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Motivation

Motivation:

We want to develop an approach in which transverse momentum kinematics will be treated

without any mismatch between matrix element (ME) and PS

Standard MC predictions

Eur. Phys. J. C19, 351 (2001)

Mismatch between PDF used by σ̂ and PS

Alternative approach:

Eur. Phys. J. C19, 351 (2001)

No mismatch: σ̂ and PS follow the same TMD

Goal: to construct TMDs in a wide range of x , k⊥ and µ2
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Plan for today

Plan for today:

• brief reminder of the Parton Branching (PB) method

• TMDs from PB using xFitter

• comparison of PB with other existing approaches
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PB in a nutshell



PB as a method to solve DGLAP

DGLAP evolution equation

d f̃a(x, µ2)

d lnµ2
=
∑
b

∫ 1

x

dz Pab(µ2
, z) f̃b(x/z, µ2)

xf (x, µ2) = f̃ (x, µ2)

We use:

• momentum sum rule to have only real splitting functions PR
ab = Kab

1
(1−z) + Rab

•
∫ 1

0
→
∫ zM

0 , zM ≈ 1: to define resolvable z < zM and non-resolvable z > zM branchings

• Sudakov form factor ∆a(µ2) = exp

(
−
∫ µ2

µ2
0

dµ′2

µ′2
∑

b

∫ zM
0 dzzPR

ba

(
µ′2, z

))
which is the probability of

an evolution without any resolvable branching

f̃a(x, µ2) = f̃a(x, µ2
0)∆a(µ2) +

∫ lnµ2

lnµ2
0

d lnµ2
1

∆a(µ2)

∆a(µ2
1)

∑
b

∫ zM

x

dz1P
R
ab

(
µ

2
1, z1

)
f̃b

(
x

z1
, µ

2
0

)
∆b(µ2

1) + ...
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Transverse momentum in PB

How to connect branching scale µ′2 and q2
⊥,c?

resolvable & non-resolvable ⇒ condition on min q2
⊥,c ⇒ zM

The argument of αs should be q2
⊥,c

p⊥-ordering: q2
⊥,c = µ′2 zM = fixed αs

(
µ′2
)

virtuality ordering: q2
⊥,c = (1− z)µ′2 zM = 1−

(
q0
µ′

)2
αs
(
(1− z)µ′2

)
angular ordering: q2

⊥,c = (1− z)2µ′2 zM = 1−
(

q0
µ′

)
αs
(
(1− z)2µ′2

)

−→
k ⊥,a =

−→
k ⊥,b −−→q ⊥,c

•

−→
k ⊥,a contains the whole history of the evolution

• PB method: effect of every individual part of the ordering definition can be studied separately

• collinear PDFs not affected by the ordering if zM ≈ 1 and αs(µ′2)
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Highlights



Effect of ordering choice and zM on TMDs

p⊥- ordering

q2
⊥ = 1µ′2

NOT stable TMDs

virtuality ordering

q2
⊥ = (1− z)µ′2

angular ordering

q2
⊥ = (1− z)2µ′2

stable TMDs

Note1: Everywhere αs

(
µ′2
)

Note2: All these TMDs after integration

over k⊥ give the same collinear PDF

More details:

Phys.Lett. B772 (2017) 446-451, JHEP 1801 (2018) 070
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Renormalization scale

angular ordering:

αs

(
(1− z)2µ2

)
= αs (µ2)− α2

s (µ2)β0 ln
(

(1− z)2
)

+ ...

