Charm Production in CC DIS at HERA

Jae D. Nam Temple Univ.

Motivations

- Charm cross section measurement in high- Q^2 charged current (CC) DIS. \rightarrow Constraints on $s(x, Q^2)$ $\mu^2=1.9 \text{ GeV}^2, n_r=3$
- Previous measurements on strangeness of the proton.

$$\rightarrow \text{CCFR/NuTeV} : \frac{\int_0^1 dx [xs + x\bar{s}]}{\int_0^1 dx [x\bar{u} + x\bar{d}]} \sim 0.5 \text{ at } x \sim 0.1, \quad Q^2 \sim 10 \text{ GeV}^2$$

$$\rightarrow \text{ATLAS} : \qquad \frac{s + \bar{s}}{\bar{u} + \bar{d}} \sim 1.0 \text{ at } x = 0.023, Q^2 = 1.9 \text{ GeV}^2$$

- Improved determination of strange sea quark content in the proton (right)
 - Charm production in neutrino-nucleon scattering by CCFR/NuTeV, NOMAD, CHORUS
 - W + c production by CMS and ATLAS

FIG. V.1: The 1 σ band for the strange sea suppression factor $r_s = (s + \overline{s})/2/\overline{d}$ as a function of the Bjorken x obtained in the variants of present analysis based on the combination of the data by NuTeV/CCFR [2], CHORUS [4], and NOMAD [3] (shaded area) and CHORUS [4], CMS [10], and ATLAS [11] (dashed lines), in comparison with the results obtained by the CMS analysis [10] (hatched area) and by the ATLAS *epWZ*-fit [9, 11] at different values of x (full circles). All quantities refer to the factorization scale $\mu^2 = 1.9 \text{ GeV}^2$.

12/7/18

2

Charm production in CCDIS at HERA

- QPM-like processes (a, b)
 - Small active charm content in the proton.
 - \rightarrow small contribution of (b)
 - Cabibbo-suppressed $d \rightarrow c$ transition.
 - Sensitive to the strangeness in the proton.
- BGF-like processes (c, d)
 - Sensitive to the gluon content in the proton.
- Model-dependent strange quark content extraction.

12/7/18

DATA & MC & Kinematic variables

Data

- HERA II $(L \cong 360 \ pb^{-1})$
 - $e^-p: 05e, 06e \le L \cong 185 \ pb^{-1}$
 - $e^+p: 0304p, 0607p \text{ w/} L \cong 173 \ pb^{-1}$

Year	Collision	Integrated Luminosity (pb^{-1})
2003/04	e^+p	~ 38
2004/05	e^-p	~ 133
2006	e^-p	~ 52
2006/07	<i>e</i> + <i>p</i>	~ 135

 Kinematic variables (x, y, Q²) defined by using Jacquet-Blondel Method.

MC

- DIS
 - Inclusive CCDIS MC, DJANGOH 1.6, ARIADNE 4.12, CTEQ-5D.
- Background
 - Inclusive NCDIS MC: DJANGOH 1.6, ARIADNE 4.12, CTEQ-5D
 - Photoproduction MC: HERWIG, resolved & direct
 - Background contribution was found to be negligible.
- The kinematic variables (x, y, Q^2) obtained from the lepton information.

