
www.helmholtz.de

MACHINE LEARNING FOR DATA ANALYSIS, 
MODELLING AND CONTROLS

F.Gaede, DESY 
Matter meets Information: Common Challenges 
and Perspectives 
DESY, Jan. 14-15



OUTLINE
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▪ Introduction: The Data Challenge: 

▪ Volume, Rates and Complexity 

▪ Machine Learning: The Answer ? 

▪ some ML Examples from 

▪ HEP 

▪ Photon Science 

▪ Accelerators 

▪ Future Activities  

▪ Summary and Outlook ML artist’s view of the Elbphilharmonie



DATA CHALLENGE: VOLUME
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▪ data volumes from new/upgraded accelerators for HEP and photon science will reach   
Exa-Bytes/year in the coming decade (prime examples:  HL-LHC and LCLS-II) 

▪ slightly smaller, yet still challenging: XFEL, FAIR,…

C.Grigoras, CHEP2018 J.Thayer, IFDEPS 2018

LCLS-II Data Volume



DATA CHALLENGE: RATE
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▪ correspondingly we expect dramatic increases in data rates  

▪ requiring large (real time) data reduction and/or compression  - (10-1 - 10-6)

R.Mount,SLAC



DATA CHALLENGE: COMPLEXITY
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▪ ever increasing density and granularity of modern detectors for HEP and PhotonScience   

▪ considerable increase of complexity in the data to be analysed and modelled

example: calorimeter showers in high granular calorimeters 
for linear colliders O(107) cells

example: high density detectors for scattering images at FELs



MASSIVE (R)EVOLUTION IN SCALE NEEDED
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100 PB / truck

… in storage, triggering, compression, filtering, analysis …

C.Grigoras, CHEP2018



MACHINE LEARNING: THE ANSWER TO EVERYTHING ?
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• dramatic and exiting progress in 
using ML real world applications:  
autonomous vehicles - GO 
computers … 

• can we use ML to meet the data 
challenges in our research field ?

Lee Jin-man / AP

Credit: Shutterstock/maxuser

Wikimedia:Dllu

Martian robot will explore the 

Red Planet with mind of its own  

The Telegraph



MACHINE LEARNING IN A NUTSHELL
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from the Perceptron to CNNs,RNNs,GANs et al
McCullogh-Pitts-Neuron, 1943

Multi-layer Perceptron 
trained w/ Backpropagation (1980s)

simple classification w/ 2x2 MLP

schematic view of CNN

example RNN

• basic machine learning idea: 
• create suitable network structure 
• minimise Error function 

• based on target (training) data 
• use for 

• classification 
• regression 
• generation (modelling)



THE H1 LEVEL-2 NEURAL NETWORK TRIGGER
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Machine Learning in HEP in the late 90s

first signal of Φ photo-production  
in the H1 detector (PhD thesis FG)

advantages of ANN for Triggering: 

• exploit high dimensional 
correlations 

• -> better physics performance 

• implement the ANN on a dedicated 
parallel hardware (CPU) 

• -> much faster trigger decision

▪ use of ANNs already very common in HEP event 
classification at the time: 

▪ HEP-inspire search finds ~500 papers with Neural Network 
written in the 1990s (not all HEP) !



MACHINE LEARNING AT BELLE-II  
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T.Ferber, S.Wehle DESY

• intensity frontier flagship 
experiment at KEK 

• precision measurement and 
(extremely) rare B-decays

• DDNN and CNN used for this classification task 
• performance considerably better than conventional method



MACHINE LEARNING AT BELLE-II  
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• intensity frontier flagship 
experiment at KEK 

• precision measurement and 
(extremely) rare B-decays

• use of a WGAN for generating images of calorimeter showers 
• needed to correct imperfect ‘conventional’ simulation

T.Ferber, S.Wehle DESY



MACHINE LEARNING AT ATLAS 
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Identification of particle jets
P.Glaysher, DESY

• multi purpose detector at the 
LHC at CERN 

• 13 TeV pp-collisions



MACHINE LEARNING AT ATLAS 
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Fast shower simulation
P.Glaysher, DESY

