/indico /event/19213 /session/12/contribution /27 /material /slides/0.pd
TMDs available in TMDIib

e data: HERA H1 and ZEUS combined DIS measurement [EurPhys ). €75 (2015) no.12, 580]

o range: 3.5 < @2 < 50000 GeV?, 4-107° < x < 0.65

e systematic uncertainty: in the x? definition in xFitter

e experimental uncertainties: Hessian method in xFitter

e model uncertainties: variation of m¢, mp, po (Set2: geut in as)

e initial parametrization in a form of HERAPDF2.0



First are fitted:

o kernel Kp,(x"/, /1,2) obtained from PB for every initial parton species of flavour b ! and final parton a.
initial parametrization at ug: x=1-10"°
e convolution of the kernel with the starting distribution fo, 5

E(x, /LZ) = x/dx/ /dx”fo,b(x/, /Lg)Kba(X”7 ul, /1,3)6()(’)(” — X)

. X X
/ dx’fy,p(x", ué);Kba (;7 T #é)

° E(x, ©?) convoluted with ME to obtain the structure function at NLO, which can be fitted to
experimental data
e the procedure repeated with different values of the initial parameters until the minimal x? is found.

10

enough one light quark and gluon



Fit method

First iTMDs are fitted:

o kernel Kp,(x"/, /1,2) obtained from PB for every initial parton species of flavour b ! and final parton a.
initial parametrization at ug: x=1-10"°
e convolution of the kernel with the starting distribution fo, 5

E(x, ,[LZ) = x/dx/ /dx”fo,b(x/, /Lg)Kba(X”, ul, /1,3)6()(’)(” — X)

. X X
/ dx’fy,p(x", ué);Kba (;7 T #5)

° E(x, ©?) convoluted with ME to obtain the structure function at NLO, which can be fitted to
experimental data
e the procedure repeated with different values of the initial parameters until the minimal x? is found.

To obtain TMDs:

e A new kernel Kf(x”, ki, kio, uZ, ,ug) obtained from PB
e convoluted with the initial distribution from the fit of iTMDs

xAa(x, k1, ,uz) = x/dx/ /dx”Aoﬁb(x/., kio,,ué)Kba(x”, ki, kio,pz,pg)c?(x/x” — x)
X 42 ;2 2 2
/dx Ao, b(X kJJ) #o) Kba (;Ju,ho,u sﬂu)

K3 ol
where Ag ,(x', k3o, 1B) = g, p(x, 1) ex < L0

10

enough one light quark and gluon



ighlights from the fit (presented in detail last year)
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ghlights from the fit (presented in detail last year)

experimental, , qeut for Set2
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ghlights from the fit (presented in detail last year)

experimental, . qeut for Set2

M ) — e SF o'=30GeV? e G '8 a'=10GeV?

&£ " < 7 PB NLO Set 1 a,(:%) Zof 7%#PBNLOSet1 o(u)
14 ¥ < PB NLO Set 2 a,(p}) T 15 Q9 PBNLO Set 2 ,(p})
I.i— a4
o ¥
0.6
04f
0.2

Of —=— HERA1+2 Data @* =4.5
_ggf * Suncomelsied  — PBNLO Set 1)
22 s —PBNLOSat2 s

o O
12F

% 15 W —

g osf ]

E O — o 0.001 (L) E N N

x 10t 107 10 10" X1
g X (NC} e 1.3 1.3
EoxE 2 @7 =3.0 GeV® g @ =10GeV*
g 7% PB NLO Set 1 a,(1) E ##PBNLOSet 1 0,(u)
1.5 1,200 PB NLO Set2 () 1.2[ 22 PB NLOSet2 a,(p})
Pl
0.5 1
o
—— HERA42 Data @' = 60
Q.5 * Guncomelamd  — PBNLOSet 1Y &
G total — PBNLO Sot 2 1) e
a - - - 0.9 %
E 105t R
R

g !mi A 3

§ 095E 08y

F [2]] [T o1

x
07
0 10° 102 10" 1

11



Application of TMDs to Z boson p;

Application to the Z boson p; spectrum

Z — ee, dressed level, 66 GeV < myy < 116 GeV, |yy| < 2.4 Z — ce, dressed level, 66 GeV < my, < 116 GeV, |y| < 2

