Update on work towards HERAPDF*.*Jets at NNLO AM Cooper-Sarkar
 December 2018

- Recap of Iris' plan
- Not all sets fitted at NLO CAN be fitted at NNLO due to lack of predictions, lack of grids or lack of reliability thereof
- However, I think we now have sufficient NNLO grids to proceed
- Choose the cuts to be made at NLO- then move to NNLO
- This can be done with the Oxford code, but xFitter lacks an NNLO jets implementation

What was Iris's plan for HERAPDF3.0Jets at NNLO?

1) keep ALL settings as for HERAPDF2.0
throw the heavy flavour data out for the fit
--> HERAPDF2.5NLO-Jets-only
compare HERAPDF2.0Jets to HERAPDF2.5NLOJets-only
message: it makes no difference
2) produce the exactly same fit in NNLO --> HERAPDF2.5NNLO-Jets-only MAJOR MESSAGE:

What does NNLO do?
How does alphas_s change?
Is the scale uncertainty less?
3) add new jet data and produce [with everything else still as HERAPDF2.0]

HERAPDF3.0NLO-Jets-only
HERAPDF3.0NNLO-Jets-only
==> Message: what do low Q^2 jets do.
4)-- do new mass parameter scans with new HF data and produce

HERAPDF3.5NLO-Jets-only
HERAPDF3.5NNLO-Jets-only
==> message: mass parameters are insignificant at this level
5)-- add the HF data to the fit and produce

HERAPDF3.5NLO-Jets
HERAPDF3.5NNLO-Jets
==> message: using the HF data explicitly doesn't do anything, but everything is consistent.......FULL PLAN in back-up

But her plan cannot be executed EXACTLY as it is BECAUSE 2) produce the exactly same fit in NNLO --> HERAPDF2.5NNLO-Jets-only CANNOT be done

The HERAPDF2.0Jets contains
ZEUS di-jets $=2219$.
DIS JETzeus96/97 = 3027.4
H1 HERA1 highq2 =24 14.1
H1 HERA1 lowq2 = 2215.99
H1 2013 inclusive $=2421.4$
H1 2013 dijets $=2443.1$
H1 2013 trijets = 1618.6

- Firstly trijets are not available at NNLO we HAVE to cut them out
- Secondly there have to be more stringent cuts on the low Q2 jets at NNLO, we have to cut ~ 6 more data points (and the new HERA2 H1 2016 lowQ2 jets also need cuts)
- Thirdly the NNLO is available for ZEUS inclusive jets now But for DIS JETzeus98/00 not DIS JETzeus96/97. NOTE there was a reason for the choice of zeus96/97 inclusive for the Jet fits-there is no overlap with dijets. If we use 98/00 instead then there is a 20% overlap.
- Fourthly not All the ZEUS dijets points can be predicted accurately at NNLO

So we have to make these changes at stage 1' and then go to stage 2 etc.
We have progress on this

Let's enumerate what we have to do...

1. The first step is to reconstruct HERAPDF2.0Jets job exactly as it was, with the older jet data sets and the older charm combination at NLO—and be sure it is the same as it was
2. The next step is to remove the older charm—and compare those two jobs
3. The next step is to remove the first ETbin for every Q2 bin of the ZEUS dijets (the bin with average ET less or equal 12.0) and compare again. The reason is that we have been told that NNLO calculations are unstable for this bin—but I will have more to say later
4. The next step is to SWAP ZEUS inclusive 96/97 for 98/00 and compare again
5. The next step is to remove trijets-that is H1 2013 high Q2 trijets, which are the only trijets in the old HERAPDF2.0Jets fit-and compare.
6. The next step is to remove a few more data points from the H1 lowQ2 2009 jets for future comparison with NNLO. There are three different criteria for doing this:i) on could increase the kfactor requirement to kfactor < 2.2 (we already require kfactor <2.5); ii) one could require $\mu=$ sqrt(ptave^2+Q^2) > 13.5, this ONLY AFFECTS the lowq2 jets; iii) one could cut on the size of the scale variations considering both NLO and NNLO
These decisions also affect the newer H1 2016 low Q2 Jet data sets which we will add later.
One has to make a decision on which cuts to use at stage 6....and then go to NNLO..

Steps 1-5

Steps 1-5

Compare Mandy (Oxford code) and Katarzyna (xFitter) at step 5 (all other steps also the same)

Compare Mandy (Oxford code) and Katarzyna (xFitter) at step 5 (all other steps also the same)

Now steps 5 to

6.i,ii,iii- we will talk about these varying cuts-
What I want you to note is that it makes little difference

Now steps 5 to
6.i,ii,iii- we will talk about these varying cuts-
What I want you to note is that it makes little difference

Now let's talk about the extra cuts being made at stage 6 for the move to NNLO

 I have investigated these cuts not just in terms ofi)the size of NLO to LO k-factors, as was done already for NLO
but also in terms of a kinematic cut ii) $\mu=\sqrt{ }\left(\right.$ ptave $\left.^{2}+Q^{2}\right)>13.5$ is required
AND finally in terms of the iii) size of scale variations at NLO and NNLO
What I have done is take the parameters of the HERAPDF2.0 Q2>3.5 fit and fix them and then look at renormalisation and factorisation scale changes of a factor of two up and down on ALL the jet data sets.

The nominal scales are $\mu_{R}=\sqrt{ }\left(\right.$ ptave $\left.{ }^{2}+Q^{2}\right) / 2$ and $\mu_{F}=Q^{2}$ but this hardly matters it is the changes that we are looking at.

I have done this at both NLO and NNLO and compared. With one exception NNLO scale variations are always less than NLO variations

Firstly let's track back to step 3

where 6 of the data points for the ZEUS-dijets were removed since I was told the NNLO predictions were unstable
There are 22 data points differential in ET and Q2 .
The data points are distributed as 4/4/4/4/3/3 in increasing Q2..and within each group they are ordered in ET.
All information is in back-up but I will report here percentage changes under scale variation for NLO and NNLO-for the largest change, which is μ_{R} up by factor of two.
Changes are given fractionally so 0.044 means 4.4%

```
NLO Mur=2
0.044,0.079,0.064,0.03/ 0.019,0.069,0.055,0.026 /
0.0018, 0.056,0.044,0.019/ 0.008,0.04,0.036,0.014/
0.00,0.036,0.016/0.01,0.04,0.022
NNLO Mur=2
0.073,0.05,0.026,0.23/ 0.044,0.027,0.026,0.01/
0.007,0.002,0.03,0.002/0.014,0.028,0.005,0.002/
0.016,0.007,0.012/0.013/0.023,0.017
```

There is a worrying tendency for the scale variation to be larger at NNLO than at NLO for the first Et bin of each Q2 group. These are the same bins we were asked to cut on grounds of unreliability- and this seems like a good reason why. For ALL other bins the scale variation is less at NNLO

Secondly let's consider the old H1 low Q2 inclusive jets data set h109-162.