Pab(µ2, z) = αs (µ2)
2π PLO

ab (µ2, z)− α2
s (µ2)

4π2 β0 ln((1− z)2)PLO
ab (µ2, z) +

α2
s (µ2)

4π2 PNLO
ab (µ2, z) + . . . .

analogous for virtuality ordering
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angular ordering, the same conclusions for virtuality ordering.

virtuality ordering, the same conclusions for angular ordering

Collinear and TMD PDFs affected significantly by the change of renormalization scale
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Prediction for Z boson p⊥ spectrum using TMDs

Procedure:

• DY collinear ME
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Prediction for Z boson p⊥ spectrum using TMDs

Procedure:

• DY collinear ME

• Generate k⊥ of qq according to TMDs

(mDY fixed, x1, x2 change)

• compare with the 8 TeV ATLAS

measurement
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Prediction for Z boson p⊥ spectrum using TMDs

here: DY LO matrix element from Pythia: qq → Z

b

b b
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• difference between angular and virtuality ordering visible

• angular ordering: the shape of Z boson p⊥ spectrum reproduced
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• difference between angular and virtuality ordering visible

• angular ordering: the shape of Z boson p⊥ spectrum reproduced

• with αs
(
(1− z)2µ′2

)
agreement within the data much better than for αs(µ′2)

• All the p⊥ dependence directly from the PB method

• prediction for the whole spectrum from one method

• no tuning/adjustment of free parameters
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Fit

Based on the facts that PB with the angular ordering allows to:

• define stable (zM independent) TMDs

• predict Z boson p⊥ spectrum

we performed fits of TMDs using angular ordering

Two scenarios, both very similar χ2 ≈ 1.21:

• Set1: αs
(
µ′2
)
, reproduces HERAPDF2.0

• Set2: αs
(
(1− z)2µ′2

)
, different HERAPDF2.0

details of the fit presented last year by Hannes Jung and given in arXiv:1804.11152 (to be published in

Physical Review D soon)

https://indico.desy.de/indico/event/19213/session/12/contribution/27/material/slides/0.pdf

TMDs available in TMDlib

• data: HERA H1 and ZEUS combined DIS measurement [Eur.Phys.J. C75 (2015) no.12, 580]

• range: 3.5 < Q2 < 50000 GeV2, 4 · 10−5 < x < 0.65

• systematic uncertainty: in the χ2 definition in xFitter

• experimental uncertainties: Hessian method in xFitter

• model uncertainties: variation of mc , mb, µ0 (Set2: qcut in αs)

• initial parametrization in a form of HERAPDF2.0
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Fit method

First iTMDs are fitted:

• kernel Kba(x′′, µ2) obtained from PB for every initial parton species of flavour b 1 and final parton a.

initial parametrization at µ2
0: x = 1− 10−6

• convolution of the kernel with the starting distribution f0,b

f̃a(x, µ2) = x

∫
dx′
∫

dx′′f0,b(x′, µ2
0)Kba(x′′, µ2

, µ
2
0)δ(x′x′′ − x)

=

∫
dx′f0,b(x′, µ2

0)
x

x′
Kba

(
x

x′
, µ

2
, µ

2
0

)
• f̃a(x, µ2) convoluted with ME to obtain the structure function at NLO, which can be fitted to

experimental data

• the procedure repeated with different values of the initial parameters until the minimal χ2 is found.

To obtain TMDs:

• A new kernel K b
a (x′′, k⊥, k

2
⊥0, µ

2, µ2
0) obtained from PB

• convoluted with the initial distribution from the fit of iTMDs

xAa(x, k⊥, µ
2) = x

∫
dx′
∫

dx′′A0,b(x′, k2
⊥0, µ

2
0)Kba(x′′, k2

⊥, k
2
⊥0, µ

2
, µ

2
0)δ(x′x′′ − x)

=

∫
dx′A0,b(x′, k2

⊥0, µ
2
0)

x

x′
Kba

(
x

x′
, k2
⊥, k

2
⊥0, µ

2
, µ

2
0

)
where A0,b (x′, k2

⊥,0, µ
2
0) = f0,b (x, µ2

0) exp

− |k2
⊥,0|

σ2



1
enough one light quark and gluon
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0: x = 1− 10−6

• convolution of the kernel with the starting distribution f0,b

f̃a(x, µ2) = x

∫
dx′
∫

dx′′f0,b(x′, µ2
0)Kba(x′′, µ2

, µ
2
0)δ(x′x′′ − x)

=

∫
dx′f0,b(x′, µ2

0)
x

x′
Kba

(
x

x′
, µ

2
, µ

2
0

)
• f̃a(x, µ2) convoluted with ME to obtain the structure function at NLO, which can be fitted to

experimental data

• the procedure repeated with different values of the initial parameters until the minimal χ2 is found.

