The CMS Phase 2 Tracker Upgrade

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Andreas Mussgiller LHC Physics Discussion 18/02/2019

Introduction - LHC Schedule

- During LS3 the accelerator will be upgraded to instantaneous peak luminosities of 5×10^{34} cm⁻²s⁻¹
 - or even 7.5 \times 10³⁴ cm⁻²s⁻¹ in the ultimate performance scenario
- This will allow CMS to collect 300 fb⁻¹ per year and up to 3000 fb⁻¹ during the accelerators projected lifetime of ten year
 - or 4500 fb⁻¹ in case of the ultimate performance scenario
 - unprecedented radiation levels of up to 1.1 x 10¹⁵ neg x cm⁻²

Introduction - Limitations of the Current Tracker I

- Current tracker was designed for ~500 fb⁻¹
- Replacement of tracker every other year is not at
- A new more radiation tolerant tracker is needed

8/02/2019

Introduction - Limitations of the Current Tracker II

- New tracker must also provide high tracking efficiency under high pile-up conditions
- Information from tracker will be used in trigger system

Introduction - Limitations of the Current Tracker III

Phase 1 Tracker

Phase 2 Tracker

Module Concept of the new Tracker

- modules will have on-board pT discrimination
 - signals from two closely spaced sensors are correlated
 - exploit strong magnetic field for local pT measurement
 - local rejection of low-pT tracks to minimise data volume
- detector modules provide Level-1 and readout data at the same time
 - the whole tracker sends trigger data ("stubs") at each bunch crossing (40 MHz)
 - readout data up to 750 kHz

- "stubs" are used to form Level-1 tracks
- cooling via evaporative CO_2
 - sensors at T \leq -20 °C
- integrated at module level:
 - low power giga-bit transceiver (LP-GBT) as data link
 - powering via DC-DC conversion
- two different module types
 - different sensor spacings are treated as ,variants'
 - requires optimisation of only two designs

3/02/2019

LHC Physics Discussion

DESY.

Tracker Layout

- layout with 6 barrel layers and 5 end cap double-disks
 - pixelated modules at r < 60 cm stack of pixel and strip ⁻⁻ sensor (PS)
 - stack of two strip sensors at r > 60 cm (2S)
- PS modules
 - sensor spacings: 1.6 mm, 2.6 mm and 4 mm
- 2S modules
 - sensor spacings: 1.8 mm and 4 mm

4 3.5 3

2.5 2 18/02/2019

LHC Physics Discussion

he CMS Phase 2 Tracker Upgra

A. Mussgiller

PS Module Assembly

- MPAs and sensors are cooled through base

Test Beams

Single-Chip MaPSA

The CMS I

A. Mu

DESY.

9

PS Module Assembly

- Sensor sandwich is built on a robotic stage
 - relative alignment of object is measured with microscope camera and pattern recognition
 - assembly precision does not rely on cut edges of sensors
- Assembly of hybrids is done manually with jigs

• On-module pT discrimination requires precise sensor to sensor alignment rotational misalignment < 20 μm offline correction not possible already during module assembly • shift can be corrected for on the module pattern recognition

LHC Physics Discussion

e CMS Phase 2 Tracker Upgrad

A. Mussgiller | Th

Project Schedule - Modules

Title	2016	2017	2018		
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 (
CMS Phase 2 Tracker	01.10.16 🦯				
R&D and Prototyping	01.10.16				
MaPSA					
MaPSA Pre-Production Testing					
MaPSA Production Testing					
Module					
Equipment & Tooling					
Module Pre-Production					
Module Production					
Burn-In Test					
Equipment & Tooling					
Pre-Production Module Burn-In Test					
Production Module Burn-In Test					
Dee			30	0.05.19	
TEDD					
OT Integration & Commissioning					

- DESY will produce O(1000) PS modules
 - schedule foresees almost two years
- MaPSAs (Macro-Pixel Sub-Assemblies) will be fully tested in industry
 - reception tests at DESY prior to module assembly
- Still plenty of time for R&D and prototyping
 - start of pre-production mid 2021

