PAHEN@Berlin 26 September 2019

Generic constraints on sources of the diffuse neutrino background

Shin'ichiro Ando

University of Amsterdam

GRavitation AstroParticle Physics Amsterdam

High-energy neutrinos: Facts

- Detected: Starting events and up-going muon events
- Their distribution is consistent with isotropy
- No source has been identified yet

Possible astrophysical explanations

Galaxy clusters

Active galactic nuclei (AGN)

Gamma-ray bursts (GRB) Ides with Imedium

Star-forming galaxies (SFG) Starburst galaxies (SB)

Unknown sources? Particle dark matter?

Two origins

Photohadron

$$p + \gamma \to \pi^0, \pi^{\pm}$$

Usually, protons have to be very energetic, making pions very energetic too

Hadronuclear

$$p + p \to \pi^0, \pi^\pm$$

Interaction can happen for low-energy protons

Two origins

Photohadron

$$p + \gamma \to \pi^0, \pi^{\pm}$$

Usually, protons have to be very energetic, making pions very energetic too

Hadronuclear

$$p + p \to \pi^0, \pi^\pm$$

Interaction can happen for low-energy protons

Pion decays

$$\pi^{0} \to 2\gamma$$

$$\pi^{\pm} \to \mu^{\pm} + \nu_{\mu}$$

$$\mu^{\pm} \to e^{\pm} + \nu_{e} + \nu_{\mu}$$

Two origins

Photohadron

$$p + \gamma \to \pi^0, \pi^{\pm}$$

Usually, protons have to be very energetic, making pions very energetic too

Hadronuclear

$$p + p \to \pi^0, \pi^\pm$$

Interaction can happen for low-energy protons

Pion decays

Generic consideration: Personal take

- Given no source has been detected, it is important to take unbiased, model-independent approach
- Given we already have data, which will accumulate further, we want to adopt data-driven approaches

Traditional approaches

- Explain the energy spectrum of the diffuse neutrino background using models of astrophysical sources
- Look for excess of events in localized regions compared with global average (individual point source searches)
- Both these can be interpreted in terms of flux distribution

Flux distribution

Ando, Feyereisen, Fornasa, Phys. Rev. D 95, 103003 (2017)

- Number of detected sources: Integral above flux threshold
 - At the moment, the threshold is higher than the flux of the brightest source
- Energy spectrum: first moment of the flux distribution below the flux threshold
- But we don't have to stop here!
- There are higher moments that can be used: e.g., variance

Anisotropies: Lessons from gamma rays

Fermi-LAT, Phys. Rev. Lett. 121, 241101 (2018)

- Analysis of Fermi data for the angular power spectrum of the diffuse gammaray background in 2012 → Discovery of anisotropies
 - Reanalyzed in 2016, 2018

Fermi-LAT, *Phys. Rev. Lett.***121**, 241101 (2018)

- Analysis of Fermi data for the angular power spectrum of the diffuse gammaray background in 2012 → Discovery of anisotropies
 - Reanalyzed in 2016, 2018
- Almost constant excess compared with shot noise of the photons at multipoles greater than 50

Fermi-LAT, *Phys. Rev. Lett.***121**, 241101 (2018)

Fermi-LAT, Phys. Rev. Lett. 121, 241101 (2018)

- Analysis of Fermi data for the angular power spectrum of the diffuse gammaray background in 2012 → Discovery of anisotropies
 - Reanalyzed in 2016, 2018
- Almost constant excess compared with shot noise of the photons at multipoles greater than 50
- This excess is precisely the variance!

$$C_{\ell}^{\text{total}} = C_N + C_P + C_{\ell}^{\text{corr}}$$

Fermi-LAT, *Phys. Rev. Lett.***121**, 241101 (2018)

- Analysis of Fermi data for the angular power spectrum of the diffuse gammaray background in 2012 → Discovery of anisotropies
 - Reanalyzed in 2016, 2018
- Almost constant excess compared with shot noise of the photons at multipoles greater than 50
- This excess is precisely the variance!