. 3

g 3 -
5 3 !
g H

= &

T

do/dp]

—— Data
—— PB-NLO ,(4(1 — 2)) (exp + mod)
—— PB-NLO a,(4(1 - 2)) (scale)

£ —— Data |
= PB-NLO &,(q(1 — 2)) (exp + mod)
10" E PB-NLO a,(q(1 ) (scale) E}

z)
2),

e\

10" 10*

MC/Data

MC/Data
sooss
S8888-IRaE
=
(

pi [Gev] P 1Gev]
Results after the fit. Experimental and model uncertainty Results after the fit. Experimental and model uncertainty

here: PYTHIA LO ME here: MCatNLO ME

12



Possible improvements

To obtain

AL, ko, p?) = /dx /dx Ao b(X s Ko gs 18 Kba(X" s KA, Kooy 12 )8 (X" X" = X)

/dx Ao, b(X kLo #o) Kba( kL kLDHU‘ #o)

where Ag p(x’, ki,o’ /,1,(2)) = fo,p(x, p,g)

Intrinsic !

Come from with o = 0.5GeV. The

13



Possible improvements

To obtain

AL, ko, p?) = /dx /dx Ao b(X s Ko gs 18 Kba(X" s KA, Kooy 12 )8 (X" X" = X)

/dx Ao, b(X kLo #o) Kba( kL kLDHU‘ #o)

where Ag p(x’, ki,o’ /,1,(2)) = fo,p(x, p,g)

Intrinsic !

Come from with o = 0.5GeV. The

Possible improvements from xFitter side:

e to fit also intrinsic k| — use datasets sensitive to low k (low mass DY)
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Possible improvements

To obtain TMDs:

xA,(x, kJ_,p,Q) = /dx /dx Ao. b(x kJ_O,/LO)Kba( & kJ_,kJ_O 1% 7/10)(5( X" —x)

/dx Ao, b(X kLo No) Kba( kL kLDHU‘ #o)

where Ag p(x’, ki,o’ u2) = fo,p(x, pd)exp ( -5 )

Intrinsic k;, o NOT fitted !

Come from Gauss distribution with o = 0.5GeV. The same for all flavours.

Possible improvements from xFitter side:

e to fit also intrinsic k| — use datasets sensitive to low k (low mass DY)

e use also LHC and Tevatron data to perform global fit
notice: fit only to HERA data, nevertheless we describe LHC measurement well!

e to use k| -dependent ME and TMD to calculate the structure function (ongoing developments in
off-shell ME calculations, e.g. KaTie)

13



PB and other approaches




Current Activities

Current Activities

3 83 1

PS from TMDs off-shell ME with TMDs Comparison of PB with
other approaches

14



Current Acti s

Current Activities

T

PS from TMDs off-shell ME with TMDs Comparison of PB with

other approaches

— | concentrate now on comparison of PB with other approaches

14



PB and Marchesini, Webber

PB with angular ordering is very successful
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PB and Marchesini, Webber

PB with angular ordering is very successful

PB for angular ordering:
o, 1) = falx, 13) Ba(?)

W du? () PR (o n N (X 2
/ Zb:/x dzPy, (o ( ),u,)fb(z,u) 1)

H(Z) #/2 Aa(;l/z)

where
qii=(1—z)p?

Eq. (1) is identical to the Marchesini and Webber (MarWeb1988) prescription

15



PB and Kimber- Martin- R

PB for angular ordering written in terms of integral over g, (identical to MarWeb1988):

falx, 1*) = falx, 1g)Aaln 2)

““‘dcu i 2 491 R > gL =(x 4
+ /q2 Z/ dzA, Ry Pab O‘s(qi)’(l,z)wz fo 2 a-2p

0

16



PB and Kimber- Martin- Ryskin- Watt (KMRW)

PB for angular ordering written in terms of integral over g, (identical to MarWeb1988):

falx, 1*) = falx, 1g)Aaln Z)

“X“d«u o » R 2 it = (x 4
- 2 Z/ s Fola—zp Pab as(qL)’(lfz)fz fo 2 (1-2z2)2

9

KMRW: TMDs (unintegrated PDFs) obtained from the integrated PDFs and the Sudakov form factors

fa(x, 1%) = falx, 1g) Aa(n?)

