Evidence for the History of Cosmic Expansion

Matthias Bartelmann

Heidelberg University
DESY, Hamburg, Feb. 13th, 2019

Expansion Law

Velocity
in $\mathrm{km} / \mathrm{sec}$ ．

$$
v=\frac{d}{\mathrm{I} 790}=558 \mathrm{~km} / \mathrm{sec} . \text { per million parsecs. }
$$

Expansion Law

Riess et al. 2016

Expansion Law

Riess et al. 2016

Expansion Law

Riess et al. 2016

Friedmann's Equation

Metric (spatially homogeneous and isotropic)

$$
\mathrm{d} s^{2}=-c^{2} \mathrm{~d} t^{2}+a^{2}(t)\left[\mathrm{d} w^{2}+f_{K}^{2}(w) \mathrm{d} \Omega^{2}\right]
$$

Scale factor $a(t), f_{K}(w)=w$ for $K=0$

Friedmann's Equation

Hubble constant H_{0}, Hubble function $H(a)$

$$
\left(\frac{\dot{a}}{a}\right)^{2}=H^{2}(a)=H_{0}^{2} E^{2}(a)
$$

Expansion function $E(a)$

Friedmann's Equation

Expansion function $E(a)$

$$
E(a)=\left(\Omega_{\mathrm{r} 0} a^{-4}+\Omega_{\mathrm{m} 0} a^{-3}+\Omega_{\mathrm{K} 0} a^{-2}+\Omega_{\Lambda 0}\right)^{1 / 2}
$$

Friedmann's Equation

Expansion function $E(a)$

$$
E(a)=\left(\Omega_{\mathrm{r} 0} a^{-4}+\Omega_{\mathrm{m} 0} a^{-3}+\Omega_{\mathrm{K} 0} a^{-2}+\Omega_{\mathrm{Q} 0} a^{-3(1+w)}\right)^{1 / 2}
$$

Equation-of-state parameter w

Friedmann's Equation

Expansion function $E(a)$

$$
E(a)=\left(\Omega_{\mathrm{r} 0} a^{-4}+\Omega_{\mathrm{m} 0} a^{-3}+\Omega_{\mathrm{K} 0} a^{-2}+\Omega_{\mathrm{Q} 0} \mathrm{e}^{-3 \int_{a}^{1}(1+w) \mathrm{d} \ln a^{\prime}}\right)^{1 / 2}
$$

Equation-of-state parameter w

Friedmann's Equation

Expansion function $E(a)$

$$
E(a)=\left(\Omega_{\mathrm{r} 0} a^{-4}+\Omega_{\mathrm{m} 0} a^{-3}+\Omega_{\mathrm{K} 0} a^{-2}+\Omega_{\mathrm{Q} 0} \mathrm{e}^{-3} \int_{a}^{1}(1+w) \mathrm{d} \ln a^{\prime}\right)^{1 / 2}
$$

Equation-of-state parameter w
Chevallier-Polarski-Linder (CPL) parameterisation:

$$
w(a)=w_{0}+(1-a) w_{a}
$$

Distances

Light propagation, $\mathrm{d} s=0$, from the metric:

$$
c|\mathrm{~d} t|=a(t) \mathrm{d} w
$$

Distances

Light propagation, $\mathrm{d} s=0$, from the metric:

$$
w(a)=\frac{c}{H_{0}} \int_{a}^{1} \frac{\mathrm{~d} x}{x^{2} E(x)}
$$

Distances

Light propagation, $\mathrm{d} s=0$, from the metric:

$$
w(a)=\frac{c}{H_{0}} \int_{a}^{1} \frac{\mathrm{~d} x}{x^{2} E(x)}
$$

Angular-diametre distance ($K=0$)

$$
D_{\mathrm{ang}}(a)=\frac{\text { length scale }}{\text { angle spanned }}=a w(a)
$$

Luminosity distance

$$
D_{\mathrm{lum}}(a)=\frac{\text { luminosity }}{\text { flux }}=\frac{w(a)}{a}
$$

Etherington relation, independent of cosmological model

Structure Growth

Euler-Poisson system, linearised, Fourier modes δ_{k} of density contrast, sound speed c_{s}

$$
\ddot{\delta}_{k}+2 H \dot{\delta}_{k}=\left(4 \pi G \bar{\rho}-\frac{c_{\mathrm{s}}^{2} k^{2}}{a^{2}}\right) \delta_{k}
$$

dark matter: $c_{\mathrm{s}}=0$

$$
\ddot{\delta}_{k}+2 H \dot{\delta}_{k}=4 \pi G \bar{\rho} \delta_{k}
$$

(growing) solution: linear growth factor $D_{+}(a)$
baryonic matter: $c_{\mathrm{s}} \approx c / \sqrt{3}>0$, oscillations on small scales

Constraints

Constraints

Type-Ia
Supernovae

Location of
CMB Peaks

> Geometry and Dynamics

Baryonic
Acoustic
Oscillations

Constraints

Type-la Supernovae

Pantheon sample, Scolnic et al. 2018

Location of CMB Peaks

Location of CMB Peaks

Baryonic Acoustic Oscillations

WiggleZ, Poole et al.