To obtain TMDs:

• A new kernel K b
a (x′′, k⊥, k

2
⊥0, µ

2, µ2
0) obtained from PB

• convoluted with the initial distribution from the fit of iTMDs

xAa(x, k⊥, µ
2) = x

∫
dx′
∫

dx′′A0,b(x′, k2
⊥0, µ

2
0)Kba(x′′, k2

⊥, k
2
⊥0, µ

2
, µ

2
0)δ(x′x′′ − x)

=

∫
dx′A0,b(x′, k2

⊥0, µ
2
0)

x

x′
Kba

(
x

x′
, k2
⊥, k

2
⊥0, µ

2
, µ

2
0

)
where A0,b (x′, k2

⊥,0, µ
2
0) = f0,b (x, µ2

0) exp

− |k2
⊥,0|

σ2


1

enough one light quark and gluon
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Highlights from the fit (presented in detail last year)

experimental, model, qcut for Set2
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Application of TMDs to Z boson p⊥

Application to the Z boson p⊥ spectrum

b

b b b b b b b b b b b b b b b b b b b b b b b b b b b b
b
b
b

b

b
b

b

b

b

b

b

b

b

b

Datab

PB-NLO αs(q(1 − z)) (exp + mod)
PB-NLO αs(q(1 − z)) (scale)10−7

10−6

10−5

10−4

10−3

10−2

Z → ee, dressed level, 66 GeV ≤ mℓℓ < 116 GeV, |yℓℓ| < 2.4

1/
σ

d
σ

/
d

pℓ
ℓ T

1 10 1 10 2
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

pℓℓT [GeV]

M
C

/D
at

a

Results after the fit. Experimental and model uncertainty

here: PYTHIA LO ME
Results after the fit. Experimental and model uncertainty

here: MCatNLO ME

PB successful
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Possible improvements

To obtain TMDs:

xAa(x, k⊥, µ
2) = x

∫
dx′
∫

dx′′A0,b(x′, k2
⊥0, µ

2
0)Kba(x′′, k2

⊥, k
2
⊥0, µ

2
, µ

2
0)δ(x′x′′ − x)

=

∫
dx′A0,b(x′, k2

⊥0, µ
2
0)

x

x′
Kba

(
x

x′
, k2
⊥, k

2
⊥0, µ

2
, µ

2
0

)

where A0,b(x′, k2
⊥,0, µ

2
0) = f0,b(x, µ2

0)exp

(
−
|k2
⊥,0|

σ2

)
Intrinsic k⊥,0 NOT fitted !

Come from Gauss distribution with σ = 0.5GeV. The same for all flavours.

Possible improvements from xFitter side:

• to fit also intrinsic k⊥ → use datasets sensitive to low k⊥ (low mass DY)

• use also LHC and Tevatron data to perform global fit

notice: fit only to HERA data, nevertheless we describe LHC measurement well!

• to use k⊥-dependent ME and TMD to calculate the structure function (ongoing developments in

off-shell ME calculations, e.g. KaTie)

13



Possible improvements

To obtain TMDs:

xAa(x, k⊥, µ
2) = x

∫
dx′
∫

dx′′A0,b(x′, k2
⊥0, µ

2
0)Kba(x′′, k2

⊥, k
2
⊥0, µ

2
, µ

2
0)δ(x′x′′ − x)

=

∫
dx′A0,b(x′, k2

⊥0, µ
2
0)

x

x′
Kba

(
x

x′
, k2
⊥, k

2
⊥0, µ

2
, µ

2
0

)

where A0,b(x′, k2
⊥,0, µ

2
0) = f0,b(x, µ2

0)exp

(
−
|k2
⊥,0|

σ2

)
Intrinsic k⊥,0 NOT fitted !

Come from Gauss distribution with σ = 0.5GeV. The same for all flavours.

