A new batch system,
dCache and nfs

A. Pickford

Nik|het



Background

Nikhef Local Batch System (Stoomboot)

originally 90 worker nodes
 Dell M600 blades, 8 cores, 1Gb/s nic, slc6

dcache system

8 storage systems (820 TB total)
started with version dcache 2.13 in 2016, upgraded to 3.1 in 2017
nfs v4.1 mounts to dcache on all batch nodes

lots of initial nfs issues when stress tested
* issues fixed and very reliable performance from 2016 to end 2018.
* see my 2016 workshop talk for some of the details

Nik|[hef



New Nodes

* Nov 2018: added 25 new worker nodes
- Dell 6415, AMD EPYC 7551P (32 cores), 256 GB Ram, 25 Gb/s nic, centos 7
- tested with dcache system — no initial issues
* BUT not extensively stress tested
 Feb 2019
- slc6 nodes mostly retired

— most users starting to work with centos 7 nodes
* new types of jobs

- nfs lock ups on new worker nodes
* multiple jobs on same node opening multiple files in dcache
* leading to the whole nfs system on client locking up

Nik|[hef



Belated Stress Testing

e Tested on 8 new worker nodes
- 24 simultaneous dcache read/writes per node
— lots of errors on the nfs door

24 Feb 2019 13:59:22 (NFS-hooikoorts) [] Bad Stateid: op: LAYOUTRETURN : NFS4ERR_BAD_STATEID :
State not known to the client: [5¢c701c820000017f00002838, seq: 2]
24 Feb 2019 19:30:18 (NFS-hooikoorts) [] NFS server fault: op: WRITE : NFS4ERR_IO : Mover finished,

EIO
25 Feb 2019 16:09:19 (NFS-hooikoorts) [] Bad Stateid: op: READ : NFS4ERR _BAD STATEID : State not

known to the client: [5bdb258e0000002d00076c2c, seq: 2]

— and on the pools

26 Feb 2019 21:11:17 (kip-05P0o0l105) [] Failed to send RPC to /2a07:8500:120:e070:0:0:0:3e7:934
Connection reset by peer

- on clients

* nfs kernel threads going into uninterruptible sleep waiting for nfs4_proc_layoutget
calls to return

Nik|[hef



Workarounds

e Tested two workarounds

- downgrading new nodes to slc6
e worked: no issues seen on downgraded nodes
« offered a reduced batch service with some new machines using slc6
* not a long term solution

- downgrading to centos 7.3
e centos 7.4 introduced support for flexfile nfs v4 layout files
» tested if changes to nfs kernel modules to support flexfile caused problems
* nfs kernel still locked up with multiple nfs access to dcache on the same client node

Nik|[hef



dCache 5.0

Reran stress tests using dcache 5.0

- already had a dcache 5.0 test system available (planned dpm to dcache
migration)
- tried with nfs 4 _1 and with flexfile layout files
 nfs 4 _1 layout files showed similar issues
- nfs kernel threads still hanging during layout get calls
— centos 7.4 and later clients also used nfs v3 read/write rpcs to access files
» flexfile layout (as recommended in the dCache docs) worked
— no more hangs due to layout get calls not returning

- did not fix all issues

— return of an old issue: nfs kernel threads on clients now hanging waiting for file
close calls to return

Nik|[hef



hanging file close()

* Only seen for file writes

— kernel logs on client machine fill up with hung process trace backs

- storage pool logs

e occasional failed to send rpc error

06 Mar 2019 17:05:06 (strijker-03Pool02) [] Failed to send RPC to /2a07:8500:120:e070:0:0:0:79:673 :
Connection reset by peer

e PoolMoverKill and linked java exceptions

07 Mar 2019 20:42:47 (strijker-04Pool@1) [NFS-hooikuil PoolMoverKill] close called with in-flight read
request

07 Mar 2019 20:42:47 (strijker-04Pool@1) [] DSWRITE:

java.nio.channels.ClosedChannelException: null

- nfs door logs

07 Mar 2019 12:38:03 (NFS-hooikuil) [] Client reports error NFS4ERR_RETRY_UNCACHED_REP on pool
strijker-04Pool02 for op READ