$$Q^{2} = -(k - k')^{2} \qquad x = \frac{Q^{2}}{2pq} \qquad y = \frac{pq}{pk}$$

DIS Selection Summary

General	Selection			C
Trigger	FLT 60 63 39	40 41 43 44	Timing	Consistent with e
	SLT EXO 4		PhP,	Vap/Vp < 0.25 if
	TLT EXO 2 EXC	6	Beam Gas	$Vap/Vp < 0.35 e^{-1}$
	DST 34		Cosmics	Pajact if: Noall
DO	EVTAKE POLTA	KE MVDTAKE	Cosinics	or E RCAL > 2
	STTTAKE	, , , , , , , , , , , , , , , , , , ,		or E_BCAL > 2
р Т	p T > 12 GeV			f BHAC2 > 0.4
r	p' T > 10 GeV			or E FCAL > 2
	I			f FHAC1 > 0.7
Kinema	200 < Q2 < 60,000	GeV2	Halo	Reject if: MaxF
tic	y < 0.9		Muon	(FCAL)
Tracking	Based Selection			or Tsu_halo > 0
Vortov	7vtv < 30 cm		NC DIS	Reject if:
				PT < 30 GeV&&
фcal - ф	rk d ϕ < 90 degrees			&& (Ptrk/Ee > 0)
Beam Ga	s Ntrkvtx > 0.125	* (Ntrk - 20)		
Trk			yello	w – Varies betwe
**D 1		0 1 1 . 0 01.	-STT	TAKE = 0 for 05
TT Based	on 060/p CC MC t	by Ciesielski & Oliv	ver _FIT	63 active after r

Calorimeter Based Selection								
iming	Consistent with ep interaction							
hP,	Vap/Vp < 0.25 if (Pt < 20 GeV)							
eam Gas	Vap/Vp < 0.35 else							
osmics	Reject if: Ncell < 40 or (BAC/BRMU cosmic muon)							
	or $E_RCAL > 2$ GeV and $f_RHAC > 0.5$							
	or $E_BCAL > 2$ GeV and $f_BHAC > 0.85$ or $f_BHAC1 > 0.7$ or							
	$f_BHAC2 > 0.4$							
	or $E_FCAL > 2$ GeV and $f_FHAC < 0.10$ or $f_FHAC > 0.85$ or							
	$f_FHAC1 > 0.7 \text{ or } f_FHAC2 >6$							
alo	Reject if: MaxEtCell_nr <= 16384 and RCAL asosE > 0.3 GeV							
luon	(FCAL)							
	or Tsu_halo > 0 (TSUBAME in BCAL) or (BAC/BRMU halo muon)							
C DIS	Reject if:							
	$PT < 30 \text{ GeV}$ & E-Pz > 30 GeV & E_e > 4 GeV & E_in < 5 GeV							
	&& (Ptrk/Ee > 0.25 for $15 < \theta e < 164$ or $Ete > 2$ GeV for $\theta e > 164$)							
yellov	v – Varies between run periods green – Only applied on data							
-STT	TAKE = 0 for 05e data-Timing cut only on data							
-FLT	63 active after run 54115							

T

Control plots – event

Charm Identification

Lifetime-tagging Method

- 2D decay length (L_{xy}) projected onto Jet axis.
 - $LF \rightarrow$ Short-lived, Symmetric decay length.
 - Charm \rightarrow Long-lived, Asymmetric. •
- LF contribution (background) suppressed by mirroring decay length distribution about $L_{xy} = 0$.

$$(N_{L+} - N_{L-}, N_{S+} - N_{S-})$$

	Reconstructed by using kT algorithm in the massive mode.						
Jet Selection	$E_T^{jet} > 5 GeV$						
	$-2.5 < \eta^{jet} < 2.0 (1.5 for 05e)$						
	$\chi^2/N_{dof} < 6$						
	$ Z_{secvtx} < 30 \ cm$						
SecVtx Selection	Distance to beam spot $\sqrt{\Delta x^2 + \Delta y^2} < 1 \ cm$						
	$M_{secvtx} < 6 \; GeV$						
	$N_{secvtx}^{trk} > 2$						

• E_T^{jet} and η^{jet} cuts further define the kinematic phase space of the measurement.

Control plots – jet & secondary vertex

Decay Length Plots

- Asymmetric charm signal observed.
- The high symmetry and large statistics around $S \sim 0$ contributes to a large statistical uncertainty in the low bin regions in |S|.
- A significance threshold cut |S| > 2 was applied to reduce overall statistical uncertainty.

Mirrored Decay Length

- Significance cut applied at |S| > 2.
- Charm signal observed with LF contribution (Background) suppressed.
- Surviving events are split into 2 bins in Q^2 to unfold charm production cross section, $\sigma_{charm,CC}$.

Charm signal & Charm generated

 Surviving events after the background subtraction are split into two bins in Q² (200 – 1500 GeV², 1500 – 60000 GeV²).