N /2 dql Z/ dzA, (12, ¢ )PE (as (qL),Z)fb<§7Qi>

9

flx,u? ,qi_)

at the unintegrated distribution becomes dependent on two scales: g and p

16



PB and Kimber- Martin- Ryskin- Watt (KMRW)

PB for angular ordering written in terms of integral over g, (identical to MarWeb1988):

i, ,f) = falx, ) As(u Z)
(1—x)2u2 dq S 7’ i Al i
R () () ) ()

9

KMRW: TMDs (unintegrated PDFs) obtained from the integrated PDFs and the Sudakov form factors

fa(x, 1%) = falx, 1g) Aa(n?)

N /2 dql Z/ dzA, (12, ) )P, (as (qL),Z)fb<§7Qi>

90
Fx,u2,q3 )
at the unintegrated distribution becomes dependent on two scales: g and p
In KMRW:
e "Strong ordering”: g%, = (1 — x)?p® and zy = 1 ‘7/—7
e " Angular ordering” g3, = (IZX)Z w?and zy =1 — q}“, 7 .



PB and KMRW: distributions

PB: intrinsic k; is a Gauss distribution with width=0.5 GeV
KMRW parametrization for k| < kg = 1GeV:
1~
= EG(X, ki, 13)Ba(p?, pg) = const
0
TMD sets obtained according to KMRW formalism with angular ordering included in TMDIib in

TMD set called MRW-ct10nlo

gluon, x =0.01, u = 100 GeV

Cod xl

TMDplotter 2.2.0

4

=3

17



PB and KMRW: distributions

PB: intrinsic k; is a Gauss distribution with width=0.5 GeV

KMRW parametrization for k| < kg = 1GeV:
1~

= EG(X, ki, 13)Ba(p?, pg) = const
0

TMD sets obtained according to KMRW formalism with angular ordering included in TMDIib in
TMD set called MRW-ct10nlo

gluon, x =0.01, u = 100 GeV

ol ol vl ol

Sudakov for kt>u

TMDplotter 2.2.0

17



PB and KMRW: distributions

PB: intrinsic k; is a Gauss distribution with width=0.5 GeV
KMRW parametrization for k| < kg = 1GeV:

1 ~
2 - F?fa(X? ki, 13)Aa(p?, pd) = const
0

TMD sets obtained according to KMRW formalism with angular ordering included in TMDIib in
TMD set called MRW-ct10nlo

exercise:
gluon, x = 0.01, u = 100 GeV PB last Step: try to obtain KMR from PB:

[ take PB with angular ordering but take k; only

KMR/MRW

PB full . .
PB last step fro_)m the last emission, N
do kLva:—ﬁL_cmstead ki a= kL_bfﬁLc(PBf““)

ks < 1GeV:
e KMRW: initial parametrization

XA(ck 40

e PB last Step: matching of intrinsic k|
and evolution clearly visible

e PB full: matching of intrinsic k; and
evolution smeared during evolution

For k: € (= 10GeV, ~ u):

TMDplotter 2.2.0

17



Z boson p, spectrum

Z — e, dressed level, 66 GeV < myy << 116 GeV, || < 24

<, 008 L L B A B
23-: F Data 3
A KMR/MRW E
& PBfull —
- PB last step E
E e PB with angular ordering and
3 full evolution works very well
3 o KMRW works well for small and
E middle-range k| but for higher
k| it overestimates the data
e PB with last step evolution not
§ sufficient
g
=

18



PB and Collins, Soper and Sterman

CSS: TMD factorization formula for the DY cross section:

do 47202 dﬁA
d@2dydQz " 9Q% (27r)2 /d bexp(iQr - b) Z Z/ faya(€a; 1/b)

> / fo/5(€8r 1/ exp (— / « d;;[m (%2) A(g(u))+5’(g(u))D (2)

12 1

X, X 4
G (Z61/8)) 6o (22.00/8)) + e Y (@r. @uxaxs)

i
where A = 3°; (“‘ST(“)) A, the same for B and C.
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PB and Collins, Soper and Sterman

CSS: TMD factorization formula for the DY cross section:

do 47202 dﬁA
d@2dydQz " 9Q% (27r)2 /d bexp(iQr - b) Z Z/ faya(€a; 1/b)

