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OUTLINE

Introduction: The Data Challenge:
= Volume, Rates and Complexity

Machine Learning: The Answer ?

some ML Examples from

« HEP
= Photon Science

= Accelerators

Future Activities

J— eyl

Summary and Outlook ML artist's view of the Elbphilharmonie
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DATA CHALLENGE: VOLUME

C.Grigoras, CHEP2018 J.Thayer, IFDEPS 2018
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= data volumes from new/upgraded accelerators for HEP and photon science will reach
Exa-Bytes/year in the coming decade (prime examples: HL-LHC and LCLS-II)

= slightly smaller, yet still challenging: XFEL, FAIR,...
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DATA CHALLENGE: RATE

LCLS-II LCLS-lIl | ATLAS Today ATLAS
R.Mount,SLAC 2022 2026+ 2026+

Wanted fraction of collisions 0.01t01.0 0.01t0 1.0 <10° <10°%

Typical experiment duration 3 days 3 days 3 years 3 years

(same data-taking conditions)

24x7 availability of offline Essential Essential Desirable Desirable

computing

Required turnround for data- Seconds to Seconds to Hours to days Hours to days

quality checks minutes minutes

Raw digital data rate 200 GB/s 300+ GB/s 160 GB/s 1,000 GB/s

Zero-and-Junk-suppressed rate 10 GB/s 30+ GB/s 1.5 GB/s 20 GB/s

Storage need dominated by Mainly raw data Mainly simulated and derived

data

Role of Simulation Growing in science analysis Vital in physics analysis
Growing in experiment design Vital in experiment design

Analysis, Simulation and Individuals (in the past) ~100 organized collaborators

Workflow Software — Organized effort (mainly research physicists)

development community

correspondingly we expect dramatic increases in data rates

requiring large (real time) data reduction and/or compression - (10-1 - 10-6)



DATA CHALLENGE: COMPLEXITY

electron
density

example: calorimeter showers in high granular calorimeters example: high density detectors for scattering images at FELs

for linear colliders O(107) cells

= ever increasing density and granularity of modern detectors for HEP and PhotonScience

= considerable increase of complexity in the data to be analysed and modelled

_



MASSIVE (R)EVOLUTION IN SCALE NEEDED

Never underestimate the handwidth of a sleigh full of disks !

... in storage, triggering, compression, filtering, analysis ...

_



MACHINE LEARNING THE ANSWER TO EVERYTHING ?

BFCe Jin-man / AP

dramatic and exiting progress in
using ML real world applications:
autonomous vehicles - GO
computers ...

can we use ML to meet the data
challenges in our research field ?




Generative Adversarial Networks

MACHINE LEARNING IN A NUTSHELL minmaxV (D, )
from the Perceptron to CNNs,RNNs,GANs et al =~ "?@ = B losPal By o loslt = DG

/ () realdata
T ~ Pdata(T)

basic machine learning idea: 1[B——] P~
create suitable network structure

sigmoid
function

McCullogh-Pitts-Neuron, 1943

Discriminator| | . 1
Network [

minimise Error function “(?) | SEC | MR-
* based on target (training) data prior generated

data

use for
» classification
* regression
* generation (modelling)

g(ha)

Multi-layer Perceptron
trained w/ Backpropagation (1980s)

simple classification w/ 2x2 MLP




THE H1 LEVEL-2 NEURAL NETWORK TRIGGI?R ﬂ
Machine Learning in HEP in the late 90s B

mpug_ [ CNAPS

P m—— ety advantages of ANN for Triggering:
R e e Tl « exploit high dimensional
n Outpat | —— T . . .
Ny correlations first signal of ® photo-production
: e e T e in the H1 detector (PhD thesis FG)
' .:, [ E g:: a) gn?:' b) ﬁ
[ -."'—;I'N e implement the ANN on a dedicated : s . S f
i === gl -
||l S - parallel hardware (CPU) g /" T | romtmct
— i -> much faster trigger decision JRECEE. < 'T|
N e e e g e emeemm o A ) P | " 0 l
1B.C=06ns . ~10MHz ' ] .

23 s (Pipeline) _: g ‘_ { ?:_ +
“ L1 Fesrverdrar‘tete Lwik \i U:% l:ﬂ IIZM' ll:}ﬁ .IIIDU' .ll U§+‘?+I/+IW ' ‘IU‘I ' IIW ' IICG I||
KK GV iR GeVI?)
‘ max.5kHz = use of ANNs already very common in HEP event

classification at the time:

=

# L2 Neufo(:l:es Netzwerke - -
1 . E « HEP-inspire search finds ~500 papers with Neural Network
max.200Hz

written in the 1990s (not all HEP) !