• multi purpose detector at the 
LHC at CERN 

• 13 TeV pp-collisions

• large fraction of CPU needs due to Monte Carlo Simulation 
• speed-up of x100 for generative models (VAE and GAN)



MACHINE LEARNING AT CMS 
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G.Kasieczka, UHH

• multi purpose detector at the 
LHC at CERN 

• 13 TeV pp-collisions

CMS



MACHINE LEARNING AT CMS 
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G.Kasieczka, UHH

• multi purpose detector at the 
LHC at CERN 

• 13 TeV pp-collisions

CMS



MACHINE LEARNING FOR ACCELERATORS
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▪ applying Machine Learning (ANN) to accelerators also goes back 30 
years ! 

▪ more recent activity with tremendous progress in ML activity and 
increasingly complex accelerators  

▪ mostly applied to:  Simulation/Modelling and Control (Fast Feed-back) 

▪ material taken from recent workshop at SLAC:



MACHINE LEARNING FOR ACCELERATORS
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A.Edelen, CSU

Application of Reinforcement Learning

RL also used in alphaGo

FAST

• Fermilab Accelerator Science 
and Technology Facility 

• accelerator R&D, e.g for the 
ILC 



MACHINE LEARNING FOR ACCELERATORS

!18

I.Agapov, DESY

Modelling and Control of FELs I  (Flash, EU-XFEL, LCLS)

large toolkit with some ML components - potentially to be extended



MACHINE LEARNING FOR ACCELERATORS
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T.Mertens, HZB

Application of OCELOT to BESSY-II



MACHINE LEARNING FOR PHOTON SCIENCE
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M.Bussmann, HZDR



MACHINE LEARNING FOR PHOTON SCIENCE
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M.Bussmann, HZDR



MACHINE LEARNING FOR ‘PHOTON SCIENCE’
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Compression of MRI Raw Data

*

*long term health study 
investigating 
neurodegenerative diseases

J.Kelling, HZDR

*

• model learns to encode 
patterns efficiently 

• avoid uncontrolled 
information loss by 
retaining encoding error



AMALEA 
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▪ application of Machine Learning to challenging projects in HEP, Photon-Science and Accelerators 

▪ creation of a sustainable infrastructure (Distributed ML-Lab) with dedicated hardware (multi-core, 
GPU, FPGA) und software tools 

▪ development of 

▪ fast simulation and reconstruction for 3D images of novel detectors, e.g. imaging calorimeters  
and cameras in photon science 

▪ ultra-fast feedback algorithm for data reduction, compression and classification of data  from 
current and future light sources 

▪ fast diagnosis and control systems for the optimisation of optics, emittance and beam dynamics of 
accelerators, such as Petra-IV or BESSY III

Helmholtz Innovation Pool Project (2019/20)



AMALEA EXAMPLE
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▪ already encouraging attempts to use W-GANs for fast 
modelling of calorimeter showers (ATLAS, HGCal) 

▪ so far not quite fit for physics use 

▪ new imaging calorimeters for particle flow* will have 
much increased granularity that reveal the details of 
the hadronic shower substructure 

▪ can we generate hadronic showers that are detailed 
enough and physically correct to replace the CPU 
intensive Geant4 simulations ? 

▪ longitudinal & transverse shapes 

▪  energy-profile 

▪ em/had - ratio 

fast - but detailed - simulation of hadronic showers

hadronic shower in SDHcal prototype (Calice)

*particle flow: 
- reconstruct every particle shower individually 
- main source of error: 

- confusion due to overlaps 
- needs to be modelled correctly



SUMMARY AND OUTLOOK
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▪ Machine Learning has made tremendous progress in recent years 

▪ new algorithms, network architectures and training methods 

▪ combined with dramatic progress in hardware (multi-core, GPU, FPGA) 

▪ ML could be a major ingredient to match the data challenges in our field  

▪ HEP, Photon Science and Accelerator physics are (and have) actively used ML techniques 

▪ mostly as applied users - but also contributing to improving the methods, if needed 

▪ only tiny selection of activities shown in this talk 

▪ many exiting projects and applications of ML in matter ahead: 

▪ need dedicated domain knowledge  from the scientists in Matter 

▪ ideally complemented with cutting edge expertise from information scientists 


