
A new batch system,
dCache and nfs

A. Pickford

Background

● Nikhef Local Batch System (Stoomboot)
– originally 90 worker nodes

● Dell M600 blades, 8 cores, 1Gb/s nic, slc6

● dcache system
– 8 storage systems (820 TB total)

– started with version dcache 2.13 in 2016, upgraded to 3.1 in 2017

– nfs v4.1 mounts to dcache on all batch nodes

– lots of initial nfs issues when stress tested
● issues fixed and very reliable performance from 2016 to end 2018.
● see my 2016 workshop talk for some of the details

New Nodes

● Nov 2018: added 25 new worker nodes
– Dell 6415, AMD EPYC 7551P (32 cores), 256 GB Ram, 25 Gb/s nic, centos 7

– tested with dcache system – no initial issues
● BUT not extensively stress tested

● Feb 2019
– slc6 nodes mostly retired

– most users starting to work with centos 7 nodes
● new types of jobs

– nfs lock ups on new worker nodes
● multiple jobs on same node opening multiple files in dcache
● leading to the whole nfs system on client locking up

Belated Stress Testing

● Tested on 8 new worker nodes
– 24 simultaneous dcache read/writes per node

– lots of errors on the nfs door

– and on the pools

– on clients
● nfs kernel threads going into uninterruptible sleep waiting for nfs4_proc_layoutget

calls to return

24 Feb 2019 13:59:22 (NFS-hooikoorts) [] Bad Stateid: op: LAYOUTRETURN : NFS4ERR_BAD_STATEID :
State not known to the client: [5c701c820000017f00002838, seq: 2]
24 Feb 2019 19:30:18 (NFS-hooikoorts) [] NFS server fault: op: WRITE : NFS4ERR_IO : Mover finished,
EIO
25 Feb 2019 16:09:19 (NFS-hooikoorts) [] Bad Stateid: op: READ : NFS4ERR_BAD_STATEID : State not
known to the client: [5bdb258e0000002d00076c2c, seq: 2]

26 Feb 2019 21:11:17 (kip-05Pool05) [] Failed to send RPC to /2a07:8500:120:e070:0:0:0:3e7:934 :
Connection reset by peer

Workarounds

● Tested two workarounds
– downgrading new nodes to slc6

● worked: no issues seen on downgraded nodes
● offered a reduced batch service with some new machines using slc6
● not a long term solution

– downgrading to centos 7.3
● centos 7.4 introduced support for flexfile nfs v4 layout files
● tested if changes to nfs kernel modules to support flexfile caused problems
● nfs kernel still locked up with multiple nfs access to dcache on the same client node

dCache 5.0

● Reran stress tests using dcache 5.0
– already had a dcache 5.0 test system available (planned dpm to dcache

migration)

– tried with nfs 4_1 and with flexfile layout files
● nfs 4_1 layout files showed similar issues

– nfs kernel threads still hanging during layout get calls
– centos 7.4 and later clients also used nfs v3 read/write rpcs to access files

● flexfile layout (as recommended in the dCache docs) worked
– no more hangs due to layout get calls not returning
– did not fix all issues
– return of an old issue: nfs kernel threads on clients now hanging waiting for file

close calls to return

hanging file close()

● Only seen for file writes
– kernel logs on client machine fill up with hung process trace backs

– storage pool logs
● occasional failed to send rpc error

● PoolMoverKill and linked java exceptions

– nfs door logs

07 Mar 2019 20:42:47 (strijker-04Pool01) [NFS-hooikuil PoolMoverKill] close called with in-flight read
request
07 Mar 2019 20:42:47 (strijker-04Pool01) [] DSWRITE:
java.nio.channels.ClosedChannelException: null

06 Mar 2019 17:05:06 (strijker-03Pool02) [] Failed to send RPC to /2a07:8500:120:e070:0:0:0:79:673 :
Connection reset by peer