$$C_{\ell}^{\text{total}} = C_N + C_P + C_{\ell}^{\text{corr}}$$

 Data are mostly consistent with astrophysical expectations (blazars; Ando et al. 2007)

Implications

- Anisotropy analyses have already been established for GeV gamma rays
- Solid measurement of the angular power spectrum (variance) implies (sub-threshold) point-source contribution
- The source population that cannot be detected individually can be detected statistically
- Same technique can be used for high-energy neutrinos, to identify sources

Power spectrum analysis by IceCube

IceCube, Astropart. Phys. 66, 39 (2015)

- No angular power was found (everything is consistent with diffuse the background model) signal spectrum: E⁻² 2pt analysis, uniform source distr., discovery flux, post-tr.
- It can exceed the point-source imit-for-mor 2pt analysis, uniform source distr., upper limit (90% CL), post-tr. estaalay]dstoreSOLHOES ps search, upper limit (90% CL), pre-tr.

10-8

Converted HESE flux But it is assumed that all these sources have the same

Flux distribution and implications

Ando, Feyereisen, Fornasa, Phys. Rev. D 95, 103003 (2017)

- Flux distribution of **any** astrophysical sources will follow a **power law**
 - Particularly *F*^{-2.5} for high-flux region

Procedure:

- 1. Pick **N*** as a parameter
- From measured intensity *I*, calculate
 *F**, which will fix the distribution
- 3. Simulate neutrino data, calculate the power spectrum, and extract test statistic (TS) and TS distribution
- Apply the method to the actual data to discuss what value of N* is already excluded

²⁰⁰ IceCube years

Angular power spectrum

- For each simulated data set, we compute the angular power spectrum
- By repeating the procedure above, we construct the TS and its distribution

$$\chi^{2}(C_{\ell}) = \sum_{\ell \ell'} \left(C_{\ell} - C_{\ell}^{\text{mean}} \right) \left(\text{Cov}_{\ell \ell'} \right)^{-1} \left(C_{\ell'} - C_{\ell'}^{\text{mean}} \right)$$

 If the TS value of the actual data is found extreme, we can reject the value of N*

Dekker, Ando, *JCAP* **1902**, 002 (2019)

IceCube constraints

Dekker, Ando, JCAP 1902, 002 (2019)

- 2 years of upgoing muon neutrino data from IceCube with energies *E_μ* > 50 TeV: 21 events
- Source population with N*
 < 82 is excluded at 95% CL

Source	N *
Blazars	600
Radio galaxies	10 ⁵
Starbursts	10 ⁷

Future prospects $\sum_{\star} \infty$

Case with $N^* = \infty$

10-yr exposure

Future prospects 10^4

Case with $N^* = 10^4$

Dekker, Ando, JCAP 1902, 002 (2019)

10-yr exposure

Constraints on source phase space

Dekker, Ando, JCAP 1902, 002 (2019)

10-year IceCube-Gen2

Application to heavy dark matter decay

Dekker, Chianese, Ando, in preparation

Beyond variance: One-point fluctuation analysis

Feyereisen, Gaggero, Ando, Phys. Rev. D 97, 103017 (2018)

- One-point fluctuation analysis adopts all the information contained in the flux distribution
- Benefit is slim for now, but in the future can be large
 - E.g., test of Galactic component in the future KM3NeT data

Analysis by IceCube Collaboration

IceCube Collaboration, arXiv:1909.08623

A Search for Neutrino Point-Source Populations in 7 Years of IceCube Data with Neutrino-count Statistics

Constraints with two-point statistics

Cross correlation with galaxy distribution

Cross correlation with galaxy distribution

Are these two maps similar to each other?

