The evolution of APFEL:

APFEL@++

Valerio Bertone
INFN and Universita di Pavia

INFN

Istituto Nazionale di Fisica Nucleare

xFitter External Meeting 2019
March 18,2019, Minsk

Motivation

? Smce 1ts born, APFEL has undergone a large number of developments:
FONLL structure functions,

NLO QED evolution,
lepton PDFs,

Scale variations,
intrinsic charm,
displaced thresholds,
MS masses,

small-x resummation,

interface to the NNPDI code,

0‘ 0‘ 0‘ 0‘ 0‘ 0‘ 0‘ 0‘ 0

&

@ Way beyond the purposes for which it was concerved:

@ very large memory footprint,
@ non-optimal “convenience” solutions for the new modules,
@ hard to maintain.

@ APFEL i1s written in FORTRAN77 that 1s not suitable for large projects:
@ lack of modularity,
@ non-optimal (built-in) memory management.

@ Compelling reasons to rewrite APFEL keeping in mind 1ts applications.

Design of the code

@ Concerning the language, C++ was a somewhat natural choice:
@ modularity ensured by the object-oriented nature,

‘e

dynamical allocation of the memory,

@ used for the new-generation tools (e.g LHAPDF) and thus easier interface,

-

@ powerful features coming with the C++11/17 standard.
@ lhe code design was driven by a profound rethinking of the strategy:

=

@ the main application field 1s collinear/TMD factorisation.

@ In this context, many relevant quantities are computed as convolutions:

M (z) = /: W 0@y (f> - /: % 0 (5) d(z) = O(z) ® d(x)

Yy Yy & Z

operator O: typically a complicated object slow to compute: ¢.g a perturbative hard cross section.
distribution d: typically a fast-to-access function: ¢.¢ a non-perturbative PDF or a FF.

@ Adopt the x-space (as opposed to N-space) formalism:

@ most of the results are available in x-space,

@ no restriction on the parameterisations.

-

@ The purpose 1s to make convolutions fast.

Design of the code

@ Define an interpolation grid in x with N+1 nodes g = {20,...,2n}
@ Use the interpolation formula for the distribution d:

ng d@ with d@ — d(:l?@)

@ wp(2) wterpolating functzon (typically a Lagrange polynomial of some degree n).
Lagrelmge !nterpqla’giqglfgnctions of 5th olrdelr |

—— B=3 |

15F—— B=4 -

2.0

1.0

s 05} =

0.0

—05F -

10°5 10~4
X

@ piecewise function different from zero over n + I intervals around f.
Zero clsewhere. Hard to integrate.

Design of the code

@ Compute the integral of the operator O with the interp. functions:

(8%

such that:

MQ_ZOaﬁdB with M Zwa
B=0

@ |'his reduces convolutions to multiplications between a matrices and
vectors: linear algebra.

@ Therefore, the three main ingredients of of APFEL++ are:

]. t
2. tl
3.t

he interpolation grid g along with the interpolating functions,

ne distribution dp,

ne operator O.gs.

@ l'hey can be encapsulated in C++ objects to compute convolutions.

Design of the code

@ An additional complication 1s given by the flavour structure:
@ distributions are vectors in flavour space,

@ operators are either matrices or vectors in the flavour space.

dfioz
d1n 112 ZP fjﬁ ZC ﬁfjﬁ
7,8 7,8
DGLAP equations DIS structure functions

@ Matrices in flavour space are often sparse.

@ Define sets of objects with a
@ associate one operator to one distribution, e.g:

Py Pgqg — X
Pog,Pyg — g

P? — Vv
P — 138152435
P — V38152435

@ the same operator can be assigned to more than a distribution and viceversa.

-

@ avoid multiplications by zero.

Design of the code

@ An additional complication 1s given by the flavour structure:
@ distributions are vectors in flavour space,

@ operators are either matrices or vectors in the flavour space.

Adfic i j
d1n p? :Zpaﬁfjﬁ o :anﬂfjﬁ
7,8 7,8
DGLAP equations DIS structure functions

Matrices 1n flavour space are often sparse.

¢ @

Define sets of objects with a
@ assoclate one operator to one distribution, e.g:

Set of operators
Set of distributions

@ the same operator can be assigned to more than a distribution and viceversa.

(o

@ avoid multiplications by zero.

Design of the code

@ Define multiplication between sets of distributions and operators:

@ overload multiplication operator in C++.

@ Making convolutions with a flavour structure becomes very easy.