There are 28 data points grouped as 7 groups of 4 , where the 7 groups are of increasing Q2 and the 4 points within each groups are of increasing ET
The scale variations can be large both at NLO (46\%) and at NNLO(28\%), but are always smaller at NNLO. I discuss the large size at NLO as a basis for cuts.
I will present the largest changes- which are for μ_{R} down by factor of two
NLO Mur=1/2
$0.46^{*}, 0.31^{*}, 0.24,0.17 / 0.46^{*}, 0.29^{*}, 0.22,0.17 / 0.40^{*}, 0.27^{* *}, 0.22,0.16 /$
$0.36^{*}, 0.25^{* *}, 0.21,0.15 / 0.32^{* *}, 0.24^{* *}, 0.20,0.14 / 0.27^{* *}, 0.21,0.18,0.13 /$
$0.20^{* *}, 0.18,0.15,0.12$
NNLO Mur=1/2
$0.28^{*}, 0.13^{*}, 0.096,0.065 / 0.26^{*}, 0.13^{*}, 0.087,0.068 / 0.23^{*}, 0.12^{* *}, 0.086,0.066 /$
$0.21^{*}, 0.11^{* *}, 0.08,0.06 / 0.19^{* *}, 0.11^{* *}, 0.08,0.06 / 0.16^{* *}, 0.10,0.077,0.056 /$
0.12**, 0.09,0.068,0.055/

Ratio NLO/NNLO
1.64*,2.38*,2.5,2.83/ 1.77*,2.23*,2.52,2.5/ 1.74*, 2.25**, 2.56, 2.42/
$1.71^{*}, 2.27^{* *}, 2.625,2.27 / 1.68^{* *}, 2.18^{* *}, 2.5,2.33 / 1.69^{* *}, 2.1,2.33,2.32 /$
$1.66^{* *}, 2.0,2.21,2.18 /$
The * indicates points that we have always cut even at NLO using a k-factor criterion
The ** indicates the extra cut from using a kinematic cut $\mu>13.5 \mathrm{GeV}$
This cuts NLO scale variations >~24\% and NNLO scale variations > ~10\%

The **stands for those points that were already cut at NLO because their NLO/LO kfactors are >2.5. This was points $1,2,5,6,9,13$.

If we increase this k factor requirement to cutting NLO/LO k-factor >2.2 we would cut $1,2,3,5,6,7,9,10,13,14,17$. This is step 6.i

If instead we put a cut on $\mu=\operatorname{sqrt}\left(\right.$ ptave $\left.^{\wedge} 2+Q^{\wedge} 2\right)>13.5$, We would cut $1,2,5,6,9,10,13,14,17,18,21,25$. This is step $6 . \mathrm{ii}$

Or we could chose to cut on large scale variations if we said the NLO scale variation should be less than 24% (and a cut NNLO scale variations of less than 11% gives the same points)
We would cut $1,2,3,5,6,9,10,13,14,17,18,21$ This is step 6.iii All of these give very similar results as you have seen

I am of the strong opinion that a kinematic cut is the simplest

The only other jet data set which is affected by ANY of these suggested cuts is the new H1 lowQ2 2016 inclusive and dijets which has similar large scale variations at NLO. These come as 48 data points in 8 groups (increasing in Q2) of 6 points (increasing in ET)
I had already suggested the cut $\left.\mu=\operatorname{sqrt}^{(p t a v e}{ }^{\wedge} 2+Q^{\wedge} 2\right)>13.5$ for these data, but one could equally well cut on the size of scale variation-it would hit much the same points just as it does for the older low Q2 data.

H1_lowq2_2016 standard $Q^{\wedge} 2+p t 2 / 2=m u r, Q^{\wedge} 2=m u f$

NLO Mur=1/2
$0.47^{\star}, 0.35^{\star}, 0.25,0.20,0.15,0.09 / 0.44^{\star}, 0.33^{\star}, 0.24,0.18,0.14,0.087 / 0.40^{*}, 0.31^{*}, 0.23,0.18,0.13,0.08 /$
$0.36^{\star}, 0.29^{*}, 0.22,0.17,0.13,0.077 / 0.32^{*}, 0.26^{*}, 0.21,0.17,0.12,0.073$
$/ 0.28^{\star}, 0.24^{\star}, 0.19,0.15,0.11,0.067 / 0.23^{*}, 0.21^{*}, 0.17,0.15,0.11,0.06 / 0.18^{\star}, 0.18^{*}, 0.16,0.14,0.10,0.055$
NNLO Mur=1/2
$0.31^{*}, 0.19^{*}, 0.11,0.077,0.052,0.024 / 0.29^{*}, 0.18^{*}, 0.11,0.076,0.051,0.022 / 0.26^{*}, 0.17^{*}, 0.09,0.075,0.050,0.026 /$
$0.24 \star, 0.16^{\star}, 0.10,0.07,0.05,0.023 / 0.22^{*}, 0.14^{*}, 0.10,0.075,0.044,0.025$
$/ 0.18^{*}, 0.13^{*}, 0.09,0.07,0.043,0.022 / 0.14^{*}, 0.11^{*}, 0.094,0.068,0.043,0.022 / 0.13^{*}, 0.10^{*}, 0.087,0.063,0.047,0.023$
Ratio NLO/NNLO
$1.51^{*}, 1.84^{*}, 2.26,2.6,2.88,3.75 / 1.51^{*}, 1.83^{*}, 2.18,2.36,2.74,3.95 / 1.54^{*}, 1.82^{*}, 2.55,2.4,2.6,3.08 /$
1.5*,1.81*,2.2,2.42,2.6,3.5/ 1.45*, 1.85*,2.1,2.27,2.72,2.92/
$1.55^{*}, 1,85^{*}, 2.1,2.14,2.56,3.05 / 1.64^{*}, 1.91^{*}, 1.81,2.2,2.56,2.72 / 1.38^{*}, 1.8^{*}, 1.84,2.22,2.12,2.39$
The *indicates points cut by the kinematic cut