> / 1 8 o(cn, /D) (— / @ die [ (%2) A(g(u))+5’(g(u))D 2)

12 1

X, X 4
G (Z61/8)) 6o (22.00/8)) + e Y (@r. @uxaxs)

q A
where A = 3°; (“’ST(“)) A, the same for B and C.
e one scale evolution up to a scale 1/b

e in the last step of the evolution the dependence on the second scale enters

19



PB and CSS

do 47202 1 dEA
d@2dyd@Z ~ 9Q%s (21)2 /d bexp(iQr - b) Z Z/ a(éa,1/b)
1d
> [ heean/b)
b XB gB

ar
“Ca (z—i,g(l/b)) Cib (2—2,g(1/b)> 9Q2 Y(QT7 Q, xa, XB)

20



PB and CSS

do 47202 1 dEA
d@2dyd@Z ~ 9Q%s (21)2 /d bexp(iQr - b) Z Z/ a(éa,1/b)
1d
> [ e teles1/b)
b xg SB

-Cia (g@(l/b)) Cip (5 g(1/b )) 9025 Y(QT7 Q, xa, XB)

PB: Sudakov form factor with P[L but possible also with PV (momentum sum rule) .
For angular ordering:

) v dg? I=Eh
As(12) = exp <—/ q;(/ ‘ dz(ka )—d)) :
@ 91 0 =

0

notice:

PB with angular ordering: in Sudakov the same coefficients as , and in CSS
—~ N—————
EE, NLL

NNLL: of CSS and PB comes from

2
2dypB + Bacss = 1670 (* = 1)
20
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Summary and Conclusions

e PB: collinear PDFs and TMDs obtained
e different ordering definitions studied; TMDs with angular ordering stable

e fit of integrated TMDs to HERA H1 and ZEUS combined F, data, two TMD sets obtained
(with model and experimental uncertainties) with angular ordering for two different
renormalization scales

e application of the TMDs to the Z boson p |, a very good description of the 8 TeV data
with angular ordering

e possible improvement: to fit also intrinsic k|
e many different activities ongoing (PS from TMDs, off-shell ME and TMDs, etc....)
e studies on comparison with Marchesini and Webber, KMRW and CSS ongoing

e results in: Phys.Lett. B772 (2017) 446-451, JHEP 1801 (2018) 070, arXiv:1804.11152 (to
be published in Physical Review D soon), new paper in preparation
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different ordering definitions studied; TMDs with angular ordering stable

fit of integrated TMDs to HERA H1 and ZEUS combined F, data, two TMD sets obtained
(with model and experimental uncertainties) with angular ordering for two different
renormalization scales

application of the TMDs to the Z boson p |, a very good description of the 8 TeV data
with angular ordering

possible improvement: to fit also intrinsic k|
many different activities ongoing (PS from TMDs, off-shell ME and TMDs, etc....)
studies on comparison with Marchesini and Webber, KMRW and CSS ongoing

results in: Phys.Lett. B772 (2017) 446-451, JHEP 1801 (2018) 070, arXiv:1804.11152 (to
be published in Physical Review D soon), new paper in preparation

Outlook:
level of precision in obtaining predictions for QCD observables (hard ME and PS follow the
same TMD) for LHC and future colliders
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e PB: collinear PDFs and TMDs obtained
e different ordering definitions studied; TMDs with angular ordering stable

e fit of integrated TMDs to HERA H1 and ZEUS combined F, data, two TMD sets obtained
(with model and experimental uncertainties) with angular ordering for two different
renormalization scales

e application of the TMDs to the Z boson p |, a very good description of the 8 TeV data
with angular ordering

e possible improvement: to fit also intrinsic k|
e many different activities ongoing (PS from TMDs, off-shell ME and TMDs, etc....)
e studies on comparison with Marchesini and Webber, KMRW and CSS ongoing

e results in: Phys.Lett. B772 (2017) 446-451, JHEP 1801 (2018) 070, arXiv:1804.11152 (to
be published in Physical Review D soon), new paper in preparation

Outlook:
new level of precision in obtaining predictions for QCD observables (hard ME and PS follow the
same TMD) for LHC and future colliders