//

Set<Distribution> Dglap::Derivative(int const& nf, double const& t, Set<Distribution> const& f) const

{
}

return _SplittingFunctions(nf, exp(t/2)) * f;

Design of the code

@ Define multiplication between sets of distributions and operators:

@ overload multiplication operator in C++.

@ Making convolutions with a flavour structure becomes very easy.

//

Set<Distribution> Dglap::Derivative(int const& nf, double const& t, Set<Distribution> const& f) const

{ -
return QSplittingFunctions(nF, exp(t/Z)i}*f@ Set of distributions
}
Set of operators

@ |'he flavour structure 1s completely defined by the lavour map:

@ same procedure for convolutions in any flavour basis,

@ sets of operators and distributions multiplied only 1f they share the same map,

&

easy to account for nr dependence.

Design of the code

@ Use (e.g.) 4t order Runge-Kutta to solve systems of ordinary
differential equations:

dy
— =F(t
y(to) = yo

template<class Us Template function...

function<U(double const&, U const&, double const&)>
rk4(function<U(double const& t, U const& Obj)> const&@ . of a std::function

{
wn return
8 [f 1(double const& t, U const& y, double const& dt) -> U{ return
- B [t,y,dt,f 1C U const& dyl) -> U{ return
Q - [t,y,dt,f,dyl ¢ U const& dy2) -> U{ return
$ = [t,y,dt,f,dyl,dy2 1C U const& dy3) -> U{ return
C [t,y,dt,f,dyl,dy2,dy3](U const& dy4) -> U{ return
o U Cdyl + 2 *dy2 +2 *dy3 +dy4) /6 ;} (C
= 9 dt * f(t +dt , y + dy3))33 (
= dt * fCt+dt /2, y+dy2/2))} (
\ dt * f(t+dt /2, y+dyl/ 2))5} C
=1 dtxfCt , Y) %}
}

@ Very same function used to solve both the DGLAP and the as RGE.

... that returns a std::function...

Doxygen documentation

https://vbertone.github.io/apfelxx/html/index.html

00 (< il]

Google CERN Account VUnet DFS webpages Wiki aerv Inspire WordReference

000 < [EH]

Google CERN Account VUnet DFS webpages

{ll

Wiki

& vbertone.github.io & t)

arXiv Inspire WordReference Mijn Belastingdienst La Repubblica Il Fatto Quotidiano Flightradar24 Vidyo ATLAS Results CMS Results

https://arxiv.... XXVI Interna... xxx.lanl.gov/... https://arxiv....

| https://arxiv.... \ xFitter works... ‘ experiments... ‘ https://arxiv.... ‘ beniz/libcma... LHAPDF: File... APFEL: Main... +‘

@ vbertone.github.io

i iki i i Mijn Belastingdienst La Repubblica Il Fatto A P F E ‘ I ' P F E L 4'0 '0
https://arxiv... XXVI Interna... xxx.lanl.gov/... https :/[arxiv.... https://arxiv.... xFitter works... \ experiments... L A PDF evolution ||brary in C++

APFEL@++

Main Page | Modul es v | Classes v \ Files ~ ‘ Examples ‘

Modules
Here is a list of all modules:

DIS convolution maps
Evolution convolution maps
Recurrent expressions

Massless limit of the massive neutral current coefficient functions

LO massive-zero coefficient functions
NLO massive-zero coefficient functions
Matching convolution maps
Space-like matching conditions

000 (< 0

Google CERN Account

APFEL Main Page \ Modul | N paces v | Classes ¥ | Files ~ | Examples J Q- Search
4.0.0

A PDF evolution library in C++ APFEL Documentation

APFEL@++

APFEL++: A new PDF evolution library in C++

APFEL++ is a C++ rewriting of the Fortran 77 evolution code APFEL (see http://apfel.hepforge.org and https://github.com/scarrazza/apfel).
APFEL++ is based on a completely new code design and guarantees a better performance along with a more optimal memory management. The

|
|

new modular structure allows for a better maintainability and an easier extensibility. This makes APFEL++ suitable for a wide range of tasks: from

the solution of the DGLAP evolution equations to the computation of deep-inelastic-scattering (DIS) and single-inclusive-annihilation cross

https://arxiv.... XXVI Interna... xxx.lanl.gov/... https://arxiv....

o ; 3 i sections. Also more complex computations, like semi-inclusive DIS and Drell-Yan cross sections, are easily implementable in APFEL++.
DFS webpages ~ Wiki aerv Inspire