- All modules will undergo burn-in tests prior to integration on sub-structures
 - extensive stress test at low temperatures
 - will be the only long-term test of modules at cold
 - modules passing burn-in test will end up in the detector
 - DESY will also perform burn-in test for modules produced at KIT and in Aachen
 - KIT: 2000 2S modules
 - Aachen: 1000 2S modules

TEDD Support Structure - Dee

- Backbone is a carbon fibre sandwich half-disk structure (Dee)
 - ~225 cm in diameter
 - 10 mm thickness
- Modules are mounted from both sides onto structure
 - O(300 µm) positioning precision
- 20 Dees are combined to build one TEDD
 - 150 cm total length

Dee Design

- Six cooling sectors each with ~6 m length
 - 2.2 (2.4) mm inner (outer) diameter
- Cooling pipes embedded in
 - 480 cooling and positioning inserts
 - 76 carbon foam heat spreaders spanning through the full thickness of the sandwich
- Sandwich core is a mixture of structural and Carbon foam
- 228 additional positioning inserts

Dee Prototyping

- Small Scale Prototype of a Dee
 - 35 cm x 40 cm in size
 - Two cooling loops and corresponding inserts and cooling blocks
- Study assembly sequence and precision, and cooling performance
- Measured offset to nominal insert positions < 65 μ m

olocks ng performance

End Cap Integration - Arc-Frame

- Dee is part of the TEDD mechanical structure
 - TEDD has no ,super-structure' into which Dees are inserted
- A single Dee is a rather floppy object
- Dees will stay in dedicated handling frame through-out integration process
 - reception tests → module integration → TEDD assembly
- Only when all 20 Dees are combined they become a stiff object
 - 4 Dees → 2 Disks → Double-Disk
 - 5 Double-Disks → TEDD
- Arc-frame design has to be compatible with all integration steps

End Cap Integration - Disk & Double-Disk Assembly

- Upper Dee is mounted in a static holding frame, lower Dee is supported by manual motion stages
- Relative alignment via metrology and motion stages
- Upper and lower Dees are pinned together and both Arc-Frames are mechanically connected when
 - alignment is achieved
 - •Assembled Disk is then moved to ,parking' position

End Cap Integration - Disk & Double-Disk Assembly

- Second Disk is assembled and remains in static holding frame
- First Disk is moved back from ,parking' position and supported by manual motion stages
- Relative alignment via metrology and motion stages
- Both Disk are bolted together and Arc-Frames are mechanically connected when alignment is achieved

End Cap Integration

- Relative alignment of all five Double-Disks via metrology and manual motion stages
- Insertion of inner tube, longitudinal support bars and support rings when alignment is achieved

Project Schedule - End Cap Integration

Title		2016		2017			2018					
	(Q1 Q2	Q3 Q4	Q1	Q2 Q3	Q4	Q1	Q2	Q3	Q4	Q1	(
CMS Phase 2 Tracker	C	01.10.1	6 🦵									
R&D and Prototyping		01.10	.16 🦲									
MaPSA												
Module												
Burn-In Test												
Dee										30.0)5.19	>
Equipment & Tooling										30.	05.1	9
Dee Pre-Production												
Dee Production												
Dee Integration and Testing												
External Dee Reception Testing												
TEDD												
Equipment & Tooling												
Disk & Double-Disk Integration & Testing												
Double-Disk Service & Testing												
TEDD Integration												
Preparation for Transport to CERN												
Packing and Shipping												
OT Integration & Commissioning												
TEDD Insertion @ CERN												
Outer Tracker Commissioning @ CERN												

• Responsibilities shared between DESY, Lyon & Louvain

- Dee design & production: Lyon & DESY
- Super-structure design: Lyon
- Services: Louvain
- Integration Tooling: DESY

- Dee integration: Lyon, Louvain & DESY
- Test equipment: Louvain
- TEDD assembly: Louvain & DESY

