Updates for Kalie

Andreas van Hameren
Institute of Nuclear Physics
iﬁ Polish Academy of Sciences
& Krakoéw

presented at the

MCEGs for future ep and eA facilities
21-02-2019, DESY, Hamburg

What does KaTie do?

Off-shell amplitudes

QED gauge invariance

How to use KaTie

What does Kalie do?

Let Y = {y = y1y2 — Ysys---ynt be a list of partonic processes contributing to a
hadron-scattering process with a multi-jet final state, with differential cross section

doy(p1, P2 K3y .oy Koun) = Z J d'k Py, (ki) J d*ka Py, (k2) A6y (ki, ka; K3y o+, Ko

yey
Collinear factorization: P2
dXi k3
Py, (ki) —J < fy, (%0, 1) 8 (ki — xip3) ka
1 k4
kr-dependent factorization factorization:
dzkaL dXi
fpyi(ki) = J - ! J _ ?yi(xh kit 1) 54(ki — XiPpi — Ki1) ki Kn+2

P1
Differential partonic cross section:

de(kth;k% ceey k2+n) = dq)Y(kth;kS) oo)k2+n) ®Y(k3> ceey k2+n)
x flux(ky, ka) x 8y IMy (ki, ...y Ko

KaTie creates tree-level event files corresponding to dovy, if supplied with f, and/or ;.

Dijet azimuthal de-correlation SRR

The azimuthal de-correlations, that is the distribution of the angle in the transverse plane
between the two hardest jets, for pp — jj at 7 TeV (data: CMS 2011).

This observable has no distribution at LO (tree-level) in collinear factorization.

Red prediction: collinear factorization at NLO
Blue prediction: kr-dependent factorization at tree-level

Di-jet azimuthal decorrelation, 110 < pl;admg < 140 GeV Di-jet azimuthal decorrelation, 140 < plTeadmg < 200 GeV
'Ig E —e— Data E —e— Data
= —— TMD noPS y2 = Q7 + 3§ ;L —— TMDnoPS = Qf +5
g E ——- Powheg 2jet NLO noPS E ——— Powheg 2jet NLO noPS
S C C
L -y
107" o E
E —— F
F — B
r —— St 1072 .
1072 — —— i 3
%’_—o— ! St
£ | C
L ! 1073
. | 3 -
1073 & e E
E‘ | - [| S ‘ | ‘ 111 ‘ 111 ‘ I | l | I ‘ { =] C L1 | ‘ I | ‘ |\ 11 ‘ 111 | 1_F_1 l | I . ‘ | ‘ 1|
1.6 1.8 2 2.2 2.4 2.6 2.8 3 1.6 1.8 2 2.2 2.4 2.6 2.8 3
A¢ [rad] A¢ [rad]

kT and parton shower

collinear hard scattering momentum inbalance by enforcing momentum conservation

-Q4V¥7;7-

momentum inbalance already at hard scattering, parton shower (CASCADE) unfolds kr

& o

| '
Amplitude as embedding Al (il [Reitio B0

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

| '
Amplitude as embedding Al (il [Reitio B0

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

AvH, Kutak, Kotko 2013

Amplitude as embedding

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

AvH, Kutak, Salwa 2013

AvH, Kutak, Kotko 2013

Amplitude as embedding

AvH, Kutak, Salwa 2013

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

In agreement with the effective action approach of

Lipatov 1995, Antonov, Lipatov, Kuraev, Cherednikov 2005
J| Lipatov, Vyazovsky 2000, Nefedov, Saleev, Shipilova 2013
and the Wilson-line approach of =0 ——
Kotko 2014 v

QED gauge invariance

Once you have both off-shell intial-state quarks and electro-weak interactions involved in
the process, QED gauge invariance becomes an issue. Nefedov, Saleev 2018, Fadin, Sherman
1976.

QED gauge invariance

Once you have both off-shell intial-state quarks and electro-weak interactions involved in
the process, QED gauge invariance becomes an issue. Nefedov, Saleev 2018, Fadin, Sherman
1976.

e to ensure QCD gauge invariance with an off-shell gluon, an auxiliary quark-
antiquark pair qa, ga must be included, plus the interaction vertex

qada g

QED gauge invariance

Once you have both off-shell intial-state quarks and electro-weak interactions involved in
the process, QED gauge invariance becomes an issue. Nefedov, Saleev 2018, Fadin, Sherman
1976.

e to ensure QCD gauge invariance with an off-shell gluon, an auxiliary quark-
antiquark pair qa, ga must be included, plus the interaction vertex

qada g

e to ensure QCD gauge invariance with an off-shell (anti)quark, an auxiliary quark-
antiquark pair ua, s must be included (for each flavor), plus an auxiliary photon
YA, plus interaction vertices