07 Mar 2019 12:38:03 (NFS-hooikuil) [] Client reports error NFS4ERR_NXIO on pool strijker-04Pool02 for
op READ

07 Mar 2019 12:39:30 (NFS-hooikuil) [] Bad Stateid: op: LAYOUTRETURN : NFS4ERR_BAD STATEID : State not
known to the client: [5¢c80f1920000000400001208, seq: 2]
07 Mar 2019 12:40:11 (NFS-hooikuil) [] Client reports error NFS4ERR_NXIO on pool strijker-04Pool@2 for

Nik|[hef



hanging file close()

nfs clients don’t react well to long delays/pauses when transferring files

mostly effected writes in stress tests
single transfers from multiple clients fine for the 8 nodes used
multiple transfers (24 per node) cause problems with 2-3 nodes

often a few of the transfers dominate on each node

* when transferring several large files (1-10 GB) the file close calls can take several
hours to return for some files

* some transfers just fail returning 10 errors
— associated with the PoolMoverKill errors in the pool logs
long close delays due to caching by the virtual filesystem

* with 256 GB per node, just about all writes to dcache can be cache so write() calls
return almost immediately

* nfs mount is done synchronously so for writes return from close() only happens after

data is written to disc on the pool node
Nik|[hef



NFS Client Bottleneck

single tcp connection per pool to each server from each client

multiple concurrent transfers managed via a slot table on client

default slot table size: centos 6: 16, centos 7: 64

each active nfs read/write request assigned a slot

not clear (to me) how different processes requests are assigned/compete for slots
nfs isn’'t a block device so the 10 schedulers are not available

nfs module tweaks

options nfs max_session_slots=128
options nfs_layout_flexfiles dataserver_retrans=1 dataserver_timeo=150

Increase the slot table size
retransmissions and timeouts changes not so important

Nik|[hef



Fixes/Tweaks

* Health warning
- fixes/tweaks are a result of

e googling

 historic settings on other servers

 trial and error

* depressingly small amounts of evidence and genuine understanding

— this is what worked in our setup
— not a rigorously methodical investigation: priority to find a working solution

 Server side

- dcache
e upgrade to 5.0 (or 5.1 now)

* use flexfile layouts
 ensure pool doesn’t run out of movers: mover set max active -queue=regular 10000

- 10 scheduler
 tried cfg scheduler as well as default deadline scheduler
* no change in reliability

Nik|[hef



Client Settings

mount options

/dcache - fstype=nfs4, intr, minorversion=1, timeo=6000, rsize=32768, wsize=32768
dcache-door:/dcache

read/write request sizes important
e too small < 8k caused problems

e too large > 128k some problems (but not clear cut)

previously only tuned network settings on servers, now required on clients

fairly standard for high speed nics, contradictory advice for some settings (eg

tcp_sack)

net.
net.
net.
net.
net.

net
net

net

core.
core.
core.
core.
core.
.core.
.core.
net.
net.
net.
net.

core

netdev_budget: 600
rmem_default: 524288
rmem_max: 67108864
wmem_default: 524288
wmem_max: 67108864
optmem_max: 4194304
somaxconn: 512

.netdev_max_backlog: 250000
ipv4.
ipv4.
ipv4.
.ipv4.

tcp_rmem: "16384 524288 67108864"
tcp_wmem: "16384 524288 67108864"
tcp_sack: 1

tcp_timestamps: 1

Nik|[hef



Client Settings

* filesystem cache tweaks

vm.dirty_expire_centisecs: 100
vm.dirty_writeback_centisecs: 50
vim.dirty_background_bytes: 10485760
vm.dirty_bytes: 1073741824

don’t cache as much in client memory

start flushing writes as quickly

block new writes until cache empties
e fakes an IO scheduler (kind of)

* when filesystem accepts new write after blocking, effectively random which process
gets to write data next

e all processes get some slice of the 10 pie

Nik|[hef



Summary

* Our dcache nfs issues were of our own making
- didn’t test the new hardware / new OS sufficiently
* Server
— upgraded to dcache 5.0 (from 3.1)
* Client
— contention problems when stress testing after server upgrade
— limited file caching in memory
— not really happy with solution but it works

Nik|[hef



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