Thank you!
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MWR-ct10nlo and PB for quarks

up, x = 0.01, u = 100 GeV
10 T T T T

:gi- KMR/MRW
< p—
2 P8 lat st
<

x

<
o




Z — ee, dressed level, 66 GeV < my < 116GeV, |y < 24

w I
3 —— Data 3
3 PB-NLO as(g(1 - z)) (exp + mod)
= === PB-NLO as(q) (exp+mod) =
s
a
g ===
= =
|
o 10 20 30 40 50
i 1Gev]

Results after the fit

. Experimental and model uncertainty



Fit

method

The fits to HERA measurements are performed using a x> minimization

an evolution kernel K”(x’, u?) is obtained from the PB method for every initial parton (enough one
light quark and gluon) of flavour b and final parton a. The initial parametrization at the scale ;Lg is
given by x =1 — 107°

convolution of the kernel with the starting distribution Ag 5

) = x [ax [ ax A st RS 00K = x)

X b X 2
= /‘dx,Ag,b(x/);Ka (;,,u, )

The obtained distribution g(x, ,u,z) is convoluted with the matrix element to obtain the structure
function at NLO, which can be fitted to experimental data
the procedure is repeated with different values of the initial parameters until the minimal x? is found.

To obtain TMDs:

A new kernel Kf(x”, ki, ;1,2), depending now also on k , obtained from the PB method
and convoluted with the initial distribution from the fit of iTMDs

XxAa(x, ki, ;1,2) = 53 / dx’ /-(ix//Ag,t,(x/)K:(x”7 k., Mz)é(x/x” —x)

/dX/AO‘b(X,)gKab (g,kbf)



Parametrization and the parameters from the fit

The parametrization used:

xg(x) = Angg(l - X)Cg - A xBé(l - X)Cé
xuy(x) = Ay x5 (1 — X)W (1 + E, x%)
xd,(x) = Advadv (1 — x)%v |

) _ B G
xU(x) = Agx U(1l—x)U(1+ Dyx)

D(x) = Ap®D(1—x)D

At ug assume: xU = x@, xD = xd + x5, strange quark at ,u(z): X5 = f,xD with f, = 0.4, By = Bg,

Ag = Aﬁ(l — f;). The normalization parameters A, , Ad,, Ag and Ag/ are constrained by the quark number
and momentum sum rules. xU,, xU, xD, xD - sums of parton distributions for up-type and down-type quarks
and anti-quarks

Setl
A B C D E A B c’
rg | 432 | —0.015|9.15 1.040 [ —0.166 | 25
zu, | 4.07 0.714 | 4.84 135

xdy | 3.15 0.806 | 4.07
U {0107 | -0.173 | 8.05 | 11.8
xD | 0.178 | —0.173 | 4.89

Set2
rg | 042 | —0.047 | 0.96 0.008 | —0.58 | 25
Ty | 249 0.65 | 3.44 13.7
zd, | 2.02 075 | 2.47
zU | 0.14 —-016 | 529 | 15
rD | 0.24 —0.16 | 5.83

Parameters of the initial distributions at NLO obtained from the fit. The parameter C’ = 25 was fixed, as in
HERAPDF2.0. The parameters correspond to a starting scale p3 = 1.9(1.4) GeV? for Set 1 (Set 2).



Experimental uncertainties- \? definition

Def. of x? includes treatment of correlated and uncorrelated systematic uncertainties.
In total 162 systematic uncertainties plus procedural uncertainties from the combination of H1 and ZEUS are
treated as correlated uncertainties.
leading systematic uncertainties on the cross-section measurements from the uncertainties on the acceptance
corrections and luminosity determinations
Procedural uncertainties: Multiplicative versus additive treatment of systematic uncertainties, Correlations
between systematic uncertainties on different data sets
(””‘_Zj 'v}misj _“,')2 ) 6,2,5;3:“”‘mbr(‘si,uncormf)z

s I

i §2 = =) i
07 stat B! M +87 cor (M i,stat %7, uncor

Cap(m,s) = 3

s-systematic shifts

i - value measured at point i

'yjf - relative correlated systematic uncertainties

§j stat- relative statistical uncertainties

8j,uncor - relative uncorrelated systematic uncertainties The method imposes that there is one and only one
correct value for the cross section of each process at each point of the phase space. These values are obtained

by optimising vector m

The experimental uncertainties of the resulting parton densities are determined by the Hessian method (as
implemented in xFitter) with Ax? =1



