EICUG-MCnet MCEG Workshop

Summary of workshop

Feb. 20 - 22

DESY

Elke-Caroline Aschenauer (BNL), Andrea Bressan (Trieste), Markus Diefenthaler (JLAB), Hannes Jung (DESY), and Simon Plätzer (Vienna)

PROGRAM

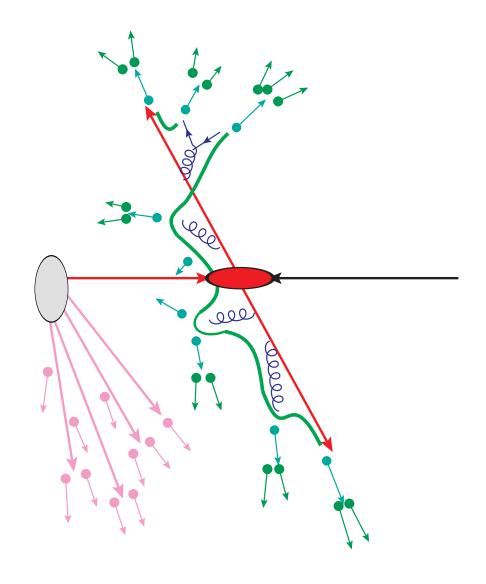
Updates to general-purpose MCEG for ep /eA
Status of NLO simulations for ep/eA
GPDs and TMDs in MCEGs
QED+QCD effects in ep/eA simulations

ORGANIZERS

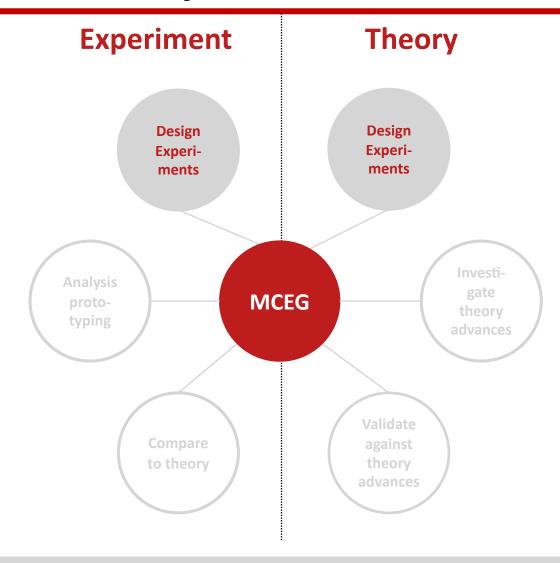
Elke-Caroline Aschenauer (BNL)
Andrea Bressan (INFN Trieste)
Markus Diefenthaler (JLAB)
Hannes Jung (DESY)

Simon Plätzer (University of Vienna) Stefan Prestel (Lund University)

www.desy.de/mceg2019


Monte Carlo Event Generator

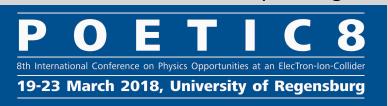
MCEG


- faithful representation of QCD dynamics
- based on QCD factorization and evolution equations

Algorithm of general-purpose MCEG

- 1. Generate kinematics according to fixed-order matrix elements and a PDF.
- 2. QCD Evolution via parton shower model (resummation of soft gluons and parton-parton scatterings).
- 3. Hadronize all outgoing partons including the remnants according to a model.
- 4. Decay unstable hadrons.

MCEG in Experiment and Theory



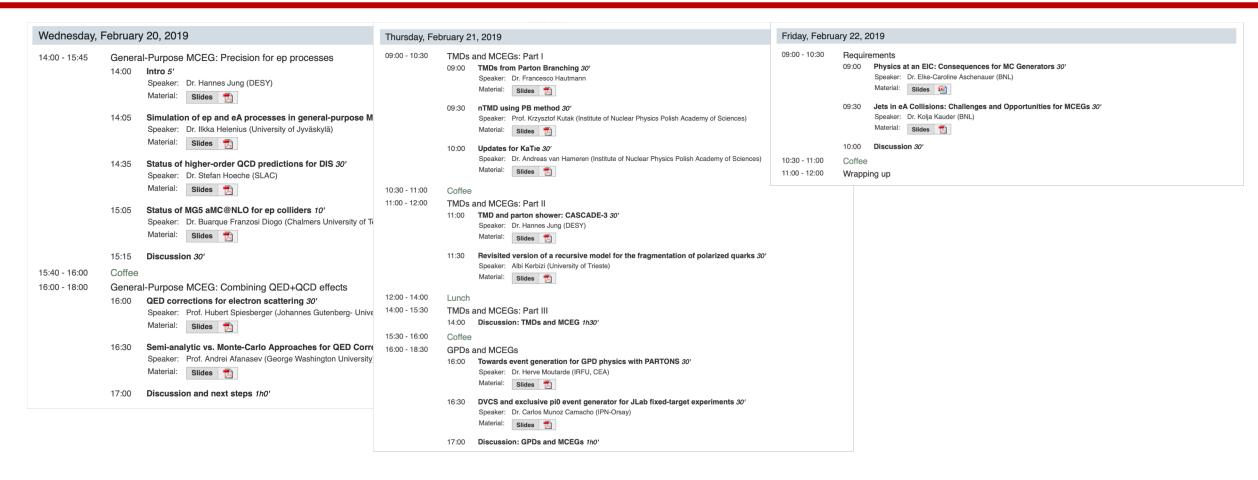
Lesson from HEP High-precision QCD measurements require high-precision MCEGs