NOW we can proceed to stage 2—but ONLY with Oxford code

2) produce the exactly same fit in NNLO --> HERAPDF2.5NNLO-Jets-only MAJOR MESSAGE:

What does NNLO do?-see below, it gives you a harder high-x gluon, it also did this without the jets

How does $\alpha_{s}\left(M_{z}\right)$ change?- first check $\alpha_{s}\left(M_{z}\right)$ with the stage 1 data for NLO$\alpha_{s}\left(\mathrm{M}_{z}\right)=0.1179 \pm 0.001$, rather than 0.1183 ± 0.0009 as published, with scale variation ± 0.0034 rather than $+0.0037 /-0.0030$ as published.
Then running at NNLO is still going but it looks like $\alpha_{s}\left(M_{z}\right)$ will be significantly lower Is the scale uncertainty less?-I believe I have already demonstrated this

It probably makes more sense to work hard on alphas at the end stage of the fit
That would also be the time to redo parametrisation scan In between we compare 'apples to apples'

Conclusion

All is ready to go ahead with an NNLO HERAPDF Jets fit, with main focus on the PDF BUT

1. ZEUS expresses some unhappiness that the inclusive jet data set for which we now have grids is 98/00 rather than 96/97
2. Does everyone accept the choice of the kinematic cut $\mu>13.5 \mathrm{GeV}$ on data?
3. Are people happy with the plan?
4. MOST importantly WILL THERE BE an XFITTER NNLO Jets implementation?
5. And if not do we go ahead with Oxford code only?

Backup

1) keep ALL settings as for HERAPDF2.0 but throw the heavy flavour data out for the fit --> HERAPDF2.5NLO-Jets-only
compare HERAPDF2.0Jets to HERAPDF2.5Jets-only
message: it makes no difference
2) produce the exactly same fit in NNLO --> HERAPDF2.5NNLO-Jets-only

MAJOR MESSAGE:
What does NNLO do?
How does alphas_s change? Is the scale uncertainty less?
3) add new jet data and produce [with everything else still as HERAPDF2.0]

HERAPDF3.0NLO-Jets-only
HERAPDF3.0NNLO-Jets-only
==> Message: what do low $Q^{\wedge} 2$ jets do.
4)-- do new mass parameter scans with new HF data and produce

HERAPDF3.5NLO-Jets-only
HERAPDF3.5NNLO-Jets-only
==> message: mass parameters are insignificant at this level
5)-- add the HF data to the fit and produce

HERAPDF3.5NLO-Jets
HERAPDF3.5NNLO-Jets
==> message: using the HF data explicitly doesn't do anything,but everything is consistent
The addition of other data added will have to be discussed not as much in detail as the stuff before.
HERAPDF3.0NLO-Jets-only
HERAPDF3.0NNLO-Jets-only
-- should have full error analysis
The rest could be treated with exp. unc. only and called consistent.

Record scale variations:NLO H1_lowq2_old standard $Q^{\wedge} 2+p t 2 / 2=m u r, Q^{\wedge} 2=m u f$

110.04402773309909 8.9420845871682975
1.1856471391906231 2.8907063054001890 E-002 10.966647506420323 0.69866618678682657
13.183465292828803
1.8359072873333806
4.2889153916746407E-002 29.537110645863802 ,0.13,0.11/0.13**, 0.13,0.12,0.10 *bins excluded on kfac, **bins excluded on scalemu-probably should have been!!
22747225732510357 8.6211896532670237E-002 57329699638560150 7.2933246915016410 1.0063787252347653 1.5461 $5.8235508507399412 \mathrm{E}-002 \quad 36.520262622728659$
4.7500543334078325 $2.5597865841874581 \mathrm{E}-00214.918957478032079 \quad 2.1076467022179881 \quad 0.454949263480077191 .7192796037336599 \mathrm{E}-002$ $\begin{array}{lllllll}9.1748611581152169 & 1.3799063955179902 & 0.30386573486210999 & 1.1593192874949877 E-002 & 3.5385939273458034\end{array}$ $0.60799425836229015 \quad 0.14181561427439937 \quad 5.5738800605532090 \mathrm{E}-003$
Mur $=1 / 2 \sim 0.46^{*}, 0.31^{*}, 0.24,0.17 / 0.46^{*}, 0.29^{*}, 0.22,0.17 / 0.40^{*}, 0.27^{* *}, 0.22,0.16 / 0.36^{*}, 0.25^{* *}, 0.21,0.15 / 0.32^{* *}, 0.24^{* *}, 0.20,0.14 /$ $0.27^{* *}, 0.21,0.18,0.13 / 0.20^{* *}, 0.18,0.15,0.12$
$161.68730048098587 \quad 17.226609515633932 \quad 3.3786184411433284 \quad 0.11643563007348690 \quad 106.15729976400223$
$\begin{array}{llllll}11.547741280497608 & 2.2600161797957936 & 7.7705470131070598 \mathrm{E}-002 & 64.636097534752466 & 7.3386605534915912\end{array}$ $1.4447184174548875 \quad 4.9730217043805036 \mathrm{E}-00240.155376570561543 \quad 4.8199856198789259 \quad 0.96093604175721536$ $3.3275637633374593 E-002 \quad 23.960625761288451 \quad 3.0956805172697672 \quad 0.63029710403571781 \quad 2.2062868264778806 E-002$ $13.944435691331369 \quad 1.9694921515131147 \quad 0.41284192674864312 \quad 1.4674478385342898 \mathrm{E}-0024.9094409381254156$ $0.82350981722169436 \quad 0.18573542505112714 \quad 6.8788042721480468 \mathrm{E}-003$

Muf=2

$125.80139137396846 \quad 13.604727992882719 \quad 2.6485963024421837 \quad 9.2212600998487049 \mathrm{E}-002 \quad 82.028141923629363$
$\begin{array}{llllll}9.1240736744432098 & 1.7832591302726766 & 6.2254813807149992 E-002 & 50.058571747344594 & 5.8240426175449054\end{array}$
$1.1498635865027673 \quad 4.0341302799161267 \mathrm{E}-00231.413671002225204 \quad 3.8538688011103459 \quad 0.77192568811958739$ $2.7295996388252555 \mathrm{E}-00219.1092186418666222 .5054852887132562 \quad 0.51238873322345357 \quad 1.8320908543354879 \mathrm{E}-002$ $11.408389588822482 \quad 1.6189556610492135 \quad 0.34026529391587279 \quad 1.2345881701320784 \mathrm{E}-002 \quad 4.2105087389089997$ $0.69759073158250662 \quad 0.15709659772823381 \quad 5.9210717804558102 \mathrm{E}-003$