T.Ferber, S.Wehle DESY

MACHINE LEARNING AT BELLE-II

Full Event Inter

Conventional Method
\
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Deep Full Event Interpretation

Track 1 \ »"
o —
/ e Gather Information of each Rest of event Track
+ Track parameters, Energy, Momentum

« Particle Identification Information

* intensity frontier flagship Track N

experiment at KEK
* precision measurement and
(extremely) rare B-decays

« DDNN and CNN used for this classification task
» performance considerably better than conventional method




MACHINE LEARNING AT BELLE-II TFerber, S.Wehle DESY

ECL cluster shape calibration

Belle Il in Japan
Semi-supervised learning:
Wasserstein GAN learns to
create 'fake’ images that
look like real Belle Il

/ images.
‘ \! r’;Real(BelleII) H H’ :
7 '.:BB:-EF

Example:
E10E9 shower shape variable

* intensity frontier flagship
experiment at KEK
* precision measurement and
(extremely) rare B-decays
» use of a WGAN for generating images of calorimeter showers
* needed to correct imperfect ‘conventional simulation

Energy chVI



MACHINE LEARNING AT ATLAS P.Glaysher, DESY
|[dentification of particle jets

= With deep learning, we achieve similar

@ L N AL S
- = [ ATLAS Simulation Preliminary | level of improvement as multi million €
The ATLAS Experiment -5:3 IPE ieraTev.d —RNNIP 5 upgrade of the detector hardware.
Muon Detectors Tile Colo‘rime'er Liquid Argon Calorimeter '0 NN anem |P3D :
g e | ---1P3D: Probabilistic classifier, a
_;'»_ el _ log-likelihood ratio b-jet/light-jet
g E .......... E
- T 7 —- RNNIP: recurrent NN, exploits sequence
i ’ T based correlations in jet tracks
10E e
‘—in Improved performance due to deep learning
4606507 075 08 085 09 085 1 Unrolled RNN

b-jet efficiency, e,

QOO0

Toroid Mognets  Solencid Magnet  SCT Tracker Pixel Detector TRT Tracker

Success of RNN also due to LSTM units

- establish long range correlations

- mechanism to regulate relative importance
of short & long term information

Fully Connected
+

SoftMax

* multi purpose detector at the
LHC at CERN - track info in 50 dimensional vectors
e« 13 TeV pp-collisions - final network has ~11k trainable free
parameters.
- trained on 3.2 M jets.

5

FHE 1)

Track info. ATL-PHYS-PUB-2017-013

g



MACHINE LEARNING AT ATLAS P.Glaysher, DESY
Fast shower simulation

+ large fraction of CPU needs due to Monte Carlo Simulation
The ATLAS Experiment + speed-up of x100 for generative models (VAE and GAN)

Muon Detectors Tile Calorimeter Liquid Argon Calorimeter

> Very first results for single photon shower

> VAE & GAN models compared to Geant4
simulation

> Promising feasibility study, level of accuracy not yet
high enough for physics analyses

> L AL AN L AR A 2500+ ! v v ;
3 ATLAS Simulation Preliminary 4 Geantd £ ATLAS Simulation Preliminary 4 Geantd
Toroid Mognets  Solencid Magnel  SCT Tracker Pixel Detecter TRT Tracker o ‘>;,'I‘EB-:SIGZW.02!)<II;I<025 “##% VAE | = v.E=65GeV,020<Ini<025 w4 VAE
» 10¢FEMBamele S GAN - Xndf=16(VAE) L AN
-] X’ Indf = 26 (VAE) 4 2 G
= 2000+ X*/ndf = 26 (GAN)
2 XIndf = 11 (GAN) g
w & N
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L § * >
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+ 13 TeV pp-collisions f i 5
10'F 4 % B e
- 2 + y 500+ |
T tT T"T 5" - A
i -
+ +A } | 1 L 1 £ | TN -~ P ST |
10 20 30 40 S 60 70 80 150 200 250 300 350
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MACHINE LEARNING AT CMS G Kasieczka, UHH

Autoencoder for New Physics [
La¥ Universitait Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG

