MCEG Workshop
 DESY, February 2019

F Hautmann
 TMDs from Parton Branching

- Introduction
- The Parton Branching (PB) method
- New results and applications

I. Introduction

TRANSVERSE MOMENTUM DEPENDENT (TMD) PARTON DISTRIBUTION FUNCTIONS

- Parton correlation functions at non-lightlike distances:

$$
\mathrm{p}=\left(\mathrm{p}^{+}, \mathrm{m}^{2} / 2 \mathrm{p}^{+}, 0_{\perp}\right)
$$

$$
\begin{aligned}
& \widetilde{f}(y)=\langle P| \bar{\psi}(y) V_{y}^{\dagger}(n) \gamma^{+} V_{0}(n) \psi(0)|P\rangle \quad, \quad y=\left(0, y^{-}, y_{\perp}\right) \\
& V_{y}(n)=\mathcal{P} \exp \left(i g_{s} \int_{0}^{\infty} d \tau n \cdot A(y+\tau n)\right)
\end{aligned}
$$

- TMD pdfs:

$$
f\left(x, k_{\perp}\right)=\int \frac{d y^{-}}{2 \pi} \frac{d^{d-2} y_{\perp}}{(2 \pi)^{d-2}} e^{-i x p^{+} y^{-}+i k_{\perp} \cdot y_{\perp}} \tilde{f}(y)
$$

Evolution equations for TMD parton distribution functions

high $\sqrt{s}: \sqrt{s} \gg M$

$\left(\alpha_{s} \ln \sqrt{s} / M\right)^{n}$

CSS evolution equation

R. Angeles-Martinez et al., "Transverse momentum dependent (TMD) parton distribution functions: status and prospects", Acta Phys. Polon. B46 (2015) 2501

TMD distributions (unpolarized and polarized)

TABLE I
(Colour on-line) Quark TMD pdfs: columns represent quark polarization, rows represent hadron polarization. Distributions encircled by a dashed line are the ones which survive integration over transverse momentum. The shades of the boxes (light gray (blue) versus medium gray (pink)) indicate structures that are T-even or T-odd, respectively. T-even and T-odd structures involve, respectively, an even or odd number of spin-flips.

QUARKS	unpolarized	chiral	transverse
U	f_{1}		h_{1}^{\perp}
L		$g_{i U}$	$h_{i L}^{\perp}$
T	$f_{1 r}^{\perp}$	$g_{i r}$	$h_{i r}, h_{i r}^{\perp}$

TABLE II
(Colour on-line) Gluon TMD pdfs: columns represent gluon polarization, rows represent hadron polarization. Distributions encircled by a dashed line are the ones which survive integration over transverse momentum. The shades of the boxes (light gray (blue) versus medium gray (pink)) indicate structures that are T-even or T-odd, respectively. T-even and T-odd structures involve, respectively, an even or odd number of spin-flips. Linearly polarized gluons represent a double spin-flip structure.

GLUONS	unpolarized	circular	linear
U	$\left(f_{1}^{g}\right.$		$h_{1}^{1 g}$
L		$g_{1 L}^{g}$	$h_{1 L}^{18}$
T	$f_{1 T}^{1 g}$	$g_{1 T}^{g}$	$h_{1 T}^{g}, h_{1 T}^{1 g}$

[^0]
II. The Parton Branching (PB) approach:

MOTIVATION

- Evolution equation connected in a controllable way with DGLAP evolution of collinear parton distributions
- Applicable over broad kinematic range from low to high transverse momenta, for inclusive as well as non-inclusive observables
- Implementable in Monte Carlo event generators

Parton Branching (PB) method: collinear PDFs

QCD evolution and soft-gluon resolution scale

[Jung, Lelek, Radescu, Zlebcik \& H, PLB772 (2017) $446+$ in progress]
$\widetilde{f}_{a}\left(x, \mu^{2}\right)=S_{a}\left(\mu^{2}\right) \widetilde{f}_{a}\left(x, \mu_{0}^{2}\right)+\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \frac{S_{a}\left(\mu^{2}\right)}{S_{a}\left(\mu^{\prime 2}\right)} \int_{x}^{z_{M}} d z P_{a b}^{(R)}\left(\alpha_{\mathrm{S}}\left(\mu^{2}\right), z\right) \widetilde{f}_{b}\left(x / z, \mu^{\prime 2}\right)$
where $S_{a}\left(z_{M}, \mu^{2}, \mu_{0}^{2}\right)=\exp \left(-\sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}} \int_{0}^{z_{M}} d z z P_{b a}^{(R)}\left(\alpha_{\mathrm{S}}\left(\mu^{\prime 2}\right), z\right)\right)$