UaYAU , UaYalU , UAUA(

QED gauge invariance

Once you have both off-shell intial-state quarks and electro-weak interactions involved in
the process, QED gauge invariance becomes an issue. Nefedov, Saleev 2018, Fadin, Sherman
1976.

e to ensure QCD gauge invariance with an off-shell gluon, an auxiliary quark-
antiquark pair qa, ga must be included, plus the interaction vertex

qada g

e to ensure QCD gauge invariance with an off-shell (anti)quark, an auxiliary quark-
antiquark pair ua, s must be included (for each flavor), plus an auxiliary photon
YA, plus interaction vertices

UaYAU , UaYalU , UAUA(

e to ensure QED gauge invariance wuth an off-shell (anti)quark, the following ver-
tices must also be included (for each family)

UAUAY , UaUAZ , daday , dadaZ , uadaW , tadaW"

QED gauge invariance

Once you have both off-shell intial-state quarks and electro-weak interactions involved in
the process, QED gauge invariance becomes an issue. Nefedov, Saleev 2018, Fadin, Sherman
1976.

e to ensure QCD gauge invariance with an off-shell gluon, an auxiliary quark-
antiquark pair qa, ga must be included, plus the interaction vertex

qada g

e to ensure QCD gauge invariance with an off-shell (anti)quark, an auxiliary quark-
antiquark pair ua, s must be included (for each flavor), plus an auxiliary photon
YA, plus interaction vertices

UaYAU , UaYalU , UAUA(

e to ensure QED gauge invariance wuth an off-shell (anti)quark, the following ver-
tices must also be included (for each family)

UAUAY , UaUAZ , daday , dadaZ , uadaW , tadaW"

Duplicate auxiliary partons (qg, ug, Vs, etc.) in case of two off-shell.

QED gauge Invariance K u*g* — wy for example

YA

ua

. Graphs with the on-shell topology.

QED gauge Invariance K u*g* — wy for example

YA

ua

. Graphs with the on-shell topology.

B Extra graph if you allow for the (uatia g)-vertex to ensure QCD gauge invariance.

QED gauge Invariance K u*g* — wy for example

YA

ua

qB
Uy ——NN Y v
UA UA —>—f\/\/\/ up 8%
A YA up YA o YA
" UA :\I\I\’ A -
u § \u A u
§ qdB —>—8 8
g T™—dqg 98
qgg —m———>— (8B

. Graphs with the on-shell topology.
B Extra graph if you allow for the (uatia g)-vertex to ensure QCD gauge invariance.

Extra graphs if you allow for the (uatiay)-vertex to ensure QED gauge invariance.

QED gauge NVEI(EI N for wiu' — WHW— for example

. Graphs with the on-shell topology.

NA\NY A

" Graphs with the on-shell

N\N\NYB

Up

ug

topology.

up ——"V\V\VYaA

MNNYB

ug —<—"\"\" "W~

wt

YB

UA —

Uap

NAAN W

NANY A

up —=<—

Up

ug

N\N\NYB

ug

Y*/Z

QED gauge NVEI(EI N for wiu' — WHW— for example

up —— 7V VYA
u
VAVAVANS:)
up
AW
dg
ug —<—"\"\""W—
YA
YB
W+
W-—

QED gauge NVEIGEIEN for uiu' — WHW— for example

up —— AW

Uap

Uug —<—N"\"\"YB

up ——1 VYA

Y*/Z

Uug —<—AN\N\"YB

NA\NY A

Uug —<—N"\N\"YB

Ua

us

UA

NNNY A

\NAANYB

VAW

Graphs composing the Fadin-Sherman vertex.

(v—ay’) |[¥* -

UA

Uap

AAA W

NANY A

upg —<—

N\N\NYB

. w+ UA
Y*/Z "
w— ug “
YA e
u
YB upg
n m
Pa Py
——Ka — Ks
Pa-ks pe-ka

up NNNY A
u
MNANANYB
up
NAAN W
dg
ug —<—"\"\" W+
YA
YB
w+t
W-—

How to use Kalie

Installation

Download repositories from

https://bitbucket.org/hameren/katie/downloads
https://bitbucket.org/hameren/avhlib/downloads

and unzip files. Open settings.py inside the KaTie-directory and set paths:

Path to the AVHLIB-directory you just unzipped:

AVHLIBpath = ’/home/user123/software/hameren-avhlib-xxxx’
Path to the directory where 1ibLHAPDF.so is:

LHAPDFpath = ’/usr/lib’