In ut  Autoencoder Out ut

. l.l L= Y (X, X))
teaa J Pixels ij
7]
107 5 34
1808.08979 32
e Can we find new physics without knowing what to look 30
for? g ::
-§ 107 4 24 8
e Train on QCD light quark/gluon jets g 2.5
(can be done in data) T igg
§., 10 16 §
« multi purpose detector at the ® Top quarks (or new physics) identified as anomaly < 14
high loss @ 12
LHC at CERN (hgh o=2) 10
+ 13 TeV pp-coII|8|0ns e Adversarial training against mass-mass-sculpting 10° -~ y y T T ' 6

00 02 04 06 08 10
Signal efficiency &5
® Use for model independent new-physics searches

trained on data QCD or What?

T Heimel, GK, T Plehn, JM Thompson, 1808.08979



MACHINE LEARNING AT CMS G Kasieczka, UHH

Asimov significance
CMS

STSEL KETURN YOKE
12500 toeres

CMS DETECTOR

°

SILICON TRACKERS

. , ) 9 1/2
Z4= [2 ((s | b)lu[(““’)(“”g)] b [1 F b= )D]

wovowess b+ (s+b)ap | of b+ o}

St 433 Resatir Pire Chabess

Asimov estimate

| “oiumes e |s there a better optimisation target than cross-entropy " | Asimov significance trained
1806.00322 |

S oo for classifers?
0.0 0~1 0'4 oe D'D l'O

Sieek+ Qi s ~200 Chavod

* Try to optimize directly for the Asimov significance,

i.e.use it as a loss function s
CALOMIMETER (ECAL) . E
R * Caveat:To define the number of signal and background %+ Cross-entropy trained
e events we need to cut on the discriminator output é, /
* Makes it non-differentiable ) - <,
Asimov loss training:
best Zo= 6.2 * 0.6 . __— ’
. Cross-entropy training +purity cut: | "
* multi purpose detector at the ; best Zr= 4.8 + 0.3 R
Npatch
LHC at CERN s =W i' yprcd 5 ym,e (Systematic uncertainty 50%) 1806.00322
.. o= s i Ji
+ 13 TeV pp-collisions i
Npatch

b=TW pred 1— true . . :
b Z Yi x( %) : l;‘:':;g:: :L?;::::::P::r::::ﬁ signal Direct optimisation of the discovery significance
: P 8 when training neural networks to search for new
1/Z (s, b) becomes a smooth and background events by a smooth physics in particle colliders,

function of y?"*¢ function of the predicted label A Elwood, D Kriicker, 1806.00322




MACHINE LEARNING FOR ACCELERATORS

= applying Machine Learning (ANN) to accelerators also goes back 30
years !

A/l

= more recent activity with tremendous progress in ML activity and
AL ATON,SING NEURAL NETWORKS: increasingly complex accelerators

D. NGUYEN," M. LEE, R. Sass, H. SHOAEE
Stanford Linear Accelerstor Center Stanford University, Stanford CA 94305

= mostly applied to: Simulation/Modelling and Control (Fast Feed-back)

Abstract

Unlike present constan: model feedback systems, neural .
et TSt o B o e oo e = material taken from recent workshop at SLAC:
with time.

Using & process model, the *Accelerator” network is first
trained to simulate the dynamics of the beam for a given
beam Lne. This “Accelerstor” vetwork s thea used o
train a seccnd “Controller” petwork which performs the
contrel furction. In simulstion, the petworks are used o
adjust corrector magnets to contral the launch angle and
position of the beam to keep it on the desired teajectory
when the incoming heam is perturbed.

Introduction

Machine Learning Applications for Particle Accelerators

Both fast and slow feedback control are used in the SLC
<ontzol system to stabilize the beam sad optinuze coll-

vions, Fuat feedback control executes ot or near the beam X« BPM s ok Ernor HOME AGENDA REGISTRATION (CLOSED) PARTICIPANTS VISITING SLAC* CONTACT US

rate in the 80386 micros. each of which coatrols all devices 8 = Corectcr Satings

in one geographical region(l], while slow feedback ccatrel . § . Essmated BPM Reaing wner

cperates in the VAX aver a period of many seconds 102 Figure 1. Block Dingram of Neurai Netwark Architecture QUICK LINKS

%) Registration (closed)

BE Agenda

= List of Participants




MACHINE LEARNING FOR ACCELERATORS
Application of Reinforcement Learning

FAST

L8 G S e 1.3 Ghz SKE eryomadule (CW2)

