
Third-Party Copy with HTTP

Paul Millar
(on behalf of the dCache team)

dCache Workshop 2019 at Madrid, Spain; 2019-05-21
https://indico.desy.de/indico/event/22170



Third-party copy: what is it



Third-party copy: what is it

● Client connects to source and 
destination servers

● Tells destination to be passive 
and accept data; client is told 
where to connect

● Tells source to be active and 
send data, connecting to 
destination

● Source connects to destination 
and sends data



Why are we looking at alternatives?
● Many storage implementations (but NOT dCache) use the Globus 

Toolkit (GT) to support GridFTP.
● Support from Globus for the GT ended January 2018.
● GT is renamed Grid Community Toolkit (GCT) and maintained by Grid 

Community Forum (GridCF)
● The concern about whether GridCF’s “voluntary” effort is sustainable, 

particularly if there is a large change (e.g., OpenSSL API change)
● Alternatives?



The problem with HTTP TPC – we need an extension

● How about HTTP?
● FTP works because we have separate control and data 

channels
● HTTP doesn’t have this: the data comes over the same 

connection used to make requests



The HTTP-TPC extension

COPY



The HTTP-TPC extension

COPY



The HTTP-TPC extension

COPY

GET



The HTTP-TPC extension

COPY COPY

PUTGET



How it works in dCache
● Client makes COPY request to WebDAV door.
● WebDAV door requests RemoteTransferService organise the 

transfer; periodically checking for progress.
● RemoteTransferService does pool selection and requests pool 

does transfer.
● Mover makes HTTP GET or PUT request, to initiate transfer.

● If PUT, makes subsequent HEAD to fetch file size and checksums.
● In either case, ensure checksums match, if requested.



How to configure it in dCache

● WebDAV: mostly works out-of-the-box.

{dcache, webdav}.enable.macaroons = true (default)

webdav.authn.require-client-cert = false (default)
● Pool needs to trust remote server

Install IGTF trust store on the pool nodes.
● DOMA-TPC documentation:

https://twiki.cern.ch/twiki/bin/view/LCG/DCacheConfig



How delegation works: with x.509
● How it works:

● Client makes a COPY request, indicating that an X.509 credential should be used for the 
data-bearing request.

● webdav door checks if that user has a delegated credential.
● If not, the webdav door redirects the client to itself, indicating the endpoint of the GridSite 

delegation server in response headers.
Currently, this is on port 8445 of the srm endpoint.

● Client delegates a credential,
● Client repeats the COPY request.

● This works with FTS, 
● By default, this is a fall-back if passive endpoint does not support generating a bearer token.
● It is not considered the final solution in DOMA-TPC group.



How delegation works: with macaroons

FTS

2. Request a
macaroon

3. COPY
request

4. GET/PUT with macaroon

1. Request copy

Passive
Endpoint

Active
Endpoint

Simplified diagram



How to diagnose problems
● COPY requests are logged in access log file.
● The failed-copy.sh script (from http-tpc-utils) lists only failed 

HTTP-TPC transfers, providing an easier-to-read summary of 
what went wrong.

● The smoke-test.sh script (also from http-tpc-utils) performs a 
series of tests to verify that everything is working.

● Currently requires dteam VO.
● HTTP-TPC test transfers hard-coded to use prometheus.

https://github.com/paulmillar/http-tpc-utils



Working with storage outside grid

● The passive endpoint is just a regular HTTP server.

This means it can be anything that supports HTTP, which is 
basically anything.

● Caveat: requests (typically) must be authorised

We have a couple options:
● Put something in the standard Authorization header
● Use a special, pre-authorized URL.

● S3 servers (typically) offer pre-authz URLs.



Thanks for listening!


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