 $[cm^{-2}s^{-1}sr^{-1}]$

Fermi-LAT, Phys. Rev. Lett. 121, 241101 (2018)

9.90994e-07

Huchra et al., Astrophys. J. Suppl. Ser. 199, 26 (2011)

Cross correlation with galaxy distribution

Are these two maps similar to each other?

 $[cm^{-2}s^{-1}sr^{-1}]$

Fermi-LAT, Phys. Rev. Lett. 121, 241101 (2018)

9.90994e-07

They must be, since both gammaray sources and galaxies trace dark matter distribution!

Huchra et al., Astrophys. J. Suppl. Ser. 199, 26 (2011)

Spectral constraints

Ando, Tamborra, Zandanel, Phys. Rev. Lett. 115, 221101 (2015)

Spectral constraints

Ando, Tamborra, Zandanel, Phys. Rev. Lett. 115, 221101 (2015)

Spectral constraints

Ando, Tamborra, Zandanel, Phys. Rev. Lett. 115, 221101 (2015)

Tomographic constraints

Ando, Tamborra, Zandanel, Phys. Rev. Lett. 115, 221101 (2015)

Tomographic constraints

Ando, Tamborra, Zandanel, Phys. Rev. Lett. 115, 221101 (2015)

Tomographic constraints

Ando, Tamborra, Zandanel, Phys. Rev. Lett. 115, 221101 (2015)

Dependence on α and δ

Ando, Tamborra, Zandanel, Phys. Rev. Lett. 115, 221101 (2015)

Dependence on α and δ

Soft spectrum

Ando, Tamborra, Zandanel, Phys. Rev. Lett. 115, 221101 (2015)

Dependence on α and δ

Ando, Tamborra, Zandanel, Phys. Rev. Lett. 115, 221101 (2015)

 Spectral constraints: α has to be smaller than ~2.2 (cf. Murase, Ahlers, Lacki 2013)

Ando, Tamborra, Zandanel, *Phys. Rev. Lett.* **115**, 221101 (2015)

- Spectral constraints: α has to be smaller than ~2.2 (cf. Murase, Ahlers, Lacki 2013)
- Tomographic constraints:

Ando, Tamborra, Zandanel, *Phys. Rev. Lett.* **115**, 221101 (2015)

- Spectral constraints: α has to be smaller than ~2.2 (cf. Murase, Ahlers, Lacki 2013)
- Tomographic constraints:
 - If δ is smaller than ~3, source with spectrum softer than E^{-2.1} is disfavored

Ando, Tamborra, Zandanel, Phys. Rev. Lett. 115, 221101 (2015)

- Spectral constraints: α has to be smaller than ~2.2 (cf. Murase, Ahlers, Lacki 2013)
- Tomographic constraints:
 - If δ is smaller than ~3, source with spectrum softer than E^{-2.1} is disfavored
- If δ ~ 4, both spectral and tomographic data give comparable constraints

Ando, Tamborra, Zandanel, *Phys. Rev. Lett.* **115**, 221101 (2015)

Possible pp sources

Star-forming/starburst galaxies

- No direct measurement of δ yet
- Infrared luminosity density suggests $\delta \sim 3-4$

Gruppioni et al., Mon. Not. R. Astron. Soc. 432, 23 (2013)

Clusters of galaxies

- Cosmic rays accelerated through large-scale-structure shocks or provided by sources (AGNs, galaxies)
- In both cases, δ is very small (i.e., clusters are found only in low-z)

Exception: Hidden pp sources?

GRB-like jets, but richer with baryons (i.e., slower jets and optically thick): hence cannot be identified with gamma rays

Conclusions

- Given no source was detected, it is important to take modelindependent, data-drive approaches
- Traditional approaches can be interpreted in terms of flux distribution: zeroth moment as number of sources; first moment as energy spectrum of diffuse flux
- The second moment (variance) can be adopted to constrain source populations: those with *N**<100 are already excluded
- Two-point information is already available from gamma-ray galaxy cross correlations, which can be applied to stringently constrain neutrino sources if they are of pp origin