
xFitter 2.2: Status and development plans

Ivan Novikov
JINR

19 March, 2019



1/26

Overview

Latest developments on experimental branch test ceres:
New features

I New flexible system of parameters, parameterisations, decompositions, evolutions; enabling
studies of pion, kaon and nuclear PDFs.

I Parameterisation can be provided as a formula.

I Profiler: systematic shifts from uncertainties of physical constants

I Partial support for an alternative minimizer CERES

Plans and goals before release

I Rewrite interface of current system of reaction modules to make it work better with the
new system of evolutions.

I Rewrite system of parameters to allow fitting any used physical constant or parameter.
Allow using different values of parameters for each dataset or each reaction type.

I Fix features broken by the new interface. Test and verify correctness.



New features





4/26

Parameter

A parameter is a variable that can be varied by the minimizer.



5/26

Parameterisation

Input

I Current values of parameters

Output

I Value of parameterisation function at given point x

I n-th moment
1∫
0

xf (x)xndx



6/26

Decomposition

Input

I Parameterisations for a given particle

Responsibilities

I Provide PDFs at initial scale in flavor basis (d , d̄ , u, ū, s, s̄, g , . . .)
I Enforce sum rules by setting normalisation parameters



7/26

Evolution

Input

I Starting scale Q0, coupling αs(Q0), quark masses...

I PDFs at starting scale, from decomposition

Responsibilities

I Evolve PDFs to all scales, at each iteration

I Provide PDFs xfi (x ,Q), αs(Q) and any other evolved quantities

xFitter 2.2 currently supports DGLAP solvers QCDNUM and APFEL++

Some evolution classes, like LHAPDF and FlipCharge, do not actually solve DGLAP, but still
provide xfi (x ,Q) and αs(Q)



8/26



9/26

Currently one can only give evolutions to APPLgrid, other reactions always use default evolution



10/26

Profiler

Build correlated errors from uncertainties in parameters and PDFs from LHAPDF, by varying
them and recording changes in predictions



The next steps



12/26

ReactionTheory

ReactionTheory class is a singleton for computing theory predictions.
Input

I xf (x ,Q) and αs(Q) from evolutions

I Physical constants and scales

! Both PDFs and physical parameters can be different for different datasets

Output

I Computed cross-section

I (optional) Estimate of theory uncertainty, from different sources

Responsibilities

I Read input, check its sanity, compute predictions

Right?



12/26

ReactionTheory

ReactionTheory class is a singleton for computing theory predictions.
Input

I xf (x ,Q) and αs(Q) from evolutions

I Physical constants and scales

! Both PDFs and physical parameters can be different for different datasets

Output

I Computed cross-section

I (optional) Estimate of theory uncertainty, from different sources

Responsibilities

I Read input, check its sanity, compute predictions

Right?



13/26

Current interface

Current interface of ReactionTheory is the following:

I virtual int compute(int dataSetID, valarray<double>&val,

map<string,valarray<double> >&err)

Compute cross-sections (val) and their uncertainties (err) for a given term. dataSetID

is id of a term (not of a dataset). Returns 0 on success, and an error code on error.
Although nobody knows what the error codes mean, and what to do with them.

I virtual void setDatasetParameters(int dataSetID, map<string,string>

parsReaction, map<string,double> parsDataset)

Remember parameters for a given term. dataSetID is id of term. parsReaction are
term-parameters (which do not include reaction-specific parameters). parsDataset are
dataset-specific parameters (which do not include global or reaction-specific)
Current implementations of concrete ReactionTheory use a bunch of std::maps to
remember parameters for each dataset.

Additionally, ReactionTheory gets some parameters via ReactionTheory::GetParam, which
returns either a reaction-specific parameter, if it is provided, or a global parameter.



14/26

What will be printed?

Actual output



14/26

What will be printed?

Actual output



15/26

ReactionTheory

Actual responsibilities

I For each dataset, read parameters from 7 different places: global and reaction-specific (5
different functions for different data types), dataset-specific, term-specific.

I If term-specific or global string-typed parameters are provided, convert them from string to
correct data type.

I If some parameter is provided in many different places, decide which parameter overwrites
which. Different reactions do this differently (or not at all), there is no specified correct
behavior.

I Check sanity of resulting parameters. It is not clear what happens if only some parameters
are sane.

I Remember the obtained parameters for each termID.

I For each term, retrieve stored parameters by termID and compute cross-section

As far as I know, no reaction written so far can correctly handle all the various cases.





17/26

Design goals

I Setting and parameters come from different places and have different scope:
1. Term-specific
2. Dataset-specific
3. Reaction-specific
4. Global
5. Defaults

More specific definitions overshadow less specific, with priority as given here
I Input evolution(s) to ReactionTheory can be set separately at different scope
I Different parameter types:

1. double
2. int
3. string
4. list of double

The system should automatically convert to type requested by ReactionTheory, or report
an error if this is impossible

I Any double-typed parameter can potentially be fitted
I Details of all this shall be invisible to ReactionTheory



18/26

Main idea

TermData is a class that provides an interface to all data that is necessary to compute
predictions for this term.
ReactionTheory gets all the input it needs through this class.



19/26

A note on pointers

We want to be able to fit any double-typed parameters.
This means that such parameters can change from iteration to iteration.
Therefore, an implementation of ReactionTheory must re-read parameter values each time.
It should not be assumed that they are the same.

To emphasize this important point, and to reduce the necessary number of calls to
TermData::getParam, we decided that all double-typed parameters will be provided by pointer:

The pointer points to some location in memory where minimizer keeps current value of the
parameter.
The pointer itself never changes and always points to the same location.



20/26

TermData class

Each instance of TermData corresponds to one reaction term.

Responsibilities

I Provide a convenient interface to parameters for ReactionTheory

I Get parameter definitions from different places and decide which overshadow which in a
uniform manner.

I Retrieve evolutions and provide them to ReactionTheory

+ Hold additional reaction data for this term (later slide)

+ Manage wrappers for alternative ways of accessing PDFs (later slide)

Any and all instances of TermData are managed by TheorEval

Special parameters "evolution", "evolution1", "evolution2" are used to specify which
evolution should be used for this term. Evolutions are identified by name.



21/26

TermData class

Variant is a special class that automatically converts to any necessary type (double*, int,
string,...). It can also be None if a requested parameter is undefined.



22/26

Variant class



23/26

Reaction data

TermData has an additional pointer reactionData that ReactionTheory can use to store
some data for this term.

This is more elegant than using a series of std::maps, as is currently done.



24/26

PDF wrappers

Some libraries require PDF input as a function:

We provide wrappers like this to be used by ReactionTheory. However, one needs to make
sure that at any given moment these wrappers are wrapping the correct PDF. This is done by
calling TermData::actualizeWrappers.



25/26

ReactionTheory interface

Concrete implementations of ReactionTheory can override the following methods:

Of all these methods only compute must be implemented; all the others are optional.



26/26

Conclusions

xFitter 2.2 brings many new features and enables more complicated fits with its new flexible
fitting scheme. However, more work needs to be done before release:

I Implement the new ReactionTheory interface, as described in this presentation

I Reimplement reaction modules using the new interface

I Reimplement missing parameterisations, evolutions etc. (Chebyshev polynomials,
apfelgrid etc)

I Fix current issues with the build system

I Test and verify

We welcome comments, suggestions and use cases.

An informal writeup on development plan presented here is available on xFitter wiki on gitlab

https://gitlab.cern.ch/fitters/xfitter/wikis/home