Possible improvements from xFitter side:

• to fit also intrinsic k⊥ → use datasets sensitive to low k⊥ (low mass DY)

• use also LHC and Tevatron data to perform global fit

notice: fit only to HERA data, nevertheless we describe LHC measurement well!

• to use k⊥-dependent ME and TMD to calculate the structure function (ongoing developments in

off-shell ME calculations, e.g. KaTie)

13



Possible improvements

To obtain TMDs:

xAa(x, k⊥, µ
2) = x

∫
dx′
∫

dx′′A0,b(x′, k2
⊥0, µ

2
0)Kba(x′′, k2

⊥, k
2
⊥0, µ

2
, µ

2
0)δ(x′x′′ − x)

=

∫
dx′A0,b(x′, k2

⊥0, µ
2
0)

x

x′
Kba

(
x

x′
, k2
⊥, k

2
⊥0, µ

2
, µ

2
0

)

where A0,b(x′, k2
⊥,0, µ

2
0) = f0,b(x, µ2

0)exp

(
−
|k2
⊥,0|

σ2

)
Intrinsic k⊥,0 NOT fitted !

Come from Gauss distribution with σ = 0.5GeV. The same for all flavours.

Possible improvements from xFitter side:

• to fit also intrinsic k⊥ → use datasets sensitive to low k⊥ (low mass DY)

• use also LHC and Tevatron data to perform global fit

notice: fit only to HERA data, nevertheless we describe LHC measurement well!

• to use k⊥-dependent ME and TMD to calculate the structure function (ongoing developments in

off-shell ME calculations, e.g. KaTie)

13



PB and other approaches



Current Activities

→ I concentrate now on comparison of PB with other approaches
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PB and Marchesini, Webber

PB with angular ordering is very successful

PB for angular ordering:

f̃a(x , µ2) = f̃a(x , µ2
0)∆a(µ2)

+

∫ µ2

µ2
0

dµ′2

µ′2
∆a(µ2)

∆a(µ′2)

∑
b

∫ 1− q0
µ′

x
dzPR

ab

(
αs
(
(1− z)2µ′2

)
, µ′2, z

)
f̃b

( x
z
, µ′2

)
(1)

where

q2
⊥,i = (1− zi )

2µ′2

Eq. (1) is identical to the Marchesini and Webber (MarWeb1988) prescription

Nuclear Physics B310 (1988) 461-526
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PB and Kimber- Martin- Ryskin- Watt (KMRW)

PB for angular ordering written in terms of integral over q⊥ (identical to MarWeb1988):

f̃a(x, µ2) = f̃a(x, µ2
0)∆a(µ2)

+

∫ (1−x)2µ2

q2
0

dq2
⊥

q2
⊥

∑
b

∫ 1− q⊥
µ

x

dz∆a

(
µ

2
,

q2
⊥

(1− z)2

)
PR
ab

(
αs

(
q2
⊥

)
,

q2
⊥

(1− z)2
, z

)
f̃b

(
x

z
,

q2
⊥

(1− z)2

)

KMRW: TMDs (unintegrated PDFs) obtained from the integrated PDFs and the Sudakov form factors

Phys. Rev. D63 (2001) 114027

f̃a(x, µ2) = f̃a(x, µ2
0)∆a(µ2)

+

∫ q2
M

q2
0

dq2
⊥

q2
⊥

∑
b

∫ zM

x

dz∆a(µ2
, q2
⊥)PR

ab

(
αs

(
q2
⊥

)
, z
)
f̃b

(
x

z
, q2
⊥

)
︸ ︷︷ ︸

f̃ (x,µ2,q2
⊥)

at last step of the evolution the unintegrated distribution becomes dependent on two scales: q⊥ and µ

In KMRW:

• ”Strong ordering”: q2
M = (1− x)2µ2 and zM = 1− q⊥

µ

• ”Angular ordering” q2
M =

(
1−x
x

)2
µ2 and zM = 1− µ

q⊥+µ
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PB and KMRW: distributions