Workshop history

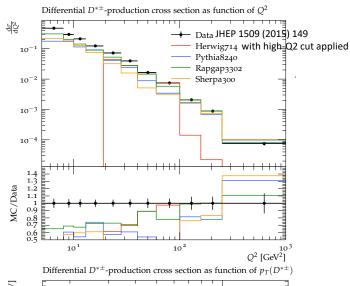
Started as satellite workshop during POETIC-8

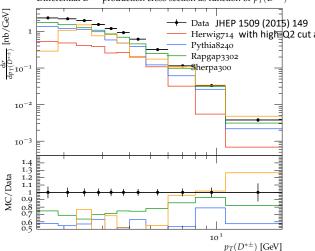
Collaboration EICUG-MCnet

Goal of workshop series


- Requirements for MCEGs for ep and eA
- R&D for MCEGs for ep and eA

Focus of DESY workshop on Feb. 20 – 22


- Status of ep and eA in general-purpose MCEG
- Status of NLO simulations for ep
- TMDs and GPDs and MCEGs
- Merging QED and QCD effects


Program

Comparisons to combined H1 and ZEUS analysis (A. Verbytskyi)

General-purpose MCEG and ep collisions

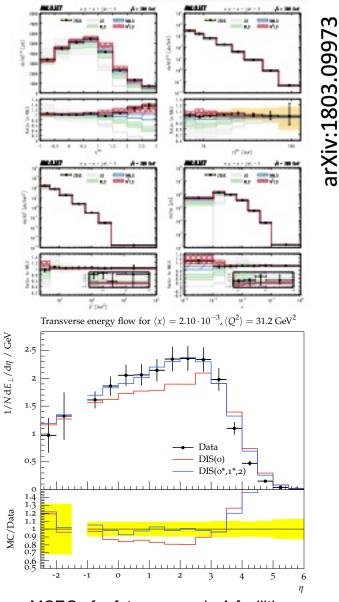
Sherpa

- DIS with ME corrections and PS merging
- Good description of jet data at low Q^2 with ≥ 3 partons in the final state
- Automated NLO matching with Powheg method, applicable for jets at high-Q²

Herwig

- Two shower options with spin correlations and NLO matching
- Good description for single-particle properties in DIS
- Also QED radiation for angular-ordered shower

Pythia


- Possible to generate DIS events with the new dipole shower implementation
- Higher-order corrections via Dire plugin, soon part of Pythia core
- Photoproduction for hard and soft QCD processes, also hard diffraction

Detailed comparisons between modern MCEG and HERA data

- Feb 18—20 Workshop on Rivet for ep, rivet-ep-l@lists.bnl.gov mailing list
- HERA data not (yet) included in MCEG tunes

General-purpose MCEG and eA collisions

- No strong modifications for DIS (nuclear PDFs, what else?)
- For photoproduction need to include interactions between resolved photon and other nucleons
- Complementary to ultra-peripheral collisions at the LHC and RHIC

Fixed-order QCD

- QCD calculations available up to N³LO for inclusive DIS
- Peculiarities of DIS require careful selection of scales
- Excellent description of experimental data from HERA

MC event simulation

- DIS simulations available in all three event generation frameworks
- NLO matching & merging standard, NNLO matching available
- Peculiarities of DIS require careful selection of clustering history
- Very good description of wide range of experimental data

TMDs and MCEGs

Vibrant community

MCEG Workshop DESY, February 2019

F Hautmann
TMDs from Parton Branching

First all flavor. all Q^2 , all x and all k_t TMD at NLO determined.

- Introduction
- The Parton Branching (PB) method
- New results and applications

F Hautmann: MCEG Workshop, DESY - February 2019

Updates for KaTie

Andreas van Hameren

presented at the

MCEGs for future ep and eA facilities 21-02-2019, DESY, Hamburg

First ever off-shell hard process calculation for ep including all flavors.

TMD and parton shower: CASCADE-3

Hannes Jung (DESY)

with contributions from
A. van Hameren, K. Kutak, A. Kusina,
A. Bermudez Martinez, P. Connor F. Hautmann, O. Lelek, R. Zlebcik

- From inclusive to exclusive distributions
- Parton Branching method for TMDs

First TMD parton shower using higher order splitting function.