Muf=1/2

79.085536961747025 8.2856731018051804 1.2131992367586186 $3.1097678418924034 \mathrm{E}-002$ 10.081781369184126 0.081781369184126
11.783815340704054
$2.7350860152962411 \quad 0.10889011031633833$
57.759104287921396
$1.8685818278329644 \quad 7.2688013249052663 E-002 \quad 38.390676186127621 \quad 5.4682381853062667$
$4.6487740148820872 \mathrm{E}-002 \quad 25.554060236765235 \quad 3.6971811384594115 \quad 0.81659028947556445$ $\begin{array}{lllll}1.5970569289103702 & 0.35989821694709845 & 1.3773578282295829 E-002 & 3.8810511425215144\end{array}$ $0.69676045019646715 \quad 0.16550669593745931 \quad 6.5016680932497364 F-003$

NNLO H1 lowq2 old less scale variation than at NLO but still large

h1 lowq2 old $321 \quad 1661.3441527177624$ h1 lowq2 old 3221565.8509118935835 h1 lowq2 old 323 h1 lowq2 old 324 h1 lowq2 old 325 h1 lowq2 old 326 h1 lowq2 old 327 Mur=2~0.17*
h1 lowq2 old 321 1374.2933374094696 h1 lowq2 old 3221308.5945154564163 h1 lowq2 old 3231302.0990235212648 h1 lowq2 old $324 \quad 803.03495108673383$ h1 lowq2 old 325968.99133847529697 h1 lowq2 old 326573.78766834773387 h1 lowq2 old 3271255.6660985481606
166.54092923810774 166.84292891042094 175.02528263283060 113.93603280051484 147.56883196295686 93.443071495210873 237.52881590403084
30.906798487694960 30.822371584262338 33.296905520232961 22.302277475292069 29.603066818796126 19.662321050285605 53.771983664732240
12.094249992598415
12.490598604693481 13.583904710517269 9.2033744498174581 12.544978291082611 8.4321739790522976 24.531716148018372
27.819901330869122 27.929628101737347 30.215816447264153 20.317159366071674 27.051189317594162 18.027135465782724 49.752652173643526
11.173845612499269 11.533169097930942 12.578574703578555 8.5589730861849187 11.667573986076931 7.8796821742657990 23.003934943298177 Mur $=1 / 2 \sim 0.28^{\star}, 0.13^{\star}, 0.096,0.065 / 0.26^{*}, 0.13^{\star}, 0.087,0.068 / 0.23^{*}, 0.12^{* *}, 0.086,0.066 / 0.21^{\star}, 0.11^{* *}, 0.08,0.06 / 0.19^{* *}, 0.11^{* *}, 0.08,0.06$ /0.16**, 0.10, 0. 077, $0.056 / 0.12^{* *}, 0.09,0.068,0.055 /$
h1 lowq2 old $321 \quad 2126.8835635673390$ h1 lowq2 old 3221969.8969868312597 h1 lowq2 old 3231902.4127556376695 h1 lowq2 old $324 \quad 1134.8474469256244$ h1 lowq2 old $325 \quad 1330.0366377987352$ h1 lowq2 old 326762.75079884436968 h1 lowq2 old 3271576.1818056920088

Muf=2

h1 lowq2 old 321
1710.4585825302454 h1 lowq2 old 322 1611.7002517360322 h1 lowq2 old 323 1584.4340123396348 h1 lowq2 old 324963.86279993156052 h1 lowq2 old 325 1147.7970053149234 h1 lowq2 old $326 \quad 670.40733902842510$ h1 lowq2 old 3271427.1156952290910 Muf=1/2
h1 lowq2 old 321 1550.1316302030848 h1 lowq2 old 3221463.9548319817800 h1 lowq2 old $323 \quad 1446.2991995068887$ h1 lowq2 old $324 \quad 884.94058235237765$ h1 lowq2 old 3251062.4640315750014 h1 lowq2 old $326 \quad 624.54748708257432$
187.72725794423064 188.04458620823237 196.36710276498474 126.74483528898965 163.88886368720316 102.71701422112261 258.93549472885343
167.39672923298545 167.64903748860738 175.90498816197157 114.58627132079681 148.32296468190754 93.939707971459200 238.52366599365939
165.78984995302383 166.14233947392864 174.23541191193704 113.33464320433133 146.90608706010906 93.016587218628246
33.890489671297019 33.466614138517293 36.171589474965991 24.135148204189694 31.971106982127093 21.193429373299011 57.474110243921785
30.782512315415016 30.715137223751309 33.190666576995639 22.247643527875432 29.530601118748102 19.607799208041417 53.651728850497449
12.885445662248584 13.350638127261856 14.481094618030305 9.7587095486407698 13.336401853474303 8.9149030265021665 25.924767338175442
11.980670071901931 12.372179300886307 13.466069212799292 9.1284330625327268 12.439176299802096 8.3661491938504806 24.341264816848060
31.200225454466189 31.094654748669871 33.570092435060289 22.459809671628069 29.807192654214550 19.802205267534266
12.283217211527852 12.684332847689241 13.779270896416165 9.3289379729897330 12.718937559302528 8.5420309019577356

Record scale variations:NLO ZEUSdijets standard $Q^{\wedge} 2+p t 2 / 2=m u r, Q^{\wedge} 2=m u f$
 1.4922675038612769
 0.28289986043128779

5.4636528755629277
3.1601573786169705
1.6304329160991613
0.74320288788491162 0.34318325907235508
1.0481134673530017
0.22706141238735442
0.16398414445318019
0.10064368167620950
1.1810810816813006E-002 $1.0830688669453926 \mathrm{E}-002 \quad 9.5475776111740435 \mathrm{E}-002$ $3.4545743853044132 \mathrm{E}-002 \quad 3.8825400107203589 \mathrm{E}-003$

Mur $=2^{*} \sim 0.044,0.079,0.064,0.03 / 0.019,0.069,0.055,0.026 / 0.0018,0.056,0.044,0.019 / 0.008,0.04,0.036,0.014 /$