Hessian method in the Fit procedure

Hessian method - method to quantify the uncertainties of PDFs and their physical predictions
Quality of the fit between theory and experiment: 2, =5 w,x}
n - different data sets, w, - weight for data set,

generic form of individual contribution: 2 — > (D/_;/T/ )7, |- data point, D- data value, T-
theory value, o - uncertainty of the data point. In practice: x2 generalised (to include correlated
errors, correlation matrix)

theory contains free parameters: {a;} = {a1, a2, ..., a4}

fit determines {a;}

Xg;lobal - depends on the PDF set S: how well data are fit by theory when PDF is defined by set
of parameters {a;(S)}

So - best estimate Next step:

Variation of nglobal in the neighbourhood of the minimum : Ay? = 2 — \f]

where x? = x*(5), x§ = x*(50)

Assumption:what is the allowed range of Ax2? Ax2 < T2



Hessian method in the Fit procedure

d d
AP =x"—x5 =20, Zj:1 Hi(aj — a?)(a; — a?),
{aJQ} ={aj(S0)}. {aj} = {aj(S)}, Hj- Hessian matrix
Transformation between the original parameter space to the eigenvector basis:
d
ai—a =Yy Mz
Construct Eigenvector Basis sets {S;‘L7 e Sjt}:
displacement of a magnitude t up and down along each of the d eigenvector directions
+
zk(S, ) = +tdy
The parameters that specify Eigenvector Basis sets: a,-(S,i) - a? = +tM;

Uncertainty of any variable X(S) (e.g. cross section):
best fit estimate: X% = X(S?)
uncertainity: evaluate X for each of the 2d sets {Sli}

X _ X(S)=X(S.) _ Du(X)
Oz, 2t -2t

D(X) = X4 (Dk(X))2 De(X) = %), AX = £ (TD 8X)
AX = LD(X)




Model uncertainties

Model uncertainties:
e variation of m¢, my

e variation of po

e Set2: variation of gcut in as (to protect
situation when the scale in
as ((1 = z)?p2) too small)

Central | Lower | Upper

value | value | value
Set 1 42 (GeV?) 1.9 1.6 22
Set 2 ;i3 (GeV?) 14 1.1 1.7
Set 2 gyt (GeV) 1.0 0.9 1.1
me (GeV) 147 | 141 | 153
my (GeV) 45 425 | 475




Fit to HERA F, data

Measurement of the reduced cross section obtained at HERA compared to predictions using Set
1 and Set 2
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predictions for the inclusive DIS cross section (top) and the inclusive charm cross section (bottom) obtained
from the two different parton distributions compared to the measurements from HERA

It has been checked explicitly that including the charm measurements in the fits does not significantly change
the fit result (the charm data have too large uncertainty compared to the precise inclusive measurements)



Parton densities from the fit

xg(x,Q%)

experimental,

Q= 3.0 GeV” i
5 PB NLO Set 1 a,(u e
N PB NLO Set2 a,(p})

x0(x,@%)

Q%= 10 GeV”
##PBNLO Set 1 (7
@2 PB NLO Set 2 a(p})

x0(x,@%)

E Q’=8317 Gev”®
7+ PB NLO Set 1 o(’
2 PBNLO Set 2 o (p})

sbatter

1
10"

10° 102 1 10 102 10" o
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TMDs from the

anti-up, x = 0.01

anti-up, x = 0.001

= T T T = T T
= ———— PBNLOHERAI2018-5a11, Ao ———— PB-NLO-HERALI-2018-50t1,
= T PENLOHERALI2018 sor1, s p— v S
= PENLOHERALI2018 012, *® PB-NLG.HERAI
=z ——————  PB-NLOHERAIII- < 10 ————— PB-NLO-HERALII-
B3 x
P
10!
107
107
.
o 10
o
o 107
T
2 10
2
] 107
10° L - 10° L
1 10 10? 1 10 10
gluon, x=0.01 gluon, x =0.001
= T T T = T T
% ———— PBNLOHERAII2018 5011, % PB-RLO-HERAL+II-2018-sar,
2 T PENLOHERALIZ018 sel1. e PB-NL- HERAL-II-2018-sal,
% T PENLOHERALIZ01B sol2. % PB-NLO- HERAL-II-2018 0.
z T PONLOHERALI201E set2, 4 T PENLOHERAI 201550,
ES B
&
b
o
£
B
2
5
=
F