Download

NLO matching conditions
NNLO matching conditions
Time-like matching conditions

NLO matching conditions
TMD matching functions

APFEL&++

Space-like matching functions

NLO matching functions for PDFs
NNLO matching functions for PDFs
Time-like matching functions
NLO matching functions for FFs
NNLO matching functions for FFs
Space-like splitting function

Unpolarised splitting functions

~—

Main Page | Modules | Namespaces ¥ Classes v | Files v J Exag

Class List

https://github.com/vbertone/apfelxx/releases

git clone https://github.com/vbertone/apfelxx.git

Here are the classes, structs, unions and interfaces with brief descriptions:

) apfel
(@ AlphaQCD
(@ ANS2qqH_0
(@ ANS2qqH_L
(@ ANS2qqH_L2
(@ APS2Hq_0
(@ APS2Hq_L
(@ APS2Hqg_L2
(@ ASi1ggH_L
(@ AS1Hg L
(@ AS2ggH_0
(@ AS2ggH_L
(@ As2ggH_L2
(@ AS2gqH_0
(@ AS2gqH_L
(@ AS2gqH_L2
® AS2Hg_ 0

Namespace for all APFEL++ functions and classes

The AlphaQCD is a specialization class of the MatchedEvolution class for the computation of the QCD coupling running

O(a,2) constant term of eq (B.4) of htips://arxiv.org/pdf/hep-ph/9612398.pdf

O(a,2) term propotional to In(u2/m2) of eq (B.4) of htips://arxiv.org/pdf/hep-ph/9612398.pdf
O(a,2) term propotional to In2(u2/m2) of eq (B.4) of https:/arxiv.org/pdf/hep-ph/9612398.pdf
O(a,2) constant term of eq (B.1) of htips://arxiv.org/pdf/hep-ph/9612398.pdf

O(a,2) term propotional to In(u2/m2) of eq (B.1) of htips://arxiv.org/pdf/hep-ph/9612398.pdf
O(a,2) term propotional to In2(u2/m2) of eq (B.1) of https://arxiv.org/pdf/hep-ph/9612398.pdf
O(a) term propotional to In(u2/m?2) of eq (B.6) of hitps://arxiv.org/pdf/hep-ph/9612398.pdf
O(a) term propotional to In(u2/m?2) of eq. (B.2) of hitps://arxiv.org/pdi/hep-ph/9612398.pdf
O(a,2) constant term of eq (B.7) of htips://arxiv.org/pdf/hep-ph/9612398.pdf

O(a,2) term propotional to In(u2/m2) of eq (B.7) of htips://arxiv.org/pdf/hep-ph/9612398.pdf
O(a4?) term propotional to In2(u2/m2) of eq (B.7) of htips://arxiv.org/pdf/hep-ph/9612398.pdf
O(a4?) constant term of eq (B.5) of hitps:/arxiv.org/pdi/hep-ph/9612398.pdf

O(a4?) term propotional to In(u2/m2) of eq (B.5) of htps://arxiv.org/pdf/hep-ph/9612398.pdf
0O(a,2) term propotional to In2(u2/m2) of eq (B.5) of https://arxiv.org/pdf/hep-ph/9612398.pdf
0O(a,2) constant term of eq (B.3) of https://arxiv.org/pdf/hep-ph/9612398.pdf

You can obtain APFEL++ directly from the github repository:

For the last development branch you can clone the master code:

[detail level 1 2 3]

https://vbertone.github.io/apfelxx/html/index.html
https://vbertone.github.io/apfelxx/html/index.html

Convoluting operators

@ An operation that 1s often needed 1s the convolution between operators:
@ 1nvolved in the computation of factorisation scale variations,

@ computation of the PDF evolution operator.

M(z) = 0V (z) @ 0P (2)@d(z) — My=) Y 0L0% dg

|
O(x) \;,_/
@ Consider for example:
(0) (0) . 4(x? —|—1)1n(1 z)+x*+5
2 PO(z) o PO(z) = ()
Pq(g) (x) = (T) such that " " 2]
l—z), ”1*;“ 4—|—<——T)5(1—az)

@ Compare the numerical convolution with the analytic result (using a test
function f(x)):

o}
-

T T T
Numerical result Numerical / Analytical { | 901

it .
-)]
T I LI I L

wbn O W
T
|

1.000

0.999

PUx) x PU)(x) x fix)

Evolution operator

@ The DGLAP can be written 1n terms the evolution operator:

d
dln u

U5 (o) = Y PE ()T (o,)
k,y

Fif@(uo, o) = ;008

@ |'he evolution operator can be used to evolve any 1nitial scale PDF:

-

@ harder to compute than evolving PDFs directly;

@ 1t has to be computed only once (for each uo and u).