PB: intrinsic k⊥ is a Gauss distribution with width=0.5 GeV

KMRW parametrization for k⊥ < k0 = 1GeV:

f̃a(x , k⊥, µ
2)

k2
⊥

=
1

µ2
0

f̃a(x , k⊥, µ
2
0)∆a(µ2, µ2

0) = const

TMD sets obtained according to KMRW formalism with angular ordering included in TMDlib in

TMD set called MRW-ct10nlo Eur.Phys.J.C78(2018)no.2,137
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PB and KMRW: distributions
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KMRW parametrization for k⊥ < k0 = 1GeV:

f̃a(x , k⊥, µ
2)

k2
⊥

=
1

µ2
0

f̃a(x , k⊥, µ
2
0)∆a(µ2, µ2

0) = const

TMD sets obtained according to KMRW formalism with angular ordering included in TMDlib in

TMD set called MRW-ct10nlo Eur.Phys.J.C78(2018)no.2,137
exercise:

PB last Step: try to obtain KMR from PB:

take PB with angular ordering but take k⊥ only

from the last emission
do
−→
k ⊥,a = −−→q ⊥,c instead

−→
k ⊥,a =

−→
k ⊥,b −

−→q ⊥,c (PB full)

kt < 1GeV:

• KMRW: initial parametrization

• PB last Step: matching of intrinsic k⊥
and evolution clearly visible

• PB full: matching of intrinsic k⊥ and

evolution smeared during evolution

For kt ∈ (≈ 10GeV,≈ µ):

PB full and KMRW very similar!
17



Z boson p⊥ spectrum

• PB with angular ordering and

full evolution works very well

• KMRW works well for small and

middle-range k⊥ but for higher

k⊥ it overestimates the data

• PB with last step evolution not

sufficient
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PB and Collins, Soper and Sterman

WORK IN PROGRESS

CSS: TMD factorization formula for the DY cross section:
Nuclear Physics B250 (1985) 199-224

dσ

dQ2dydQ2
T

∼
4π2α2

9Q2s

1

(2π)2

∫
d2b exp(iQT · b)

∑
j

e2
j ·
∑
a

∫ 1

xA

dξA

ξA
fa/A(ξA, 1/b)

∑
b

∫ 1

xB

dξB

ξB
fb/B(ξB , 1/b) exp

(
−
∫ Q2

1/b2

dµ2

µ2

[
ln

(
Q2

µ2

)
A(g(µ)) + B(g(µ))

])

·Cja

(
xA

ξA
, g(1/b)

)
Cjb

(
xB

ξB
, g(1/b)

)
+

4π2α2

9Q2s
Y (QT ,Q, xA, xB)

(2)

where A =
∑

i

(
αs (µ)
π

)i
Ai , the same for B and C.

• one scale evolution up to a scale 1/b

• in the last step of the evolution the dependence on the second scale enters
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PB and CSS

WORK IN PROGRESS

dσ

dQ2dydQ2
T

∼
4π2α2

9Q2s

1

(2π)2

∫
d2b exp(iQT · b)

∑
j

e2
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∑
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dµ2

µ2

[
ln

(
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µ2
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, g(1/b)

)
Cjb

(
xB

ξB
, g(1/b)

)
+

4π2α2

9Q2s
Y (QT ,Q, xA, xB)

PB: Sudakov form factor with PR
ba but possible also with PV

a (momentum sum rule) .

For angular ordering:

∆a(µ2) = exp

(
−
∫ µ2

q2
0

dq2
⊥

q2
⊥

(∫ 1− q⊥
µ

0
dz

(
ka

1

1− z

)
− d

))
.

notice: 2
∫ 1− q⊥

µ

0 dz
(

1
1−z

)
= ln

(
µ
q⊥

)2

PB with angular ordering: in Sudakov the same coefficients as
1

2
A1︸︷︷︸

LL

,
1

2
A2 and

1

2
B1︸ ︷︷ ︸

NLL

in CSS

NNLL: difference of CSS and PB B2 comes from renormalization group

2d2PB + B2CSS = 16πβ0

(
π2

6
− 1
)
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Summary and Conclusions

• PB: collinear PDFs and TMDs obtained

• different ordering definitions studied; TMDs with angular ordering stable

• fit of integrated TMDs to HERA H1 and ZEUS combined F2 data, two TMD sets obtained

(with model and experimental uncertainties) with angular ordering for two different

renormalization scales

• application of the TMDs to the Z boson p⊥, a very good description of the 8 TeV data

with angular ordering

• possible improvement: to fit also intrinsic k⊥

• many different activities ongoing (PS from TMDs, off-shell ME and TMDs, etc....)