07 Mar 2019 12:38:03 (NFS-hooikuil) [] Client reports error NFS4ERR_RETRY_UNCACHED_REP on pool
strijker-04Pool02 for op READ
07 Mar 2019 12:38:03 (NFS-hooikuil) [] Client reports error NFS4ERR_NXIO on pool strijker-04Pool02 for
op READ
07 Mar 2019 12:39:30 (NFS-hooikuil) [] Bad Stateid: op: LAYOUTRETURN : NFS4ERR_BAD_STATEID : State not
known to the client: [5c80f1920000000400001a08, seq: 2]
07 Mar 2019 12:40:11 (NFS-hooikuil) [] Client reports error NFS4ERR_NXIO on pool strijker-04Pool02 for
op WRITE

hanging file close()

● nfs clients don’t react well to long delays/pauses when transferring files
– mostly effected writes in stress tests

– single transfers from multiple clients fine for the 8 nodes used

– multiple transfers (24 per node) cause problems with 2-3 nodes

– often a few of the transfers dominate on each node
● when transferring several large files (1-10 GB) the file close calls can take several

hours to return for some files
● some transfers just fail returning IO errors

– associated with the PoolMoverKill errors in the pool logs

– long close delays due to caching by the virtual filesystem
● with 256 GB per node, just about all writes to dcache can be cache so write() calls

return almost immediately
● nfs mount is done synchronously so for writes return from close() only happens after

data is written to disc on the pool node

NFS Client Bottleneck

● single tcp connection per pool to each server from each client

● multiple concurrent transfers managed via a slot table on client
– default slot table size: centos 6: 16, centos 7: 64

– each active nfs read/write request assigned a slot

– not clear (to me) how different processes requests are assigned/compete for slots

– nfs isn’t a block device so the IO schedulers are not available

● nfs module tweaks

– increase the slot table size

– retransmissions and timeouts changes not so important

options nfs max_session_slots=128
options nfs_layout_flexfiles dataserver_retrans=1 dataserver_timeo=150

Fixes/Tweaks

● Health warning
– fixes/tweaks are a result of

● googling
● historic settings on other servers
● trial and error
● depressingly small amounts of evidence and genuine understanding

– this is what worked in our setup

– not a rigorously methodical investigation: priority to find a working solution

● Server side
– dcache

● upgrade to 5.0 (or 5.1 now)
● use flexfile layouts
● ensure pool doesn’t run out of movers:

– IO scheduler
● tried cfq scheduler as well as default deadline scheduler
● no change in reliability

mover set max active -queue=regular 10000

Client Settings

● mount options

– read/write request sizes important
● too small < 8k caused problems
● too large > 128k some problems (but not clear cut)

● previously only tuned network settings on servers, now required on clients
– fairly standard for high speed nics, contradictory advice for some settings (eg

tcp_sack) net.core.netdev_budget: 600
net.core.rmem_default: 524288
net.core.rmem_max: 67108864
net.core.wmem_default: 524288
net.core.wmem_max: 67108864
net.core.optmem_max: 4194304
net.core.somaxconn: 512
net.core.netdev_max_backlog: 250000
net.ipv4.tcp_rmem: "16384 524288 67108864"
net.ipv4.tcp_wmem: "16384 524288 67108864"
net.ipv4.tcp_sack: 1
net.ipv4.tcp_timestamps: 1

/dcache - fstype=nfs4, intr, minorversion=1, timeo=6000, rsize=32768, wsize=32768
 dcache-door:/dcache

Client Settings

● filesystem cache tweaks

– don’t cache as much in client memory

– start flushing writes as quickly

– block new writes until cache empties
● fakes an IO scheduler (kind of)
● when filesystem accepts new write after blocking, effectively random which process

gets to write data next
● all processes get some slice of the IO pie

vm.dirty_expire_centisecs: 100
vm.dirty_writeback_centisecs: 50
vm.dirty_background_bytes: 10485760
vm.dirty_bytes: 1073741824

Summary

● Our dcache nfs issues were of our own making
– didn’t test the new hardware / new OS sufficiently

● Server
– upgraded to dcache 5.0 (from 3.1)

● Client
– contention problems when stress testing after server upgrade

– limited file caching in memory

– not really happy with solution but it works

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