Fortran compiler with flags:
FC = ’gfortran -fcheck=bounds’

If you want to use TMD1ib, the path to the directory where 1ibTMD1ib.so is:
TMDLIBpath = ’/usr/local/lib’

If you want to use TMD1ib, the path to the directory where 1ibgsl.so is:
GSLpath = ’/usr/lib’

Now, inside the KaTie-directory, execute
$./config.py lib

You can always re-compile with
$./run.sh clean; ./run.sh lib

Input file: processes

The user must explicitly list all desired parton-level processes:

process = gg ->ggg , factor =1
process =g g -> g uu~ , factor = Nf
process = u d~ -> g u d~ , factor =1

The value of Nf is set with

Nflavors = 4

Input file: processes

The user must explicitly list all desired parton-level processes:

process = gg ->ggg , factor =1
process = gg ->g qq~ , factor = Nf
process = qr ->gqr , factor =1

The value of Nf is set with

Nflavors = 4

To sum over initial-state partons with identical matrix elements:

partlumi = combined

Input file: processes

The user must explicitly list all desired parton-level processes:

process = gg ->ggg , factor =1
process =g g -> g uu~ , factor = Nf
process = u d~ -> g u d~ , factor =1

The value of Nf is set with

Nflavors = 4

Interactions can be switched on/off with

switch = withQCD yes
switch = withQED yes
switch = withWeak yes
switch = withHiggs no
switch = withHG no
switch = withHA no

and the user must set the number of non-QCD vertices in the amplitudes, eg.
pNonQCD = 2 0 O # Electro-Weak Higgs-gluon Higgs-photon
to have stricktly O(o,, o) contributions in

process = u u~ -> mut+ mu- d d-

Input file: PDFs

lhapdf-set (always necessary for the evaluation of as):
lhaSet = CT10

Which initial-state partons should be off-shell?
offshell =1 0 #eg. gk g —> ...

TMD1ib-set:

TMD1ibSet = PB-TMDNLO-HERAI+II-2018-aspt

or alternatively, refer to grid-files explicitly:

TMDtableDir = /home/user123/software/tmdlib-1.0.29/data/PB-NL0-2018/

tmdpdf = g PB-TMDNLO-HERAI+II-2018-aspt_g.dat
tmdpdf = u PB-TMDNLO-HERAI+II-2018-aspt_u.dat
tmdpdf = d~ PB-TMDNLO-HERAI+II-2018-aspt_dbar.dat

If different sets for two off-shell partons are desired (labelling B A -> 1 2 3 ...):

TMDtableDir = /home/user123/software/tmdlib-1.0.29/data/PB-NL0-2018/

tmdpdf A = g PB-TMDNLO-HERAI+II-2018-aspt_g.dat

TMDtableDir = /home/user123/software/tmdlib-1.0.29/data/nCTEQ15FullNuc_208.82/
tmdpdf B = g PB-aspt_g.dat

Input file: kinematics

Beam energies:

EbeamA = 7000 # also EbeamPosRap or EbeamHadron
EbeamB = 7000 # also EbeamNegRap or EbeamElectron

Inclusive cuts (final-state momenta enumerated asinB A -> 1 2 3...):

cut = {deltaR|2,3|}
cut = {pTI2]} > 20
cut = {rapidityl2l} > -2.0
cut = {rapidityl2l} < 2.0

More complicated cuts are possible, even by providing explicit “almost”-source code:

cut source = if ({rapidityl|1l}.gt.{rapidity|2|}) then
if ({pTl2l}.1t.30d0) REJECT
cut source = endif

cut source

To set all hard scales to the same variable:

scale = ({pTI1|}+{pTI2|}+{pTI31})/2

This can be overruled with

renormalization scale = ({pT|1|}+{pTI2|}+{pTI31})/4
scaleA = 91.2d0

scaleB = {pTI1|}+{pTI2I}

Deep inelastic scattering

Put processes in input file as (for example for e p — jje™):

process = DIS g -> u u~
process = DISu ->gu
process = DIS d~ -> g d~

The user must make sure that the number of EW couplings is correct, so at least
pNonQCD = 2 0 O

Cuts involving the final-state electron:

cut = {energylelectron|} > 11 p2=k2
cut = {thetalelectron|} > 30
cut = {plus|i+2+electron|} > 35 # plus=E-pz

Other variables typically necessary for DIS:

cut = {xBjorken} < 0.5
cut = {Qsquare} > 150
cut = {inelast} > 0.2
cut = {inelast} < 0.7
cut = {deltaRbreit|1,2|} > 1.0 P1
cut = {pTbreit|1|} > 5
cut = {pTbreit|2|} > 5