• studies on comparison with Marchesini and Webber, KMRW and CSS ongoing

• results in: Phys.Lett. B772 (2017) 446-451, JHEP 1801 (2018) 070, arXiv:1804.11152 (to

be published in Physical Review D soon), new paper in preparation

Outlook:

new level of precision in obtaining predictions for QCD observables (hard ME and PS follow the

same TMD) for LHC and future colliders

Thank you!
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Outlook:

new level of precision in obtaining predictions for QCD observables (hard ME and PS follow the

same TMD) for LHC and future colliders

Thank you!
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Results after the fit. Experimental and model uncertainty



Fit method

The fits to HERA measurements are performed using a χ2 minimization

• an evolution kernel K b
a (x′′, µ2) is obtained from the PB method for every initial parton (enough one

light quark and gluon) of flavour b and final parton a. The initial parametrization at the scale µ2
0 is

given by x = 1− 10−6

• convolution of the kernel with the starting distribution A0,b

f̃a(x, µ2) = x

∫
dx′
∫

dx′′A0,b(x′)K b
a (x′′, µ2)δ(x′x′′ − x)

=

∫
dx′A0,b(x′)

x

x′
K b

a

(
x

x′
, µ

2
)

• The obtained distribution f̃a(x, µ2) is convoluted with the matrix element to obtain the structure

function at NLO, which can be fitted to experimental data

• the procedure is repeated with different values of the initial parameters until the minimal χ2 is found.

To obtain TMDs:

• A new kernel K b
a (x′′, k⊥, µ

2), depending now also on k⊥, obtained from the PB method

• and convoluted with the initial distribution from the fit of iTMDs

xAa(x, k⊥, µ
2) = x

∫
dx′
∫

dx′′A0,b(x′)K b
a (x′′, k⊥, µ

2)δ(x′x′′ − x)

=

∫
dx′A0,b(x′)

x

x′
K b

a

(
x

x′
, k⊥, µ

2
)



Parametrization and the parameters from the fit

The parametrization used:

xg(x) = Ag x
Bg (1− x)Cg − A′g x

B′g (1− x)
C′g

xuv (x) = Auv x
Buv (1− x)Cuv (1 + Euv x

2)

xdv (x) = Adv x
Bdv (1− x)Cdv ,

xU(x) = AUx
B
U (1− x)

C
U (1 + DUx)

xD(x) = ADx
B
D (1− x)

C
D

At µ2
0 assume: xU = xu, xD = xd + xs, strange quark at µ2

0: xs = fsxD with fs = 0.4, BU = BD ,

AU = AD (1− fs ). The normalization parameters Auv , Adv , Ag and Ag′ are constrained by the quark number

and momentum sum rules. xU,, xU, xD, xD - sums of parton distributions for up-type and down-type quarks

and anti-quarks

Parameters of the initial distributions at NLO obtained from the fit. The parameter C ′ = 25 was fixed, as in

HERAPDF2.0. The parameters correspond to a starting scale µ2
0 = 1.9(1.4) GeV2 for Set 1 (Set 2).



Experimental uncertainties- χ2 definition

Def. of χ2 includes treatment of correlated and uncorrelated systematic uncertainties.