x, μ	
x_{i}, μ_{i}	

$z_{i+1}=x / x_{i}, \mu_{i+1} \left\lvert\, \begin{aligned} & x \\ & x_{i}, \mu_{i} \\ & \\ & \end{aligned}\right.$

\triangleright soft-gluon resolution parameter z_{M} separates resolvable and nonresolvable branchings \triangleright no-branching probability S; real-emission probability $P^{(R)}$

- Equivalent to DGLAP evolution equation for $z M \rightarrow 1$

Non-resolvable emissions and unitarity method

- Introduce resolution scale z_{M}, where $1-z_{M} \sim \mathcal{O}\left(\Lambda_{\mathrm{QCD}} / \mu\right)$.
- Classify singular behavior of splitting kernels $P_{a b}\left(z, \alpha_{s}\right)$ in non-resolvable region $1>z>z_{M}$: $P_{a b}\left(\alpha_{\mathrm{S}}, z\right)=D_{a b}\left(\alpha_{\mathrm{S}}\right) \delta(1-z)+K_{a b}\left(\alpha_{\mathrm{S}}\right) \frac{1}{(1-z)_{+}}+R_{a b}\left(\alpha_{\mathrm{S}}, z\right)$
where $\int_{0}^{1} \frac{1}{(1-z)_{+}} \varphi(z) d z=\int_{0}^{1} \frac{1}{1-z}[\varphi(z)-\varphi(1)] d z$ and $R_{a b}\left(\alpha_{\mathrm{s}}, z\right)$ contains logarithmic and analytic contributions for $z \rightarrow 1$
- Expand plus-distributions in non-resolvable region and use sum rule $\sum_{c} \int_{0}^{1} z P_{c a}\left(\alpha_{\mathrm{S}}, z\right) d z=0$ (for any a) to eliminate D-terms in favor of K - and R-terms
\Rightarrow real-emission probabilities exponentiate into Sudakov form factors

Parton Branching (PB) method: TMD PDFs

$$
\begin{aligned}
\widetilde{\mathcal{A}}_{a}\left(x, \mathbf{k}, \mu^{2}\right) & =S_{a}\left(\mu^{2}\right) \widetilde{\mathcal{A}}_{a}\left(x, \mathbf{k}, \mu_{0}^{2}\right)+\sum_{b} \int \frac{d^{2} \mathbf{q}^{\prime}}{\pi \mathbf{q}^{\prime 2}} \frac{S_{a}\left(\mu^{2}\right)}{S_{a}\left(\mathbf{q}^{\prime 2}\right)} \Theta\left(\mu^{2}-\mathbf{q}^{\prime 2}\right) \Theta\left(\mathbf{q}^{\prime 2}-\mu_{0}^{2}\right) \\
& \times \int_{x}^{z_{M}} d z P_{a b}^{(R)}\left(\alpha_{\mathrm{S}}\left(\mathbf{q}^{\prime 2}\right), z\right) \widetilde{\mathcal{A}}_{b}\left(x / z, \mathbf{k}+(1-z) \mathbf{q}^{\prime}, \mathbf{q}^{\prime 2}\right)
\end{aligned}
$$

Solve iteratively : $\quad \widetilde{\mathcal{A}}_{a}^{(0)}\left(x, \mathbf{k}, \mu^{2}\right)=S_{a}\left(\mu^{2}\right) \widetilde{\mathcal{A}}_{a}\left(x, \mathbf{k}, \mu_{0}^{2}\right)$,