TMDs from the fit

TMDplotter 2.2.2



TMDs from the fit
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TMD uncertainties

anti-up, x = 0.01, p = 100 GeV gluon, x =0.01, 1 = 100 GeV'
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Only collinear splitting functions are used and the fit was obtained with collinear parton densities, but a k|
dependence of the uncertainties is obtained, which comes from the different contributions to the spectrum.
The experimental uncertainties are small over the whole range, while the model dependent uncertainties
dominate.



Z — ee, dressed level, 66 GeV < my < 116 GeV, |y| < 2.4 Z — ee, dressed level, 66 GeV < m; < 116GeV, |y| < 2.4
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The difference between the full and experimental uncertainties from the fit is very small
no adjustment of any parameter is made, the TMDs are entirely constrained by the fits to
inclusive DIS data



Heavy quark treatment

Correct treatment of heavy flavours in PDFs essential for precision measurements at hadron

colliders
Two ideas: ¢, b - massive particles produced in the hard scattering or c, b-massless particles in
the proton

e Fixed Flavour Number Scheme (FFNS)
based on: Q2 < mf_l — heavy quarks are final state particles,

not partons inside a proton y* FFNS
n¢- number of flavours in PDFs (different versions of FFNS: -LLLH Q?< m‘;{
ng = 3, 4, 5) . . (m/H :r'é [})
Fi(x, Q%) =3,C " (%) ® £ (Q%) -

' C L7
Problem: _2_']1«’/_ _______H_
1.) it does not sum o In/(Q%/m?,) (I < m) in perturbative f
expansion — accuracy for Q2 > mf_, uncertain
2.) o with mass dependence only for few processes at NLO H - heavy quark

e Zero-Mass Variable Flavour Number Scheme (ZM-VFNS)
e General-Mass Variable Flavour Number Scheme (GM-VFNS)



Heavy quark treatment

Correct treatment of heavy flavours in PDFs essential for precision measurements at hadron
colliders

Two ideas: ¢, b - massive particles produced in the hard scattering or c, b-massless particles in
the proton

o Fixed Flavour Number Scheme (FFNS)

e Zero-Mass Variable Flavour Number Scheme (ZM-VFNS)
based on: Q2 > m,z_, heavy quarks behave like massless

partons 7 ZM-VFNS
heavy quarks evolve according to splitting functions for Q%> m¥y

y —>——H
massless quarks . My (mpy =0)
nf — 3- number of active heavy flavours — ______ A_______

mass dependence in the boundary conditions for evolution
Q) = 30y A (Q¥/ ) @ F2(QP)

Ajk (QQ/mf_,) perturbative matrix element containing

in (Q%/m,)

Problems:

1.) it ignores O(m?,/Q?) in C, innacurate for Q? > m?

Fi(x, Q%) =%, C,iM’"f @ f"(Q) fi f_(_H

H - heavy quark

e General-Mass Variable Flavour Number Scheme (GM-VFNS)



Heavy quark treatment

Correct treatment of heavy flavours in PDFs essential for precision measurements at hadron
colliders

Two ideas: ¢, b - massive particles produced in the hard scattering or c, b-massless particles in
the proton

e Fixed Flavour Number Scheme (FFNS)
e Zero-Mass Variable Flavour Number Scheme (ZM-VFNS)

e General-Mass Variable Flavour Number Scheme (GM-VFNS)
smooth connection of in limits Q2 < m%_, and Q2 > mﬁ
equivalence of the descriptions:ns = n (FFNS) and nf = n+ 1 (GM-VFNS) above the
transition point

F(x @) = (&) o () =5, 6P (&) o1 (@)

Problems:
1.) uniquely defined for Q?/m?, — oo
for finite Q2/m?, one can swap terms O(Q?/m?) between different C — different
versions of GM-VFNS: ACOT, TR (impose the correct kinematical requirement that (in
neutral current DIS) one must have enough energy to create a pair of massive quarks in
the final state by demanding continuity of

d In Q2 )
Measurement of heavy quark structure functions is a direct test of heavy flavour schemes
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