In total 162 systematic uncertainties plus procedural uncertainties from the combination of H1 and ZEUS are

treated as correlated uncertainties.

leading systematic uncertainties on the cross-section measurements from the uncertainties on the acceptance

corrections and luminosity determinations

Procedural uncertainties: Multiplicative versus additive treatment of systematic uncertainties, Correlations

between systematic uncertainties on different data sets

χ2
exp(m, s) =

∑
i

(
mi−

∑
j γ

i
j m

i sj−µ
i
)2

δ2
i,stat

µi mi +δ2
i,uncor

(mi )2 +
∑

j s
2
j +

∑
i ln

δ2
i,statµ

i mi +
(
δi,uncor m

i
)2

δ2
i,stat

+δ2
i,uncor

(µi )2

s-systematic shifts

µi - value measured at point i

γ i
j - relative correlated systematic uncertainties

δi,stat - relative statistical uncertainties

δi,uncor - relative uncorrelated systematic uncertainties The method imposes that there is one and only one

correct value for the cross section of each process at each point of the phase space. These values are obtained

by optimising vector m

The experimental uncertainties of the resulting parton densities are determined by the Hessian method (as

implemented in xFitter) with ∆χ2 = 1



Hessian method in the Fit procedure

Hessian method - method to quantify the uncertainties of PDFs and their physical predictions

Quality of the fit between theory and experiment: χ2
global =

∑
n wnχ2

n

n - different data sets, wn - weight for data set,

generic form of individual contribution: χ2
n =

∑
I

(
DnI−TnI
σnI

)2
, I - data point, D- data value, T -

theory value, σ - uncertainty of the data point. In practice: χ2
n generalised (to include correlated

errors, correlation matrix)

theory contains free parameters: {ai} = {a1, a2, ..., ad}
fit determines {ai}
χ2
global - depends on the PDF set S : how well data are fit by theory when PDF is defined by set

of parameters {ai (S)}
S0 - best estimate Next step:

Variation of χ2
global in the neighbourhood of the minimum : ∆χ2 = χ2 − χ2

0

where χ2 = χ2(S), χ2
0 = χ2(S0)

Assumption:what is the allowed range of ∆χ2? ∆χ2 ≤ T 2



Hessian method in the Fit procedure

∆χ2 = χ2 − χ2
0 =

∑d
i=1

∑d
j=1 Hij (ai − a0

i )(aj − a0
j ),

{a0
j } = {aj (S0)}, {aj} = {aj (S)}, Hij - Hessian matrix

Transformation between the original parameter space to the eigenvector basis:

ai − a0
i =

∑d
k=1 Mikzk

Construct Eigenvector Basis sets {S±1 , ..., S
±
d }:

displacement of a magnitude t up and down along each of the d eigenvector directions

zk (S±l ) = ±tδkl
The parameters that specify Eigenvector Basis sets: ai (S

±
l )− a0

i = ±tMil

Uncertainty of any variable X (S) (e.g. cross section):

best fit estimate: X 0 = X (S0)

uncertainity: evaluate X for each of the 2d sets {S±l }
∂X
∂zk

=
X (S+

k
)−X (S−

k
)

2t
= Dk (X )

2t

D(X ) =
∑

k (Dk (X ))2, D̂k (X ) = Dk (X )
D(X )

, ∆X =
∑d

k=1(TD̂k
∂X
∂zk

)

∆X = T
2t
D(X )



Model uncertainties

Model uncertainties:
• variation of mc , mb

• variation of µ0

• Set2: variation of qcut in αs (to protect

situation when the scale in

αs
(
(1− z)2µ2

)
too small)



Fit to HERA F2 data

Measurement of the reduced cross section obtained at HERA compared to predictions using Set

1 and Set 2

predictions for the inclusive DIS cross section (top) and the inclusive charm cross section (bottom) obtained

from the two different parton distributions compared to the measurements from HERA

It has been checked explicitly that including the charm measurements in the fits does not significantly change

the fit result (the charm data have too large uncertainty compared to the precise inclusive measurements)



Parton densities from the fit

experimental, model, qcut for Set2



Total uncertainties



TMDs from the fit

TMDs from the fit



TMDs from the fit

TMDs from the fit



TMD uncertainties

Only collinear splitting functions are used and the fit was obtained with collinear parton densities, but a k⊥
dependence of the uncertainties is obtained, which comes from the different contributions to the spectrum.

The experimental uncertainties are small over the whole range, while the model dependent uncertainties

dominate.