$$
\begin{aligned}
& \widetilde{\mathcal{A}}_{a}^{(1)}\left(x, \mathbf{k}, \mu^{2}\right)=\sum_{b} \int \frac{d^{2} \mathbf{q}^{\prime}}{\pi \mathbf{q}^{\prime 2}} \Theta\left(\mu^{2}-\mathbf{q}^{\prime 2}\right) \Theta\left(\mathbf{q}^{\prime 2}-\mu_{0}^{2}\right) \\
\times & \frac{S_{a}\left(\mu^{2}\right)}{S_{a}\left(\mathbf{q}^{\prime 2}\right)} \int_{x}^{z_{M}} d z P_{a b}^{(R)}\left(\alpha_{\mathrm{S}}\left(\mathbf{q}^{\prime 2}\right), z\right) \widetilde{\mathcal{A}}_{b}\left(x / z, \mathbf{k}+(1-z) \mathbf{q}^{\prime}, \mu_{0}^{2}\right) S_{b}\left(\mathbf{q}^{\prime 2}\right)
\end{aligned}
$$

Jung, Lelek,

Radescu, Zlebcik \& H, JHEP 01 (2018) 070

- A new evolution equation!

NB: angular ordering

Validation of the method with semi-analytic result from QCDNUM at LO

Agreement to better than 1% over several orders of magnitude in x and mu

Validation of the method with semi-analytic result from QCDNUM at NLO

Very good agreement at NLO over all x and mu.
NB: the same approach is designed to work at NNLO.

Stability with respect to resolution scale z_M

TMDs and soft gluon resolution effects

gluon, $x=0.01, \mu=1000 \mathrm{GeV}$

angular ordering

transverse momentum ordering

Well-defined TMDs require appropriate ordering condition

PB method in xFitter

- Determine starting distribution

A Bermudez et al, arXiv:1804.11152

$$
\begin{aligned}
x f_{a}\left(x, \mu^{2}\right) & =x \int d x^{\prime} \int d x^{\prime \prime} \mathcal{A}_{0, b}\left(x^{\prime}\right) \tilde{\mathcal{A}}_{a}^{b}\left(x^{\prime \prime}, \mu^{2}\right) \delta\left(x^{\prime} x^{\prime \prime}-x\right) \\
& =\int d x^{\prime} \mathcal{A}_{0, b}\left(x^{\prime}\right) \cdot \frac{x}{x^{\prime}} \tilde{\mathcal{A}}_{a}^{b}\left(\frac{x}{x^{\prime}}, \mu^{2}\right)
\end{aligned}
$$

- fit to HERA data (using x Fitter) with $Q^{2} \geq 3.5 \mathrm{GeV}^{2}$ gives $\chi^{2} / n d f \sim 1.2$

TMD distributions from fits to precision HERA data

A Bermudez et al, arXiv:1804.11152

- NLO determination of TMDs with uncertainties

Where to find TMDs? TMDlib and TMDplotter

TMDlib and TMDplotter: library and plotting tools for transverse-momentum-dependent parton distributions
F. Hautmann ${ }^{1,2}$, H. Jung ${ }^{3,4}$, M. Krämer 3, P. J. Mulders ${ }^{5,6}$, E. R. Nocera ${ }^{7}$, T. C. Rogers ${ }^{8,9}$, A. Signori ${ }^{5}{ }^{5,6, a}$
${ }^{1}$ Rutherford Appleton Laboratory, Oxford, UK
${ }^{2}$ Department of Theoretical Physics, University of Oxford, Oxford, UK
DESY, Hamburg, Germany
University of Antwerp, Antwerp, Belgium
${ }^{5}$ Department of Physics and Astronomy, VU University Amsterdam, Amsterdam, The Netherlands
${ }^{6}$ Nikhef, Amsterdam, The Netherlands
${ }^{7}$ Universita degli Studi di Genova, INFN, Genoa, Italy
${ }^{8}$ C.N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, USA
${ }^{9}$ Department of Physics, Southern Methodist University, Dallas, TX 75275, USA
http://tmdlib.hepforge.org http://tmdplotter.desy.de

- Also contains collinear (integrated) pdfs

Last REF Workshop: Cracow, 19-22 November 2018

https://indico.cern.ch/event/696311

III. New results and applications

ONGOING WORK:

- Drell-Yan pT spectrum from convolution of two transverse momentum dependent distributions
- Comparison of parton branching results with analytic TMD resummation (Collins-Soper-Sterman method)
- First implementation for jets (using NLO matrix elements for color-charged final states)

Application of PB method to Z-boson transverse momentum spectrum in Drell-Yan production