Figure 3. The lueadin | peu
b RE Cavity invbde. Bepepdocad wes pesini

* Fermilab Accelerator Science
and Technology Facility

» accelerator R&D, e.g for the
ILC

Temperature Control for the RF Photoinjector at FAST
Resonant frequency controlled via temperature

PID control is undesirable in this case:

* Long transport delays and thermal responses

* Recirculation leads to secondary impact of disturbances

* Two controllable variables: heater power + valve aperture

Applied model predictive control (MPC) with a neural network model
trained on measured data: ~ 5x faster settling time + no large overshoot

Existing Feedforward/PID Controller

A.Edelen, CSU

Actor

Simulated Actions

Experience
Rewards,
States

Model

Process

.

Model Learning

Can train on models first to get a
good initial solution before deployment

RL also used in alphaGo
|

Optimization
Input Teacher }—1

Can use supervised learning to first approximate the
behavior of a different control policy

435 —
TCAV 445 TCAV
==TCAV target —TIN
43—y B = o v ~~TCAV target
o | \ C ) E \(\ N
': 426/ } — E a4  — -
- =] ! \
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OCELOT

MACHINE LEARNING FOR ACCELERATORS

|.Agapov, DESY

Modelling and Control of FELs | (Flash, EU-XFEL, LCLS)

Software tools used in optics design: madx, ptc, opa, elegant, at, lego. ocelot

OCELOT started in 2011 as a C++ beam dynamics framework with a wakefield focus
(Agapov and Zagorodnov KWT Seminar 2011), completely rewritten in python for XFEL.EU
SR/FEL simulation purposes (Agapov et al. Proc IPAC13 Shanghai), implemented
comprehensive beam dynamics capabilities (/. Agapov et al., NIM A 768 2014)

Mostly used for linac and FEL simulations

Physics: beam transport up to 2™ order or drift-kick-drift, CSR, wakefields, space charge,
Ming Xie FEL estimator, genesis interface, x-ray optics, SR radiation

Includes advanced on-line control and optimization module

Open source “community project” hitps://aithub.com/ocelot-collab current lead developer
S. Tomin (since 2016). Web-based tutorials to get started

From XFEL laser heater tutorial

European XFEL linac

OCELOT optimization

=  Started as FLASH accelerator R&D in 2015. Now a suite of tools widely used at XFEL.EU, LCLS and
FLASH. Partially ported to PETRA (generic optimizer: configured for linac transmission efficiency).
Collaboration with SLAC/LCLS.

Generic optimizer

Orbit correction

Orbit adviser

7

I Agapov et al proc IPAC 2015 “ML“
S. Tomin, I. Agapov et al.,, proc IPAC 2016

Orbi comedfion based on SASE histo

SY Accelerator Physics Sem

1. Agapov et al., proc. ICALCPCS 2017
1. Agapov et al.. DESY-17-054
1. Agapov et al. proc IPAC 2018

o
% Page 29
\"e%/

large toolkit with some ML components - potentially to be extended




MACHINE LEARNING FOR ACCELERATORS T.Mertens, HZB
Application of OCELOT to BESSY-II

ML Prediction Models @ HZB - BESSYII

Accelerator Controls

optimization » First application: en- M
ergy measurement
» Developed @  DESY (SCALER9ZR) - \
saom al
(Python) > (1) "Blind’ models =]
» OCELOT optimizer test: (RE. SVR, DNN...): " o o o woe oo oo won wie
optimize 4 skew quads use only descriptive (2)
» Randomized 4 skew quads features (readbacks)
» Run OCELOT optimizer - some of them are

self-explaining
» (2) Temporal models

(DNN+RNN): incor-
porate time series

» Next steps: lifetime,
purity, optimization...

— - .~ » Convergence achieved

» Comparable lifetime, loss-
rate and beam size

» Next test planned for
February




MACHINE LEARNING FOR PHOTON SCIENCE M.Bussmann, HZDR

X-Ray FELs for probing laser-driven high energy density plasmas

B T Idea: Replace iterative phase retrieval by one-step NN inference
Pb= &y -AQ- T € - |I'()'/II,(I_'.)'("“”([IT

preplasma 0.1 A, Z/A=1/2

preplasma 0.1 A, Z/A=1/6

no preplasma, Z/A=1/2

Flux Solid  Trans- Detection Thomson Fourier m no
angle mission efficiency scattering transform of & \stability
cross seclion density instability