 0.00,0.036,0.016/0.01,0.04,0.022/5.2209740685785322
3.1063253783518108
1.6334723794992163
0.74893389220143536
1.3770212139168427 0.98163557790578737 0.59323978941603606
0.30837911606117635
0.11031217636510740
0.26488192570903973
0.21513169493697096
0.15702771787775330
2.1896518844782643E-002
$1.9055357350764735 \mathrm{E}-002$
$1.5692206814571869 \mathrm{E}-002$ $9.7066906344606546 \mathrm{E}-002$ 1.1641815899812316E-002 $1.0653170669186685 \mathrm{E}-002$ 9.4509572333483088E-002
$3.3235217435849104 \mathrm{E}-002 \quad 3.7952292531716679 \mathrm{E}-003$
Mur $=1 / 2 \sim 0.018,0.08,0.07,0.01 / 0.026,0.06,0.04,0.00 / 0.056,0.04,0.028,0.01 / 0.059,0.03,0.018,0.017$ /0.039,0.019, 0.008/ 0.015, 0.028, 0.005/
5.5624189967868585
3.0764752717663439
1.5438045948407026
0.70137937749497870
0.33000554472718863
0.30035425045754172
1.6162620049129208
1.1111543507683863 0.65280229151150027
0.33119751891586063
0.11654235690574526
0.23692610252174731
0.16856857303055231 0.10254219123301124
$3.5542575901097773 \mathrm{E}-002 \quad 3.9026445177190883 \mathrm{E}-003$
2.2925337735037309E-002
1.9569278216111097E-002
$1.5868600773272221 \mathrm{E}-002$
1.1643918421196282E-002 $1.0743058772392726 \mathrm{E}-002 \quad 9.4041723673555344 \mathrm{E}-002$

Muf=2 < 1\%~0.013
5.5066355992066285
3.1970074345810064 1.6539919763038371 0.75307616414315648 0.34628077023537940
0.27598119824146738
0.22298730097963623
0.16181440440008205
2.2048491642073297E-002
$1.9187901276538074 \mathrm{E}-002$
$1.5786912919732766 \mathrm{E}-002$ $9.9625923229752153 \mathrm{E}-0021.1711596427429066 \mathrm{E}-002$ $1.0775863298435844 \mathrm{E}-002 \quad 9.6011393741803328 \mathrm{E}-002$
$3.4289731994963865 \mathrm{E}-002 \quad 3.8664056105374494 \mathrm{E}-003$
Muf=1/2 <1\%~0.024
5.4472858735920946
3.1437726039100062 1.6181164863826403
0.73718494845760896 0.34146005749874908
1.5278735316625314
1.0669273986726655
0.63455444517262782
0.32546721561157471 0.11556088146511176
0.29364526235015426
0.23345902761676848
0.16732363820024507
0.10222390439342711 $10947277540425390 \mathrm{~F}-002 \quad 9.5485031689389002 \mathrm{~F}-002$
1.1970007755096270E-002
2.3571603292228880E-002
2.0129745712125217E-002
$1.6320902424044201 \mathrm{E}-002$

NNLO yes a decrease in variation from the second bin of each group onward

| zeusdijets 371 | 6.7553109024137186 | 1.7647024664777069 | 0.33040248398344130 | $2.8157209295354268 \mathrm{E}-002$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| zeusdijets 372 | 3.7391499809305144 | 1.2554406375246399 | 0.26895124637603540 | $2.3312680065432419 \mathrm{E}-002$ |
| zeusdjijets 373 | 1.7127524563399361 | 0.73157010873998041 | 0.20210296137709308 | $1.8759138812508805 \mathrm{E}-002$ |
| zeusdijets 374 | 0.86315427938007294 | 0.39214903120139266 | 0.11267514815037322 | $1.3956895230871133 \mathrm{E}-002$ |
| zeusdijets 375 | 0.37159066986101963 | 0.12648596744317192 | $1.2044192972683897 \mathrm{E}-002$ | |

zeusdijets 376 9.9426745250127221E-002 $3.3875711661415363 \mathrm{E}-0023.9301368574226146 \mathrm{E}-003$

MUR=2~0.073,0.05,0.026,0.23/ 0.044,0.027,0.026,0.01/ 0.007,0.002,0.03,0.002/0.014,0.028,0.005,0.002/0.016,0.007,0.012/ 0.013/0.023,0.017

| zeusdijets 371 | 6.2907603391131595 | 1.6787300775315239 | 0.32186408240068176 | $2.7450195763634326 \mathrm{E}-002$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| zeusdijets 372 | 3.5781877642957052 | 1.2009102122543445 | 0.26248222296483081 | $2.3101297271943627 \mathrm{E}-002$ |
| zeusdijets 373 | 1.7248645226886303 | 0.71209108160838597 | 0.19636056234110366 | $1.8724563922875130 \mathrm{E}-002$ |
| zeusdijets 374 | 0.85169301942010056 | 0.38125276449103196 | 0.11320198676706036 | $1.3919844553436315 \mathrm{E}-002$ |
| zeusdijets 375 | 0.37740724508687901 | 0.12744412538036462 | $1.2190249236108803 \mathrm{E}-002$ | |
| zeusdijets 376 | 0.10071751110634800 | $3.4749787865989382 \mathrm{E}-002$ | $4.0023196166098316 \mathrm{E}-003$ | |

MUR $=1 / 2 \sim 0.11,0.045,0.009,0.024 / 0.079,0.019,0.014,0.004 / 0.0005,0.02,0.028,0.005 / 0.035,0.028,0.024,0.0 / 0.019$, 0.029,0.027,0.026 / $0.22,0.062,0.04$
zeusdijets 371 7.5106655733360288 $1.8426544650957732 \quad 0.33357075943227171 \quad 2.8937424412519851 \mathrm{E}-002$ zeusdijets 3724.0335247307216724 zeusdijets 3731.7117350435166807
$1.3107201409036788 \quad 0.27286392463500780$
$0.74642138412651893 \quad 0.20793949836218772$
$0.40324630665553207 \quad 0.10990955985018334$
$2.3400469916049722 \mathrm{E}-002$ $1.8672718127171084 \mathrm{E}-002$ 1.3951197303581745E-002

1.1734063425215043E-002 $0.12292728351514541 \quad 1.1734063425215043 \mathrm{E}-002$ 3.1912021840697545E-002 3.7835993910251510E-003
 zeusdijets 3740.89358199008371841
 zeusdijets 3750.36426358122480196