- Parton branching TMD defined by using ${ }_{0.08} Z \rightarrow e e$, dressed level, $66 \mathrm{GeV} \leq m_{\ell \ell}<116 \mathrm{GeV}, \mid y_{e \ell}<2.4$ angular ordering
- Scale in running coupling also by angular ordering

$$
\alpha_{5}\left(\mu^{2}(1-z)^{2}\right)
$$

- mu-dependent soft-gluon resolution scale parameter zM

$$
z_{M}(\mu)=1-q_{0} / \mu
$$

LHC Electroweak WG Meeting, CERN, June 2018

Z-boson transverse momentum spectrum: soft-gluon angular ordering effects

can be extended to Drell-Yan on nuclei - see talk by K Kutak

Zlebcik, Radescu, Lelek, Jung \& H, JHEP 1801 (2018) 070;
A Bermudez Martinez et al., arXiv:1804.11152 [hep-ph]

ATLAS data, EPJC 76 (2016) 291

Comparison with

CSS (Collins-Soper-Sterman) resummation

\diamond The resummed DY differential cross section is given by

$$
\begin{aligned}
\frac{d \sigma}{d^{2} \mathbf{q} d Q^{2} d y} & =\sum_{q, \bar{q}} \frac{\sigma^{(0)}}{s} H\left(\alpha_{\mathrm{S}}\right) \int \frac{d^{2} \mathbf{b}}{(2 \pi)^{2}} e^{i \mathbf{q} \cdot \mathbf{b}} \mathcal{A}_{q}\left(x_{1}, \mathbf{b}, Q\right) \mathcal{A}_{\bar{q}}\left(x_{2}, \mathbf{b}, Q\right)+\mathcal{O}\left(\frac{|\mathbf{q}|}{Q}\right) \text { where } \\
\mathcal{A}_{i}(x, \mathbf{b}, Q) & =\exp \left\{\frac{1}{2} \int_{c_{0} / b^{2}}^{Q^{2}} \frac{d \mu^{\prime 2}}{\mu^{\prime 2}}\left[A_{i}\left(\alpha_{\mathrm{S}}\left(\mu^{\prime 2}\right)\right) \ln \left(\frac{Q^{2}}{\mu^{\prime 2}}\right)+B_{i}\left(\alpha_{\mathrm{S}}\left(\mu^{\prime 2}\right)\right)\right]\right\} G_{i}^{(\mathrm{NP})}(x, \mathbf{b}) \\
& \times \sum_{j} \int_{x}^{1} \frac{d z}{z} C_{i j}\left(z, \alpha_{\mathrm{S}}\left(\frac{c_{0}}{\mathbf{b}^{2}}\right)\right) f_{j}\left(\frac{x}{z}, \frac{c_{0}}{\mathbf{b}^{2}}\right)
\end{aligned}
$$

and the coefficients H, A, B, C have power series expansions in α_{S}.
\diamond The parton branching TMD is expressed in terms of real-emission $P^{(R)}$:

\triangleright via momentum sum rules, use unitarity to relate $P^{(R)}$ to virtual emission \triangleright identify the coefficients in the two formulations, order by order in α_{S}, at LL, NLL, ...

Comparison with

CSS (Collins-Soper-Sterman) resummation

More precisely:
\triangleright The parton branching TMD contains Sudakov form factor in terms of

$$
P_{a b}^{(R)}\left(\alpha_{\mathrm{S}}, z\right)=K_{a b}\left(\alpha_{\mathrm{S}}\right) \frac{1}{1-z}+R_{a b}\left(\alpha_{\mathrm{S}}, z\right) \quad \text { where }
$$

$K_{a b}\left(\alpha_{\mathrm{S}}\right)=\delta_{a b} k_{a}\left(\alpha_{\mathrm{S}}\right), \quad k_{a}\left(\alpha_{\mathrm{S}}\right)=\sum_{n=1}^{\infty}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{n} k_{a}^{(n-1)}, \quad R_{a b}\left(\alpha_{\mathrm{S}}, z\right)=\sum_{n=1}^{\infty}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{n} R_{a b}^{(n-1)}(z)$
\triangleright Via momentum sum rules, use unitarity to re-express this in terms of

$$
\begin{gathered}
P^{(V)}=P-P^{(R)}, \quad \text { where } \\
P_{a b}\left(\alpha_{\mathrm{S}}, z\right)=D_{a b}\left(\alpha_{\mathrm{S}}\right) \delta(1-z)+K_{a b}\left(\alpha_{\mathrm{S}}\right) \frac{1}{(1-z)_{+}}+R_{a b}\left(\alpha_{\mathrm{S}}, z\right)
\end{gathered}
$$

is full splitting function (at LO, NLO, etc.)