The difference between the full and experimental uncertainties from the fit is very small

no adjustment of any parameter is made, the TMDs are entirely constrained by the fits to

inclusive DIS data



Heavy quark treatment

Correct treatment of heavy flavours in PDFs essential for precision measurements at hadron

colliders

Two ideas: c, b - massive particles produced in the hard scattering or c, b-massless particles in

the proton

• Fixed Flavour Number Scheme (FFNS)

based on: Q2 . m2
H → heavy quarks are final state particles,

not partons inside a proton

nf - number of flavours in PDFs (different versions of FFNS:

nf = 3, 4, 5)

Fi

(
x ,Q2

)
=
∑

k C
FF ,nf
i,k

(
Q2

m2
H

)
⊗ f

nf
k

(
Q2
)

Problem:

1.) it does not sum αm
s lnl (Q2/m2

H) (l ≤ m) in perturbative

expansion → accuracy for Q2 > m2
H uncertain

2.) σ with mass dependence only for few processes at NLO

• Zero-Mass Variable Flavour Number Scheme (ZM-VFNS)

• General-Mass Variable Flavour Number Scheme (GM-VFNS)

H - heavy quark



Heavy quark treatment

Correct treatment of heavy flavours in PDFs essential for precision measurements at hadron

colliders

Two ideas: c, b - massive particles produced in the hard scattering or c, b-massless particles in

the proton

• Fixed Flavour Number Scheme (FFNS)

• Zero-Mass Variable Flavour Number Scheme (ZM-VFNS)

based on: Q2 � m2
H heavy quarks behave like massless

partons

heavy quarks evolve according to splitting functions for

massless quarks

nf − 3- number of active heavy flavours

Fi

(
x ,Q2

)
=
∑

j C
ZM,nf
i,j ⊗ f

nf
j

(
Q2
)

mass dependence in the boundary conditions for evolution

f n+1
j (Q2) =

∑
k Ajk

(
Q2/m2

H

)
⊗ f nk (Q2)

Ajk

(
Q2/m2

H

)
perturbative matrix element containing

ln
(
Q2/m2

H

)
Problems:

1.) it ignores O(m2
H/Q

2) in C , innacurate for Q2 & m2
H

• General-Mass Variable Flavour Number Scheme (GM-VFNS)

H - heavy quark



Heavy quark treatment

Correct treatment of heavy flavours in PDFs essential for precision measurements at hadron

colliders

Two ideas: c, b - massive particles produced in the hard scattering or c, b-massless particles in

the proton

• Fixed Flavour Number Scheme (FFNS)

• Zero-Mass Variable Flavour Number Scheme (ZM-VFNS)

• General-Mass Variable Flavour Number Scheme (GM-VFNS)

smooth connection of in limits Q2 ≤ m2
H and Q2 � m2

H

equivalence of the descriptions:nf = n (FFNS) and nf = n + 1 (GM-VFNS) above the

transition point

Fi

(
x ,Q2

)
=
∑

k C
FF ,n
i,k

(
Q2

m2
H

)
⊗ f nk

(
Q2
)

=
∑

j C
VF ,n+1
i,j

(
Q2

m2
H

)
⊗ f n+1

j

(
Q2
)

Problems:

1.) uniquely defined for Q2/m2
H →∞

for finite Q2/m2
H one can swap terms O(Q2/m2

H) between different C → different

versions of GM-VFNS: ACOT, TR (impose the correct kinematical requirement that (in

neutral current DIS) one must have enough energy to create a pair of massive quarks in

the final state by demanding continuity of
dF2,H

d ln Q2 )

Measurement of heavy quark structure functions is a direct test of heavy flavour schemes


	Motivation
	PB in a nutshell 
	DGLAP and Sudakov form factor
	transverse momentum in PB

	Highlights
	Fit
	PB and other approaches
	Marchesini, Webber
	Kimber- Martin- Ryskin- Watt
	 Collins, Soper and Sterman 

	Summary and Conclusions
	Appendix
	Backup
	Fit of iTMDs to HERA data
	Heavy quark treatment