MUF=2 ~0.1\% ~0.0044

zeusdijets 371 6.7477064686796551 $1.7574911150338766 \quad 0.32933686998412648 \quad 2.7809041240921373 \mathrm{E}-002$
zeusdijets 3723.731682966177208 zeusdijets 373 1.721357874392856 zeusdijets 3740.85794416529581952 zeusdijets 3750.37190157705848614

MUF=1/2~0.05\%~0.0084

zeusdijets 3716.7524814827694835
zeusdijets 3723.7442904657094118 zeusdijets 3731.7049704949830164 zeusdijets 3740.87093964931546186 zeusdijets 3750.37169735957114974 zeusdijets $376 \quad 9.9291115691093251 \mathrm{E}-002 \quad 3.3708845858661539 \mathrm{E}-002 \quad 3.9265241712961117 \mathrm{E}-003$

ZEUS dijets summary

NLO
Mur=1/2 ~0.018,0.08,0.07,0.01/ 0.026,0.06,0.04, 0.00/ 0.056, 0.04,0.028, 0.01/ 0.059,0.03, 0.018,0.017 / $0.039,0.019,0.008 / 0.015,0.028,0.005 /$

NNLO

MUR=1/2~0.11,0.045,0.009,0.024/ 0.079,0.019, 0.014, 0.004/0.0005, 0.02, 0.028,0.005 $/ 0.035,0.028,0.024,0.0 / 0.019,0.029,0.027 / 0.022,0.062,0.04 /$

NLO USE this for right and wrong ways illustartion
Mur=2* ~0.044,0.079,0.064,0.03/ 0.019,0.069,0.055,0.026 / 0.0018, 0.056,0.044,0.019/
0.008,0.04,0.036,0.014/
$0.00,0.036,0.016 / 0.01,0.04,0.022$
NNLO
MUR=2~0.073,0.05,0.026,0.23/ 0.044,0.027,0.026,0.01/
$0.007,0.002,0.03,0.002 / 0.014,0.028,0.005,0.002 / 0.016,0.007,0.012 /$ 0.013/0.023,0.017

Record scale variations:NLO H1_lowq2 2016 standard Q^2+pt2/2=mur,Q^2=muf

1242.1095672957736 0.44964985201741559 2.1016389669950035 14.487977704260620 66.181590088721066 236.44355969438334 523.61595861372655 0.36566086982544782 2.0187363614317668 8.6545559837797672
416.88186148349752 939.45681905998197 0.37502107583752753 2.4032636587674934 11.818916621628496 60.395813970076858 225.31498926708119 440.33666533015474 0.37810348958471790 1.5651595240245813
$92.593892833205047 \quad 15.636085608735891$ $328.01301311740019 \quad 74.754112635791316$ $965.21657942905006 \quad 352.31129082229450$ 0.43133881574892458 1.9853544988336986 11.046609564438173 60.632578170415584 202.84427998464437 277.91891504607986
0.29717934028225634
Mur=2~0.23,0.20,0.17,0.12,0.11,0.08/0.21,0.19...
$955.60835161970601 \quad 335.11916073052782$
0.41370034978470460
1.8715204134126657 12.578000126939807 56.224138001111186 197.70459917563269 438.71445088897752 0.34183027715066855 1.8350533373173756 7.7348061746207639
77.166596434885363 265.82486989709321 765.68298558863466 0.39937672740274510 1.7816014692018260 9.6877315079078965 52.316745433028032 174.32529275115209 242.65962655533741 0.27992341914690694
13.453987228929831 62.652708493822594 288.23435447890370 567.41437811561502 0.33447204917979440 1.6947932031609441 10.078164837327341 50.807345032062017 119.64660167401765
2.5383003946692466 12.812223907026455 82.938178435337178 270.48530666660253 582.91519250916906 0.34421852601779207 1.9790526001178499 11.425420226171676 42.241540801844359
2.2526919115802371
11.071829327148579 69.958539752612324 223.68133975753815 479.12188298648294 0.32069881993711236 1.7901001428133223 10.143270716409264 37.176444499967303

Mur $=1 / 2 \sim 0.47^{\star}, 0.35^{\star}, 0.25,0.20,0.15,0.09 / 0.44^{\star}, 0.33^{\star}, 0.24,0.18,0.140 .087 / 0.40^{\star}, 0.31^{*}, 0 . .23,0.18,0.13,0 . .08 / 0.36^{\star}, 0.29^{*}, 0.22,0.17,0.1$ 3,0.077/0.32*, $0.26^{\star}, 0.21,0.17,0.12,0.073 / 0.28^{\star}, 0.24^{\star}, 0.19,0.15,0.11,0.067 / 0.23^{\star}, 0.21^{\star}, 0.17,0.15,0.11,0.06 /$ 0.18*,0.18*,0.016,0.014,0.10,0.055/
$1830.4097953386804 \quad 561.36883438554253$ 0.49113715007821340 2.3997902657926922 17.125165058248449 80.695049182266629 298.87272211328315 668.29283700863505 0.39032106699704244 2.2400564967013890 9.8268202489911687
1355.3451008006325
0.40791672798448408
2.7303844063662610 13.874540368897561 72.892724260904899 278.86029019189084 540.59322434708997 0.40135394671747615 1.7248698037733250
115.90644317022985 436.19585984956888 1357.5818888247968 0.46689110355061236 2.2432026633380726 12.878779964512104 72.322508030306054 244.84182330784978 328.98944363895549 0.31369503905125512
18.704196798872491 92.864421859806953 461.52499840819479 958.08634399136542 0.38813835961748344 2.1147535421506158 13.218607818106536 68.597028713785747 161.66671359001600
2.9118164919458343
15.238675389067822
102.13292272738872 348.20925263504159
770.41402959096888 0.36925398469184945
2.2114368618929996
13.095754422025772 48.989430019851866