* Parameterize scattering image
generation via synthetic (surrogate)
model parameters from which the
physical properties can be inferred

* Instead of using iterative phase
retrieval and obtain density, directly
infer model parameters from
scattering image

T Kiuge ot al. Physics of Plasras 23(3), (30103 (2016) "‘,.‘..‘C DR

* This removes the often unnecessary
step in obtaing a real space density

Input ———> [ =1, ¢*—> FFT —> F={F|c* image and is better to account for in

high-throughput scenarios

electron

density =3 A4 )
v Sreasiret * Only works reliably for well defined,
in object domain in frequency domain

specific setups, as in general there's
no bijection between the generating
parameters and the scattering image

no
Quiput «——— MSE<¢?
yes

t Y

S S e e [FFT [ = [ "
DRESDEN \

((((( Y HRerR




MACHINE LEARNING FOR PHOTON SCIENCE

Example: A simple, 1D surface grating ,melted” by a laser

T Kluge et al. Phys. Rev. X 8(3), 031068 (2018)

Scattering pattern vanishes

scattering density

softening length
o

Feature Size

Electron dispersion
parametrized by
softening length o

VA

Plich

edge of target

M.Bussmann, HZDR

Example: Training for parameter fitting with synthetic data

Highly nonlinear dependence of scattering picture
on softening lenght o

All other model parameters extracted with very
high accuracy (> 99,9%)

Nonlinearity results in a ~10% error in Sigma

0=0.0001 ’ ”

scattering density

softening length
o

FPeature Sizn el

edge of target

Comparison

I—
—

| ~5%




MACHINE LEARNING FOR ‘PHOTON SCIENCFE’ J.Kelling, HZDR

Compression of MRI Raw Data

|||||||||

. Autoencoders for — 1
* model Iearr!s_to encode domain-sp_)ecific | ='
e compression of raw data .

J \_T_J L
T T
Encoder Bo Dec: r

* avoid uncontrolled

information loss by

SR+ Use case: MRI data from Rheinland study”
« Enable retention of raw data for future
improved reconstruction

50

*Iong term health study 100
investigating 150

neurodegenerative diseases e




AMALEA
Helmholtz Innovation Pool Project (2019/20)

application of Machine Learning to challenging projects in HEP, Photon-Science and Accelerators

creation of a sustainable infrastructure (Distributed ML-Lab) with dedicated hardware (multi-core,
GPU, FPGA) und software tools

development of

fast simulation and reconstruction for 3D images of novel detectors, e.g. imaging calorimeters
and cameras in photon science

ultra-fast feedback algorithm for data reduction, compression and classification of data from
current and future light sources

fast diagnosis and control systems for the optimisation of optics, emittance and beam dynamics of
accelerators, such as Petra-IV or BESSY |l

m ﬁ HELMHOLTZ
Helmholtz ZENTRUM DRESDEN \
Zentrum Berlin ROSSENDORF —
Karlsruher Institut f0r Technologie
m 23



AMALEA EXAMPLE
fast - but detailed - simulation of hadronic showers

already encouraging attempts to use W-GANSs for fast 1l
modelling of calorimeter showers (ATLAS, HGCal) TiTifssstai e

so far not quite fit for physics use T
new imaging calorimeters for particle flow* will have "
much increased granularity that reveal the details of e ang

the hadronic shower substructure

l ulgw;l,];hxl;,: l

can we generate hadronic showers that are detailed H . sh n SDHcal Cali
enough and physically correct to replace the CPU adronic shower in cal prototype (Calice)
intensive Geant4 simulations ?

*particle flow:
- reconstruct every particle shower individually
- main source of error:
- confusion due to overlaps
: - needs to be modelled correctly
em/had - ratio

M| T

longitudinal & transverse shapes

energy-profile

24




SUMMARY AND OUTLOOK

Machine Learning has made tremendous progress in recent years
new algorithms, network architectures and training methods
combined with dramatic progress in hardware (multi-core, GPU, FPGA)
ML could be a major ingredient to match the data challenges in our field
HEP, Photon Science and Accelerator physics are (and have) actively used ML techniques
mostly as applied users - but also contributing to improving the methods, if needed
only tiny selection of activities shown in this talk
many exiting projects and applications of ML in matter ahead:
need dedicated domain knowledge from the scientists in Matter

ideally complemented with cutting edge expertise from information scientists

M{T v 25