@ I'his object 1s used for the construction of the APFELgrid tables:

-

@ extremely hard to compute in APFEL (Fortran),
@ very easy with APFELA++.

Applications

DGLAP evolutlon at N N LO

Fy(x,Q)

10% ¢

Q— 100 GeV 40 APFEL / APFEL++
B HOPPET / APFEL++
- QCDNUM / APFEL++]
? APFEL++ — i | | | \V‘
10° 10* 100 102 10" 10° 10* 107 10% 107!
X
@ DIS structure functions at NN LO
0=100 GeV - APFEL / APFEL++ A
' - 0
B QCDNUM / APFELA++
| APFEL++ — | | . | | . j
10° 10 100 107 10" 102 10* 10° 107 107!
X X

1 1.001

1.000
0.999

- 1.001

1.000
0.999

1.001
1.000
0.999

1.001

1.000

0.999

1.001

1.000

0.999

PDF evolution performance

@ Comparison between different codes:

NNLO QCD evolution

~200 points in x Initialisation [s] Int1e(:§o_late AV
~50 points in Q times [s]

APFEL++

..

APFEL

HOPPET

QCDNUM

Interpolate a PDF map

PDF set: NNPDF31 nlo as 0118 .
S 105 times [S]

APFEL++

LHAPDF

APFEL through LHAPDF

@ Idea: delegate LHAPDF to interpolate over the (x, Q?) grid:

[

2

APFEL++ evolution:
AlphaQCD(Q) = 1.1638e-01

X
.0e-05
.0e-04
.0e-03
.0e-02
.0e-01
.0e-01
.0e-01

7.0e-01

9.0e-01

u-ubar
.0597e-03
.0510e-02
.7062e-02
.4305e-01
.1440e-01
.3154e-01
.0288e-01
.4110e-02
.8836e-04

P FRPERPWUNSNDNWO

NNNEFEPNREREPRARAREN

more performing,

standardise the access to PDFs.

// APFEL++ default EvolutionSetup object

apfel::EvolutionSetup es{};

// Feed 1t to the initialisation class of APFEL++

apfel::InitialiseEvolution ev{es, true};

// Construct pointer to LHAPDF: :PDF object

LHAPDF : : PDF* distAP

// Call PDFs

const std: :map<int,

d-dbar
.9000e-03
.1486e-02
.3014e-02
.3669e-01
.4974e-01
.1785e-01
.6959%e-02
.6031e-03
.4841e-05

2Cubr+dbr)
2.9868e+01
1.4191e+01
6.0966e+00
2.2041e+00
3.9254e-01
3.5867e-02
2.4053e-03
5.1163e-05
2.1042e-08

c+cbar
1.3409e+01
6.0136e+00
2.3549%e+00
7.1400e-01
7.5071e-02
6.7898e-03
5.4369%e-04
1

.3984e-05
8.2414e-09

gluon
.8825e+02
.0275e+01
.9215e+01
.9998e+00
.9562e-01
.6761e-02
.5518e-03
.6137e-04
.3548e-07

NWOOWOoONNOR

mkPDF(ev);

LHAPDF (tabulated) evolution:
AlphaQCD(Q) = 1.1638e-01

X
.0e-05
.0e-04
.0e-03
.0e-02
.0e-01
.0e-01
.0e-01
.0e-01
.0e-01

ONUVTWR R R R

P RPPRPWUNSNDNWOG

u-ubar

.0549%¢-03
.0510e-02
.7066e-02
.4306e-01
.1438e-01
.3153e-01
.0288e-01
.4109%e-02
.8834e-04

d-dbar
.9037e-03
.1491e-02
.3017e-02
.3670e-01
.4974e-01
.1785e-01
.6957e-02
.6030e-03
.4838e-05

NNNEPENRPRPRARREN

2Cubr+dbr)
2.9871e+01
1.4193e+01
6.0971e+00
2.2043e+00
3.9226e-01
3.5865e-02
2.4027e-03
5.1163e-05
2.1027e-08

double> PDFmap = distAP->xfxQ(x, mu);

c+cbar

.3411e+01
.0140e+00
.3550e+00
.1472e-01
.5312e-02
.8228e-03
.4586e-04
.4071e-05
.3325e-09

gluon
.8827e+02
.0282e+01
.9217e+01
.0004e+00
.9450e-01
.6755e-02
.5468e-03
.6138e-04
.3525e-07

NWOWOWooeN o -

Old functionalities
@ lThe FORTRAN version of APFEL implements a very large number

of functionalities.
@ I'm currently working to implement all of them also in APFEL++.