Charm signal & Charm generated

Year	Bin	N_{kin}^{EW}	N _{kin}	N ^{EW} gen	N_{kin}^{EW}/N_{kin}	C _{ext,i}	C _{ext}
	1	101	105	230	0.96	2.28	
0204	2	55	60	129	0.92	2.34	
0304p	1+2	156	165	359	0.94	2.30	
	Full space			468			3.00
	1	390	412	772	0.95	1.98	
050	2	202	260	419	0.78	2.07	
05e	1+2	592	672	1190	0.88	2.01	
	Full space			1563			2.64
	1	149	158	304	0.95	2.03	
060	2	77	100	166	0.77	2.16	
000	1+2	226	258	470	0.88	2.08	
	Full space			619			2.74
	1	396	414	819	0.96	2.07	
0607p	2	220	240	463	0.91	2.11	
	1+2	615	654	1282	0.94	2.08	
	Full space			1677			2.72

- $N_{gen} = \#$ of events generated in the MC.
- $N_{kin} = \# \text{ of jets associated with charm}$ quark by $\sqrt{\Delta \phi^2 + \Delta \eta^2} < 1$.
 - $\Delta q = q^{jet} q^{charm}$
 - At the moment, Mc_jet variables are used. Suggestions?
- Visible total charm cross section: $\sigma_{c,vis} = \frac{M^{DATA} M_{bg}^{MC}}{M_c^{MC}} \frac{N_{c,kin}^{MC}}{L}$
- Visible EW charm cross section: $\sigma_{c^{EW},vis} = \sigma_{c,vis} - \sigma_{c^{QCD},vis}$ $= \sigma_{c,vis} - \frac{N_{c^{QCD},kin}^{MC}}{L}$
- Absolute EW charm cross section: $\sigma_{c^{EW}} = \frac{N_{c^{EW},gen}^{MC}}{N_{c^{EW},kin}^{MC}} \sigma_{c^{EW},vis}$

- Full space: $Q^2 < 200 \ GeV^2 \ \&\& > 60000 \ GeV^2$
- $C_{ext,i} = N_{gen,i}^{EW} / N_{kin,i}^{EW}$ where *i* runs over for bin 1, 2 and 1+2.
- $C_{ext} = N_{gen,full}^{EW}/N_{kin,1+2}^{EW}$

12/10/18

Jae D. Nam

Systematic Uncertainties

Sources	Variable	Variation	$\delta\sigma^+_{c^{EW}}$	$\delta \sigma_{c^{EW}}^{-}$
DIS selection			Negligible	Negligible
Secondary Vertex selection	N ^{trk} N ^{secvtx}	> 1 Statistics limited		Statistics limited
Calorimeter	E_T	± 3%	Negligible	Negligible
LF background	N_{LF}	± 30%	Negligible	Negligible
OCD shares fraction	N _{QCD}	+ 100%	$-0.57 \ pb$	-1.1 <i>pb</i>
QCD charm fraction	N _{charm}	- 100%	+0.62 <i>pb</i>	+1.7 <i>pb</i>
Rescaling			-1.6 <i>pb</i>	+1.5 <i>pb</i>
Signal Extraction	S _{thresh}	± 1	Statistics limited	Statistics limited
Total			+0.6 <i>pb</i>	+2.3 <i>pb</i>
Total			-1.7 <i>pb</i>	-1.1 <i>pb</i>

δ_1 DIS Selection & Secondary vertex selection

• Uncertainty associated with the selection threshold values.

δ_2 Calorimeter

• Due to imperfect calibration of hadronic calorimeter (HAC). Uncertainty in E_T^{jet} is known to be $\pm 3\%$.

δ_3 Background

- Asymmetry in LF decay length due to long-lived LF particles.
- δ_4 QCD charm fraction in MC
 - Uncertainty associated with the QCD charm fraction calculated in MC is tested by varying the fraction by $\pm 100\%$.

δ_4 Secondary Vertex Rescaling

• More secondary vertices survive in MC than in data. Rescaling was only applied to the light-flavor signal to account for different causes of the discrepancy.