Preparation and optimization

Make the run-script available somehow, eg. via
$ In -s -T ~/bin/KaTie ~/software/hameren-katie-xxxx/run.sh

Given an input file input_example, a directory playground with the necessary compiled
programs is created with

$ KaTie prepare input_example playground

The directory playground contains a directory for each process in input_example contain-
ing a phase space generator that must be optimized:

$ cd playground
$./optimize.sh Nparallel=4 # run only 4 processes at the same time

The optimization process can be monitored with for example
$ tail -f proc*/output
and should reach a few percent of statistical precision

MESSAGE from Kaleu stats: Ntot = 11,563,078
MESSAGE from Kaleu stats: + 100,000 (.25667397+/-.00605831)E+02 2.360%
MESSAGE from Kaleu stats: stopping optimization, re-starting collection

If 100,000 accepted phase space points appears to be too few, set, for example,
Noptim = 400,000
in the input file, and re-prepare. You can also edit optimize.sh.

Event generation

After optimization, you can run several instances of the the main.out in playground:

$ nohup ./main.out seed=123401 > output1234501 &
$ nohup ./main.out seed=123402 > output1234502 &

will create “proto” event files raw123401.dat and raw123402.dat. These are turned into
a single event file in the LHEF format with

$./create_eventfile.out lhef raw*

The source file create eventfile.f90 can be edited, for example for event re-weighting,

Template create eventfile.f90

program create_eventfile ! DO NOT TOUCH THIS LINE ==
use katie_eventfile ! DO NOT TOUCH THIS LINE ==
use katie_ histogramtools ! DO NOT TOUCH THIS LINE ==
!== USE OTHER MODULES BELOW THIS LINE

use my_pdfs_mod ! EXAMPLE ==

implicit none !==== REMOVE THIS LINE AND SUFFER THE CONSEQUENCES
!== DECLARE NEW VARIABLES BELOW THIS LINE

!== CHANGE UNIT NUMBERS IN THE LINE BELOW, IF YOU WISH

call initialize(rawFile_unit=21 ,eventFile_unit=22) !

!== INITIALIZE YOUR ROUTINES BELOW THIS LINE

do ;if (exitLoop>0) exit ;call read event !=========== D0 NOT TOUCH THIS LINE ==
!== COLLECT DATA AND ALTER EVENTWEIGHT BELOW THIS LINE

eventWeight = eventWeight/pdfA*my_pdf (flavorA,xA,kTA,scaled) !======= EXAMPLE ==

call write_event ;enddo ! DO NOT TOUCH THIS LINE ==
!== DO STUFF AFTER CREATION OF THE EVENT FILE BELOW THIS LINE

end program ! DO NOT TOUCH THIS LINE ==

Event generation

After optimization, you can run several instances of the the main.out in playground:

$ nohup ./main.out seed=123401 > output1234501 &
$ nohup ./main.out seed=123402 > output1234502 &

will create “proto” event files raw123401.dat and raw123402.dat. These are turned into
a single event file in the LHEF format with

$./create_eventfile.out lhef raw*

The source file create eventfile.f90 can be edited, for example for event re-weighting,
and compiled with

$ bash create_eventfile.sh

This script can also be edited, for example to include other external libraries.

Template create eventfile.sh

here=/home/user123/sandbox/playground
katieBuild=/home/user123/software/hameren-katie-xxxx/build
gfortran -fcheck=bounds \

-I $katieBuild \

$here/create_eventfile.f90 \

-L$katieBuild -W1l,-rpath,$katieBuild -lhead \
-L/usr/lib -W1,-rpath,/usr/lib -1LHAPDF \
-L/usr/local/lib -W1l,-rpath,/usr/local/lib -1TMD1lib \
-L/usr/1lib -Wl,-rpath,/usr/lib -1gsl -lgslcblas -1lm \
-J $katieBuild \

-0 $here/create_eventfile.out \

Event generation

After optimization, you can run several instances of the the main.out in playground:

$ nohup ./main.out seed=123401 > output1234501 &
$ nohup ./main.out seed=123402 > output1234502 &

will create “proto” event files raw123401.dat and raw123402.dat. These are turned into
a single event file in the LHEF format with

$./create_eventfile.out lhef raw*

The source file create eventfile.f90 can be edited, for example for event re-weighting,
and compiled with

$ bash create_eventfile.sh
This script can also be edited, for example to include other external libraries.
The executable can take more comma-separated options:

$./create_eventfile.out lhef,nb,dir=/tmp,name=events _vl.dat,label=_vl raw*

e KaTie can generate parton-level event files for DIS with an off-shell initial-state parton.

e This required some special attention to QED gauge invariance.