@ Missing functionalities in APFEL++ to be implemented:

QED corrections,

¢

intrinsic charm,

¢

MS masses,

¢

small-x resummation (need to intertace APFEL++ to HELL),

¢

scale variations,

¢

“minor’ functionalities:

¢

@ target mass corrections,

@ different solutions for the DGLAP and coupling evolutions (?).

New functionalities

@ [have already started using APFEL++ for tasks difficult to implement
in (or even out of reach) for the FORTRAN version.

@ LExamples are:

-

@ Semi-Inclusive DIS (SIDIS) in collinear factorisation:

@ double convolution with time- and space-like evolution at the same time.

-

@ 1MD phenomenology:

@ evolution and matching,

@ Drell-Yan and SIDIS gt distributions.

s

@ DGLAP evolution with splitting explicitly depending the factorisation scale:

=

@ e.g “Physical”’-scheme evolution (by Martin and Ryskin).

-

@ lransversity distributions (PDFs and FFs).

SIDIS in collinear factorisation

@ SIDIS cross sections (integrated over gr) have this structure:

pira)= [F [Fo(3F)d@d¥¢)

@ But the hard cross sections (at least up to NLO) factorise as:
=Y kG @0C7 @)

@ Combination of single convolutions:

i 0004 <x<001 i 001 <x<0.02 i 002<x<0.03 i 003<x<0.04 i 004 <x<0.06
T 0 a=100Ff

N i i i
B 3 - - - - +
S =050t [i i T

- -) - * n) |)
2 B ', CXZO.OOj N B o B N B \

[006<x<0.10 [010<x<014 [014<x<018 [0.18<x<040 02 04 06 0S8

0.50<y<0.70
030<y<0.50
0.20<y<0.30

. : : ! 0.15 <y <020
1 F R - ~ - N - N 0.10 <y <0.15
. ! ! ! Curves: APFEL++

o F T [e L e [(DSS14 + MSTWO03)

02 04 06 08 02 04 06 08 02 04 06 08 02 04 06 08
<

@ Next, I will also try with Drell-Yan cross sections.

TMD Evolution (PDFs)

Ff/P(ivabT;MaC) — Zcf/j(xab*ENbaCF)®fj/P(a77,Ub)

J

X eXp{K(b ub)ln@—l—/ ,ui[v
Hb

Hb

X exp < gj/p(CC, bT) + gK(bT) In CF 4
\ V GF,0

VCr

al

TMD Evolution (PDFs)

Ff/P(mabT;:uag)

v br < 1/Agcep

© matching to the collinear region

© factorises as hard and non-perturbative
© numerically cumbersome

© precompute using APFEL

<GS evolution
© perturbative

© matching between the small and large bt
© non perturbative
© parametrised and fitted to data

SIDIS in TMD factorisation

J In SIDIS, what enters

d*br _.
Ls1p1s = / (QW)TQG o

the computation of the cross sections 1s:

Py p(z, by, Cr) Dy p(x, brs s, Cp)

Fourier transform PDFs FFs

J The ingredients are:

¥ a set of evolved TMD-PDFs,
¥ a set of evolved TMD-FFs,

J the Fourier transtorm of 1ts product.

¢ Complex set of tasks t.

nat have to be performed optimally

o APFEL prowvides the 1c

eal environment for this computation:

¢ fast and accurate iterpolation techniques,

¢ precomputation of the time consuming bits.

Matching collinear and TMD

regimes

10l SIDIS cross section
' L ' L ' L -
[—— Fixed order at O(as) -
—— Resummed at NLL
—— Double counting
100 L — Matched -
g -
O A
8I3 -
> | VS =300.9 GeV
3 x=10"3
107 Fz=10"" E
"y =0.5
PDF set: CT14nlo
FF set: DSS07 (h + h)
10—2 1 L 1 1333l " L 1 1333l " L 1 13331

1072 101 10° 101 107
qr [GeV]

Plans for the future

‘e

Intertace to yaml for parsing of evolution parameters.

&

Intertace to APFELgrid.

&

Interface to APPLgrid/FastNLO:

@ Drell-Yan and SIDIS cross sections (?).

(4

@ PDF evol. and structure functions 1n a “OQ0” fashion useful for xFitter:

@ many possible evolution and structure functions available at the same time,

o=

@ assign different evolutions to difterent datasets (e.g. H-VFNYS),

-

@ fit PDFs and FFs at the same time (space- and time-like evolution).