H. Jung, TMD and Parton Shower CASCADE3, MCEG for future ep facilities, Hamburg, Feb 2019

Lively discussion: Factorization Theorem and MCEG approaches

To what extent are TMDs a result of a coherent branching evolution as, e.g., implemented in Herwig

Next: Comparison to TMD theory

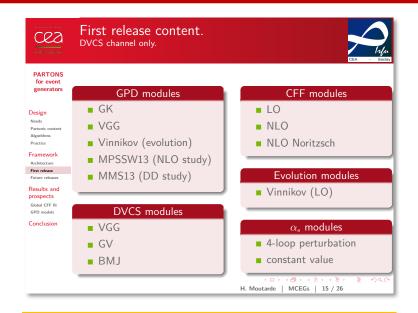
Extract TMD from the different MCs and compare to analytic results.

nTMD using PB method

Krzysztof Kutak

First all Q^2 , all x, all k_t TMD at NLO for nuclei. Comparison with DY data (pp, pPb, CMS)

1st February 2019 DESY,


Revisited version of a recursive model for the fragmentation of polarized quarks

Albi Kerbizi

University of Trieste. Trieste INFN Section

Lund string + 3P0; good description of Collins and dihadron asymmetries; Boer-Mulders, jet handedness can be simulated.

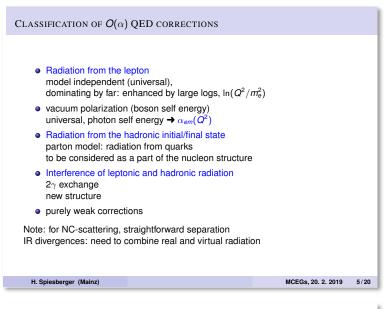
GPDs and MCEGs

Hervé Moutarde (IRFU, CEA): Towards event generation for GPD physics with PARTONS

- GPD framework should become available to a wide community of users. Forthcoming v2 with TCS as a demonstration of multi-channel capacity.
- Extreme modularity should benefit to event generation.
- Extension beyond GPD physics through a Virtual Access structure within STRONG2020 program.

Event generator overview

- Generate electron kinematics (Q², x_B) based on e spectrometer acceptance (with external and real internal radiative corrections)
- Generate hadron kinematics (t, φ) based on γ calorimeter acceptance
- Rotate all particles around beam axis (vertical e acceptance): φ_e
- Cross section (« weight ») calculated using recent DVCS model/fits
- · Virtual internal radiative corrections are applied later in the analysis

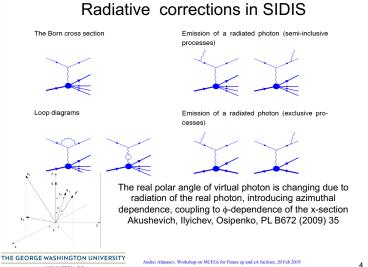

Feb 21, 2019

Carlos Muñoz Camacho (Orsay): DVCS and exclusive π^0 event generator for JLab fixed-target experiments

- MCEG for DVCS and exclusive π^0 production available (used for JLAB analysis for the last ~15 years).
- DVCS cross section implemented based on CCF lookup table.
- No explicit background generated only pure DVCS/ π 0 events.
- C++ based code. Parameters set via C++ script or via MySQL database (as a function of configuration number).
- Portable to collider configuration, but not done.

Carlos Muñoz Camacho (IPNO)

Merging QED and QCD effects



Hubert Spiesberger (Mainz): QED corrections for electron scattering

- High-precision measurements need careful treatment of radiative corrections.
- Closely related to experimental conditions need full Monte Carlo treatment (Unfolding) including simulation of hadronic final states.
- The basics are known and available ...
- ... but improvements are needed.

Andrei Afanasev (GWU): Semi-analytic vs. Monte-Carlo Approaches for QED Corrections to SIDIS

- Consistent approach to address RC for SSA in polarized SIDIS
- SSA due to two-photon exchange need to be included in analysis of SSA from strong interaction, of same size at JLAB experiments
- More detailed calculation of the two-photon exchange at quark level required: elastic scattering, inclusive, semi-inclusive, and exclusive DIS

Next steps: Discussion based on review by Elke-Caroline Aschenauer (BNL)

- General-purpose MCEGs, HERWIG, PYTHIA, and SHERPA, will be significantly improved w.r.t. MCEGs at HERA time:
 - MCEG-data comparisons in Rivet will be critical to tune the MCEGs to DIS data and theory predictions.
 - The existing general-purpose MCEG should soon be able to simulate NC and CC unpolarized observables also for eA. A precise treatment of the nucleus and its breakup is needed.
 - First parton showers and hadronization models for ep with spin effects, but far more work needed for polarized ep / eA simulations.
 - Need to clarify the details about merging QED+QCD effects (in particular for eA).

TMD physics

- Vibrant community working on various computational tools for TMDs.
- CASCADE: MCEG for unpolarized TMDs at high energy.
- Need more verification of MCEG models with TMD theory / phenomenology.

GPD physics

- No modern MCEG available.
- There is a path from PARTONS to a GPD MCEG, similar there is a project to extend MCEG for exclusive processes from JLAB12 to EIC.

MCEG for ep We are on a very good path, but still quite some work ahead.

MCEG for eA Less clear situation about theory and MCEG.