Gravitational Lensing

From Jacobi equation:

$$
\left(\mathrm{d}_{w}^{2}+K\right) x^{i}=-2 \partial^{i} \Phi
$$

Gravitational Lensing

Astigmatism, image distortions γ, correlation function:

$$
C_{\ell}^{\gamma}=\frac{9}{4}\left(\frac{H_{0}}{c}\right)^{4} \Omega_{\mathrm{m} 0}^{2} \int_{0}^{w_{\mathrm{s}}} \mathrm{~d} w \underbrace{\left(\frac{w_{\mathrm{s}}-w}{a w_{\mathrm{s}}}\right)^{2}}_{E(a)} \underbrace{P_{\delta}\left(\frac{\ell}{w}\right)}_{D_{+}(a)}
$$

Gravitational Lensing

Gravitational Lensing

Gravitational Lensing

Galaxy Clusters

MACS 1206.2-0847

Galaxy Clusters

Galaxy Clusters

Large-Scale Structures

Current Constraints

Planck 2015

Current Constraints

Scolnic et al. 2018

Model-Independent Reconstruction of $E(a)$

Measurement: luminosity distance

$$
D_{\operatorname{lum}}(a)=\frac{1}{a} \int_{a}^{1} \frac{\mathrm{~d} x}{x^{2} E(x)}
$$

Representation of $E(a)$:

$$
e(a):=[a E(a)]^{-1}, \quad e(a)=-a^{2} D_{\mathrm{lum}}^{\prime}(a)+\lambda \int_{1}^{a} \frac{\mathrm{~d} x}{x} e(x)
$$

Model-Independent Reconstruction of $E(a)$

Measurement: luminosity distance

$$
D_{\operatorname{lum}}(a)=\frac{1}{a} \int_{a}^{1} \frac{\mathrm{~d} x}{x^{2} E(x)}
$$

Representation of $E(a)$:

$$
e(a):=[a E(a)]^{-1}, \quad e(a)=-a^{2} D_{\mathrm{lum}}^{\prime}(a)+\lambda \int_{1}^{a} \frac{\mathrm{~d} x}{x} e(x)
$$

Representation of $D_{\text {lum }}(a)$:

$$
D_{\mathrm{lum}}(a)=\sum_{j=1}^{M} c_{j} p_{j}(a)
$$

with (orthonormal) basis functions $p_{j}(a)$
Mignone \& MB, Mignone \& Maturi, Benítez Herrera et al., ..

Model-Independent Reconstruction of $D_{+}(a)$

Measurement: luminosity distance

$$
D_{\operatorname{lum}}(a)=\frac{1}{a} \int_{a}^{1} \frac{\mathrm{~d} x}{x^{2} E(x)}
$$

Representation of $E(a)$:

$$
e(a):=[a E(a)]^{-1}, \quad e(a)=-a^{2} D_{\mathrm{lum}}^{\prime}(a)+\lambda \int_{1}^{a} \frac{\mathrm{~d} x}{x} e(x)
$$

Reconstruction of $D_{+}(a)$:

$$
D_{+}^{\prime \prime}+\left(\frac{3}{a}+\frac{E^{\prime}(a)}{E(a)}\right) D_{+}^{\prime}=\frac{3}{2} \frac{\Omega_{\mathrm{m} 0}}{a^{5}} D_{+}
$$

Initial conditions:

$$
D_{+}\left(a_{\min }\right)=1, \quad D_{+}^{\prime}\left(a_{\min }\right)=\frac{D_{+}(a)}{a} f(a)
$$

Model-Independent Reconstruction of $D_{+}(a)$

Measurement: luminosity distance

$$
D_{\operatorname{lum}}(a)=\frac{1}{a} \int_{a}^{1} \frac{\mathrm{~d} x}{x^{2} E(x)}
$$

Representation of $E(a)$:

$$
e(a):=[a E(a)]^{-1}, \quad e(a)=-a^{2} D_{\mathrm{lum}}^{\prime}(a)+\lambda \int_{1}^{a} \frac{\mathrm{~d} x}{x} e(x)
$$

Reconstruction of $D_{+}(a)$:

$$
D_{+}^{\prime \prime}+\left(\frac{3}{a}+\frac{E^{\prime}(a)}{E(a)}\right) D_{+}^{\prime}=\frac{3}{2} \frac{\Omega_{\mathrm{m} 0}}{a^{5}} D_{+}
$$

Initial conditions:

$$
D_{+}\left(a_{\mathrm{min}}\right)=1, \quad D_{+}^{\prime}\left(a_{\mathrm{min}}\right)=\frac{D_{+}(a)}{a} \Omega_{\mathrm{m}}^{\gamma}
$$

Model-Independent Reconstruction of $E(a)$

Model-Independent Reconstruction of $E(a)$

Model-Independent Reconstruction of $E(a)$

Model-Independent Reconstruction of $D_{+}(a)$

Haude, Maturi, MB 2019

Summary

- Multitude of cosmological observables is determined by expansion function $E(a)$ and growth function $D_{+}(a)$
- Constraints within framework of Friedmann models favour cosmological constant
- Model-independent reconstruction of $E(a)$ is possible, result is tightly contrained
- (Almost) model-independent reconstruction of $D_{+}(a)$ follows
- $E(a)$ and $D_{+}(a)$ are empirically known within tight limits, based exclusively on metric theory of gravity and symmetry assumptions
- Generalisations of GR need to agree with both Heisenberg \& MB, in preparation