$$
\text { with } \quad D_{a b}\left(\alpha_{\mathrm{S}}\right)=\delta_{a b} d_{a}\left(\alpha_{\mathrm{S}}\right), \quad d_{a}\left(\alpha_{\mathrm{S}}\right)=\sum_{n=1}^{\infty}\left(\frac{\alpha_{\mathrm{S}}}{2 \pi}\right)^{n} d_{a}^{(n-1)}
$$

\triangleright Identify $d_{a}\left(\alpha_{\mathrm{S}}\right)$ and $k_{a}\left(\alpha_{\mathrm{S}}\right)$ with resummation formula coefficients (LL, NLL, ..)

Comparison with

CSS (Collins-Soper-Sterman) resummation

- $d_{a}\left(\alpha_{\mathrm{S}}\right)$ and $k_{a}\left(\alpha_{\mathrm{S}}\right)$ perturbative coefficients

$$
\begin{gathered}
\text { one - loop : } \\
d_{q}^{(0)}=\frac{3}{2} C_{F} \quad, \quad k_{q}^{(0)}=2 C_{F} \\
\\
\text { two - loop : } \\
d_{q}^{(1)}=C_{F}^{2}\left(\frac{3}{8}-\frac{\pi^{2}}{2}+6 \zeta(3)\right)+ \\
C_{F} C_{A}\left(\frac{17}{24}+\frac{11 \pi^{2}}{18}-3 \zeta(3)\right)-C_{F} T_{R} N_{f}\left(\frac{1}{6}+\frac{2 \pi^{2}}{9}\right), \\
k_{q}^{(1)}=2 C_{F} \Gamma, \quad \text { where } \Gamma=C_{A}\left(\frac{67}{18}-\frac{\pi^{2}}{6}\right)-T_{R} N_{f} \frac{10}{9}
\end{gathered}
$$

- The k and d coefficients of the PB formalism match, order by order, the A and B coefficients of the CSS formalism:

$$
\begin{gathered}
\mathrm{LL}: k_{q}^{(0)}=2 C_{F}=2 A_{q}^{(1)} \\
\mathrm{NLL}: k_{q}^{(1)}=2 C_{F} \Gamma=4 A_{q}^{(2)} ; d_{q}^{(0)}=\frac{3}{2} C_{F}=-B_{q}^{(1)} \\
\text { NNLL }: \text { analysis in progress }
\end{gathered}
$$

Di-jets from PB method: towards NLO-matched parton-shower Monte Carlo generators with TMDs

Dijet azimuthal correlation ak4, $300<p_{T}^{\text {leading }}<400 \mathrm{GeV}$

- Events by NLO POWHEG 2 jets
- Parton branching TMD (with angular ordering)
- TMD parton shower

Di-jets from PB method: towards NLO-matched parton-shower Monte Carlo generators with TMDs

- Events by NLO POWHEG 2 jets
- Parton branching TMD (with angular ordering)
- TMD parton shower
see talk by H Jung on TMD showers

Conclusions

- PB method to take into account simultaneously soft-gluon emission at $z \rightarrow 1$ and transverse momentum qT recoils in the parton branchings along the QCD cascade
- potentially relevant for calculations both in collinear factorization and in TMD factorization
\rightarrow cf. parton shower calculations and analytic resummation
- terms in powers of $\ln (1-z \mathrm{M})$ can be related to large-x resummation? \rightarrow relevant to near-threshold, rare processes to be investigated at high luminosity
- systematic studies of ordering effects and color coherence
\rightarrow helpful to analyze long-time color correlations?

[^0]: R. Angeles-Martinez et al., "Transverse momentum dependent (TMD) parton distribution functions: status and prospects", Acta Phys. Polon. B46 (2015) 2501