δ_5 Signal Extraction

• Due to the low statistics & high fluctuation in data, further study will be performed.

Results

- 0304p & 0607p, 05e & 06e combined at the cross section level.
- Total EW charm cross sections are measured to be

Visible Charm

$$\sigma_{c,vis}^{-} = -3.0 \pm 3.8 \text{ (stat)} {}^{+0.5}_{-0.06} \text{ (syst)} pb$$

 $\sigma_{c \, vis}^{+} = 4.0 \pm 2.8 \, (\text{stat}) \, {}^{+0.02}_{-0.6} \, (\text{syst}) \, pb$

Visible EW charm

 $\sigma_{c^{EW},vis}^{+} = 3.8 \pm 2.8 \text{ (stat)} {}^{+0.3}_{-0.5} \text{ (syst)} pb$

 $\sigma_{c^{EW},vis}^{-} = -3.6 \pm 3.8 \text{ (stat)}^{+0.8}_{-0.5} \text{ (syst)} pb$

EW charm

 $\sigma_{c^{EW}}^{-} = -9.6 \pm 10.0 \text{ (stat)} ^{+2.3}_{-1.1} \text{ (syst) } pb$

 $\sigma_{cEW}^+ = 11.0 \pm 7.7 \text{ (stat)} {}^{+0.6}_{-1.7} \text{ (syst)} pb$

- FFN scheme (dashed, blue):
 - ABMP16.3 NLO pdf set, OPENQCDRAD
- FONLL scheme (dashdotted, blue):
 - NNPDF31 NLO pdf set, APFEL
- ZMVFNS (hatched, green)

HERAPDF2.0
$$f_s = \frac{s}{d+s}$$
 varied from 0.3 to 0.5.

Theory predictions & recap of charm subprocesses

Breakdown of charm subprocesses

Absolute

Year	Bin	$s \rightarrow c$	$d \rightarrow c$	$\bar{c} \rightarrow \bar{s}$	$\bar{c} \to \bar{d}$
0304p	1	0.35	0.06	0.55	0.03
0304p	2	0.26	0.09	0.61	0.03
0304p	1 + 2	0.32	0.07	0.57	0.03
05e	1	0.37	0.03	0.57	0.03
05e	2	0.29	0.02	0.66	0.03
05e	1 + 2	0.34	0.02	0.60	0.03
06e	1	0.37	0.03	0.57	0.03
06e	2	0.28	0.02	0.66	0.04
06e	1 + 2	0.34	0.03	0.60	0.03
0607p	1	0.36	0.06	0.55	0.03
0607p	2	0.26	0.10	0.61	0.03
0607p	1+2	0.32	0.08	0.57	0.03

Visible

Year	Bin	$s \rightarrow c$	$d \rightarrow c$	$\bar{c} \rightarrow \bar{s}$	$\bar{c} \rightarrow \bar{d}$
0304p	1	0.50	0.07	0.41	0.02
0304p	2	0.43	0.14	0.41	0.02
0304p	1 + 2	0.48	0.09	0.41	0.02
05e	1	0.52	0.04	0.42	0.02
05e	2	0.48	0.04	0.45	0.03
05e	1 + 2	0.51	0.04	0.43	0.02
06e	1	0.52	0.04	0.42	0.02
06e	2	0.48	0.04	0.45	0.03
06e	1 + 2	0.51	0.04	0.43	0.02
0607p	1	0.50	0.07	0.40	0.02
0607p	2	0.43	0.14	0.41	0.02
0607p	1+2	0.48	0.10	0.41	0.02

• The QPM like process dominates charm production in the visible region (~60%) as compared to in the full region (~40%) according to MC.