NNLO H1 lowq2 2016 less scale variation than at NLO

1679.9078843739710 0.52607741009263431 2.5697779077388869 17.537640984789224 78.915657456041416 283.69902518926864 632.70375833998867 0.42619770528487960 2.4083432319565019 10.137483000523247 Mur=2
1373.8759382999563 0.50572442192127876 2.4073753071970914 16.084132484083597 70.926936715027836 250.08278738171433 553.44947172448587 0.41166196294994906 2.2806743419820821 9.4420737696816026
533.40096536138515 1246.7098556019669 0.43585490622523321 2.9268785700797504 14.189813672952656 71.967413061643455 266.49762071573338 513.75890119504049 0.43762747628922904
1.8704645503130777
113.54285990229077 413.83450288704000 1249.6479681000685 0.50659507998612086 2.3969056748037096 13.234911664214428 70.905346855755823 236.18263337485911 323.34776354743047 0.34324148321704434
19.113316194499010 91.155580493828296 441.32128077191334 897.54578429974606 0.42071573136054774 2.2516628527106222 13.618426513141571 68.317796025171717 156.01324360251644
3.1178411454997104 15.621670629137533 99.713626777623958 330.86432584206995 731.92905879600312 0.40222410708871076 2.3633966436505962 13.551191788365919 48.961201029869748
455.83718405313851 1031.6467438334855 0.41998352435332448 2.7474108009898193 13.055926185021477 64.797520391147700 236.88256643000284 458.01540880317094 0.42367671951806218 1.7712479690320271
100.79628251911592 355.84981136561998 1048.5671822488193 0.48732406810259565 2.2564112055831065 12.195696357590034 64.348780306672296 211.99645662662923 290.77433423927499 290.77433423927499
17.449396418868037 81.144569312867247 381.42741564035833 761.31778337555579 0.40533238286694523 2.1267051719403440 12.583648041263659 62.127435576479478 141.72589494244744
2.9158850944080714 14.284824520210012 89.253836933106655 288.93274090219063 628.11602636082785 0.38775372867621338 2.2349675198088130 12.556869103678917 44.799756028430920

Mur $=1 / 2 \sim 0.31^{\star}, 0.19^{\star}, 0.11,0.077,0.052,0.024 / 0.29^{\star}, 0.18^{\star}, 0.11,0.076,0.051,0.022 / 0.26^{\star}, 0.17^{*}, 0.19,0.075,0.050,0.026 / 0.24^{\star}, 0.16^{\star}, 0.10$,0.07,0.05,0.023/
$0.22^{\star}, 0.14^{\star}, 0.10,0.075,0.044,0.025 / 0.18^{\star}, 0.13^{*}, 0.09,0.07,0.043,0.022 / 0.14^{\star}, 0.11^{*}, 0.094,0.068,0.043,0.022 / / 0.13^{\star}, 0.10^{\star}, 0.087,0.063,0$.047,0.023
2210.0318201248765 0.53867832113169778 2.7025761038148719 18.852497598906613 86.737760378109343 323.20950368384115 743.54747720322462 0.43649814906438766 2.5132986765868268 10.781620216057041
635.95008167982280 1612.1593743558042 0.44515896765601892 3.0731626423008152 15.208619043593623 79.212457839272759 300.24016251141211 585.07885965683897 0.44742035735216418 1.9576453652350587
126.27876372493144 489.07484786854201 1576.0614322378105 0.51981601774182640 2.5094118066767708 14.188822489697303 77.290343802977233 262.84863728737969 364.57356676518782 0.35079377042481008
20.615007309562198 101.20302709523304 518.32502341500594 1111.9152719188546 0.43128984143949961 2.3485572293204973 14.576883402468100 74.665353463285157 170.94316305429291
3.2824893174201648 16.839622465597913 109.95862935741856 382.24324961231963 889.54761099544680 0.41260966161143720 2.4657090433652020 14.487427231313315 53.243987464486491

Steps 1-5 from
 Katarzyna

Dataset	HERAPDF2.0NETAP-1 exp. uncert.		step-2	step-3	step-4	step-5
Charm cross section H1-ZEUS combined	$41 / 47$	41/47	-	-	-	-
ZEUS inclusive jet 98-00 data	-	-	-	-	27/30	27/30
ZEUS inclusive dijet 98-00/04-07 data	19/22	17/22	17/22	15/16	15/16	15/16
H 1 inclusive jet 99-00 data	13/24	12/24	12/24	12/24	12/ 24	12/24
H1 low Q2 inclusive jet 99-00 data	24/22	22/22	22/22	22/22	21/22	22/22
ZEUS inclusive jet 96-97 data	26/30	26/30	26/30	26/30	-	-
HERA1+2 CCep	43/39	44/39	44/39	44/39	44/39	44/39
HERA1+2 CCem	54/42	54/42	54/42	54/42	54/42	54/42
HERA1+2 NCem	221/159	224/159	223/159	223/159	224/159	223/159
HERA1+2 NCep 820	$68 / 70$	69/70	69/70	69/70	69/70	68/70
HERA1+2 NCep 920	442/377	449/377	450/377	449/377	450/377	448/377
HERA1+2 NCep 460	217/204	218/204	218/204	218/204	218/204	218/204
HERA1+2 NCep 575	220/254	221/254	221/254	221/254	221/254	221/254
H 1 normalised inclusive jets with unfolding	0/24	0/24	0/24	0/24	0/24	0/24
H1 normalised dijets with unfolding	0/24	0/24	$0 / 24$	0/24	0/24	0/24
H1 normalised trijets with unfolding	0/16	0/16	0/16	0/16	0/16	-
Correlated χ^{2}	101	98	89	89	89	89
Log penalty χ^{2}	+1.3	-6.77	-7.81	-7.00	-8.93	-7.31
Total $\chi^{2} /$ dof	1574/1354	1571/1340	1522 / 1293	1520 / 1287	1519 / 1287	1498/1271
χ^{2} p-value	0.00	0.00	0.00	0.00	0.00	0.00