Theory predictions

			Predictions [pb]										
	Q^2 1	range	FFABM ABMP16.3			FC	FONLL-B NNPDF3.1						
	[G	eV^2]			certainties		σ		uncertainties				
			0	PDF	scale	mass		PD	F	scale	mas	\mathbf{s}	
	e	^+p											
	200 -	- 1500	4.72	± 0.05	$^{+0.31}_{-0.23}$	± 0.02	5.37	± 0.2	21	$+0.68 \\ -0.73$	± 0.0)0	
	1500-	-60000	1.97	± 0.03	$^{+0.18}_{-0.13}$	± 0.01	2.66	± 0.2	23	$^{+0.37}_{-0.26}$	± 0.0	00	
	e	\overline{p}											
	200 -	- 1500	4.50	± 0.05	$^{+0.31}_{-0.23}$	± 0.02	4.98	± 0.2	22	$^{+0.66}_{-0.71}$	± 0.0)0	
	1500-	-60000	1.73	± 0.03	$^{+0.18}_{-0.13}$	± 0.01	2.16	± 0.2	22	$^{+0.33}_{-0.21}$	± 0.0)0	
O^2 re	nnao		Predictions [pb]										
	M^{2}				HEI	RAPDF	72.0	2.0 A				TLAS-	
[Ge	vj	$f_s = 0$	0.4	f = 0.3	f - 0	15	$f_s =$	$f_s = \qquad \qquad f_s = \qquad $		ep	WZ16		
		(nomin	nal)	$J_{s} = 0.5$	$J_s = 0$		ERMES	RMES-0.3 HERMES-0.5					
e^+	p				-								
200 -	1500	5.6'	7	5.40	5.96	3	5.05			5.38			6.41
1500-6	60000	2.5'	7	2.47	2.65	5	2.16			2.20			3.07
e^{-}	p												
200 -	1500	5.4	1	5.15	5.70)	4.79			5.12			6.14
1500-6	60000	2.30)	2.21	2.37	7	1.89			1.93			2.78

T

12/10/18

18

Summary

- Measurements on EW Charm production in CCDIS has been performed; separately for e⁺p and e⁻p.
 - EW charm production has been measured within a kinematic region $200 < Q^2 < 60000 \text{ GeV}^2$, y < 0.9, $E_T^{jet} > 5 \text{ GeV and } -2.5 < \eta^{jet} < 2.0$
 - Two major contributors are the QPM process $s \rightarrow c$ and BGF process $g \rightarrow c\bar{s}$ sharing about equal contribution.
 - Larger QPM process contribution in the visible region.
 - New definition for visible cross sections.
 - Systematic uncertainties with secondary vertex selection & signal extraction are not considered.
 - New theory predictions have been included in the final plots (Thanks to Sasha!).

Back Up

12/7/18

ZEUS

Determination of η^{jet} upper cut

- Highlighted in red vertical lines are the cut locations that would yield the highest ratio.
- In this presentation, $\eta^{jet} < 1.5$ for 05e (STT coverage), $\eta^{jet} < 2.0$ for else.
 - If not placed on the optimal position, the new η^{jet} cut will not reduce statistical uncertainty significantly.

Secondary Vertex Scaling

- MC overestimates trackings & secondary vertices.
- A secondary scaling applied to MC to match Data.

```
N_{SecVtx}^{DATA} / N_{SecVtx}^{MC} = 0.708 \ (0304p)
= 0.810 \ (05e)
= 0.807 \ (06e)
= 0.830 \ (0607p)
```


- A high concentration of LF background in low *N*^{trk}_{secvtx} region is observed across all run periods.
- A LF rejection cut was applied at $N_{secvtx}^{trk} > 2$.

Determination of Significance Threshold

- The high symmetry and large statistics around $S \sim 0$ contributes to a large statistical uncertainty.
- A significance threshold cut was applied to reduce overall statistical uncertainty.
- From MC, the lowest δ/N is achieved if cut were to be applied at S = 2.

Mirrored significance distribution

Reconstructed variables

• Good agreement between True and Reconstructed Q^2

$$N_i = \sum_j C_{ij} M_j$$

 $N_i = true number of entries in bin i$ $M_i = reconstructed$ number of entries in bin i C_{ii} = correlation matrix element for bin i, j

Collision	C ₁₁	C ₂₂
<i>e</i> + <i>p</i>	0.99	1.01
<i>e</i> ⁻ <i>p</i>	0.98	1.02

T