Steps 1-5 from

Katarzyna

Parameter	HERAPDF2.0NLO exp. uncert.	step-1	step-2	step-3	step-4	step-5
' ${ }^{\prime}{ }^{\prime}$	-	0.00 ± 0.22	0.02 ± 0.17	0.02 ± 0.19	0.02 ± 0.15	-0.006 ± 0.025
' Cg '	-	7.45 ± 0.84	7.56 ± 0.79	7.69 ± 0.84	7.47 ± 0.79	7.56 ± 0.25
'Aprig'	-	0.36 ± 0.86	0.31 ± 0.65	0.35 ± 0.77	0.27 ± 0.53	0.412 ± 0.099
'Bprig'	-	-0.242 ± 0.093	-0.25 ± 0.11	-0.233 ± 0.100	-0.26 ± 0.11	-0.239 ± 0.018
'Cprig'	-	25.00	25.00	25.00	25.00	25.00
'Buv'	-	0.687 ± 0.036	0.692 ± 0.034	0.694 ± 0.035	0.688 ± 0.034	0.690 ± 0.012
'Cuv'	-	4.866 ± 0.086	4.861 ± 0.083	4.860 ± 0.084	4.867 ± 0.083	4.866 ± 0.051
'Euv'	-	14.9 ± 2.4	14.5 ± 2.2	14.4 ± 2.2	14.8 ± 2.2	14.75 ± 0.78
'Bdv'	-	0.789 ± 0.095	0.799 ± 0.094	0.799 ± 0.094	0.791 ± 0.094	0.790 ± 0.040
'Cdv'	-	3.98 ± 0.41	4.03 ± 0.40	4.02 ± 0.40	3.98 ± 0.40	3.98 ± 0.21
'CUbar'	-	7.52 ± 0.79	7.53 ± 0.80	7.58 ± 0.81	7.53 ± 0.79	7.60 ± 0.31
'DUbar'	-	9.5 ± 2.6	9.4 ± 2.5	9.6 ± 2.6	9.5 ± 2.5	9.81 ± 0.97
'ADbar'	-	0.184 ± 0.011	0.183 ± 0.010	0.183 ± 0.011	0.184 ± 0.010	0.1831 ± 0.0057
'BDbar'	-	-0.1659 ± 0.0073	-0.1669 ± 0.0065	-0.1674 ± 0.0068	-0.1663 ± 0.0065	-0.1670 ± 0.0038
'CDbar'	-	6.0 ± 1.5	6.0 ± 1.5	5.9 ± 1.5	6.0 ± 1.5	5.83 ± 0.62
'alphas'	-	0.1180	0.1180	0.1180	0.1180	0.1180
'fs'	-	0.4000	0.4000	0.4000	0.4000	0.4000

Compare Mandy and Katarzyna at step 5	Dataset	kk-step5	Mandy- step5
(all other steps	ZEUS inclusive jet 98-00 data	$27 / 30$	$27 / 30$
also the same)	ZEUS inclusive dijet 98-00/04-07 data	$15 / 16$	$16 / 16$
	H1 inclusive jet 99-00 data	$12 / 24$	$12 / 24$
Reminder this	H1 low Q2 inclusive jet 99-00 data	$22 / 22$	$22 / 22$
His as good as it	HERA1+2 CCep	$44 / 39$	$44 / 39$
ever gets -in	HERA1+2 NCem	$54 / 42$	$54 / 42$
fact better than	HERA1+2 NCep 820	$223 / 159$	$224 / 159$
most	HERA1+2 NCep 920	$68 / 70$	$69 / 70$
	HERA1+2 NCep 460 575	$448 / 377$	$449 / 377$
	H1 normalised inclusive jets with unfolding	$221 / 24$	254
	H1 normalised dijets with unfolding	$0 / 24$	$0 / 24 / 254$
	Correlated χ^{2}	89	91
	Log penalty χ^{2}	-7.31	-8.82
	Total $\chi^{2} /$ dof	$1498 / 1271$	$1503 / 1271$
	χ^{2} p-value	0.00	0.00

Compare Mandy and Katarzyna at step 5 (all other steps also the same)

Reminder this is as good as it ever

Parameter	kk-step5	Mandy-step5
'Bg'	-0.006 ± 0.025	-0.014 ± 0.025
'Cg'	7.56 ± 0.25	7.89 ± 0.25
'Aprig'	0.412 ± 0.099	0.566 ± 0.099
'Bprig'	-0.239 ± 0.018	-0.2 ± 1.0
'Cprig'	25.00	25.00
'Buv'	0.690 ± 0.012	0.70 ± 0.12
'Cuv'	4.866 ± 0.051	4.8 ± 1.1
'Euv'	14.75 ± 0.78	14.01 ± 0.78
'Bdv'	0.790 ± 0.040	0.8 ± 1.0
'Cdv'	3.98 ± 0.21	3.96 ± 0.21
'CUbar'	7.60 ± 0.31	7.65 ± 0.31
'DUbar'	9.81 ± 0.97	10.10 ± 0.97
'ADbar'	0.1831 ± 0.0057	0.2 ± 1.0
'BDbar'	-0.1670 ± 0.0038	-0.17 ± 0.10
'CDbar'	5.83 ± 0.62	5.48 ± 0.62
'alphas'	0.1180	0.1180
'fs'	0.4000	0.4000

Now steps 5 to $6 . \mathrm{i}, \mathrm{ii}, \mathrm{iii}-$ we will talk about these varying cuts-

What I want you to note is that it makes

little difference

Dataset	step-5	setp-6i	step-6ii	step-6iii
ZEUS inclusive jet 98-00 data	$27 / 30$	$27 / 30$	$28 / 30$	$27 / 30$
ZEUS inclusive dijet 98-00/04-07 data	$15 / 16$	$15 / 16$	$16 / 16$	$16 / 16$
H1 inclusive jet 99-00 data	$12 / 24$	$12 / 24$	$12 / 24$	$12 / 24$
H1 low Q2 inclusive jet 99-00 data	$22 / 22$	$20 / 17$	$13 / 16$	$18 / 16$
HERA1+2 CCep	$44 / 39$	$44 / 39$	$43 / 39$	$44 / 39$
HERA1+2 CCem	$54 / 42$	$54 / 42$	$54 / 42$	$54 / 42$
HERA1+2 NCem	$223 / 159$	$223 / 159$	$223 / 159$	$223 / 159$
HERA1+2 NCep 820	$68 / 70$	$69 / 70$	$68 / 70$	$68 / 70$
HERA1+2 NCep 920	$448 / 377$	$449 / 377$	$445 / 377$	$447 / 377$
HERA1+2 NCep 460	$218 / 204$	$218 / 204$	$218 / 204$	$218 / 204$
HERA1+2 NCep 575	$221 / 254$	$221 / 254$	$220 / 254$	$221 / 254$
H1 normalised inclusive jets with unfolding	$0 / 24$	$0 / 24$	$0 / 24$	$0 / 24$
H1 normalised dijets with unfolding	$0 / 24$	$0 / 24$	$0 / 24$	$0 / 24$
Correlated χ^{2}	89	89	90	89
Log penalty χ^{2}	-7.31	-6.41	-4.82	-6.04
Total $\chi^{2} /$ dof	$1498 / 1271$	$1497 / 1266$	$1488 / 1265$	$1494 / 1265$
χ^{2} p-value	0.00	0.00	0.00	0.00

