BSM Prospects in Higgs Physics at the HL-LHC

Giuliano Panico

Università di Firenze and INFN Firenze

LHC Physics Discussion – DESY Hamburg 18/2/2019

The Higgs discovery completely modified our perspective on BSM

Before Higgs

After Higgs

The Higgs discovery completely modified our perspective on BSM

<u>Before Higgs</u>

guaranteed discovery at LHC (ensured by no-lose theorem)

 strongly coupled processes at energy scales ~few TeV

After Higgs

The Higgs discovery completely modified our perspective on BSM

Before Higgs

guaranteed discovery at LHC (ensured by no-lose theorem)

 strongly coupled processes at energy scales ~*few* TeV

<u>After Higgs</u>

renormalizable theory of EW and strong interactions

• only no-lose for gravity... but new-physics could be at M_{Pl}

The Higgs discovery completely modified our perspective on BSM

Before Higgs

guaranteed discovery at LHC (ensured by no-lose theorem)

 strongly coupled processes at energy scales ~few TeV

After Higgs

renormalizable theory of EW and strong interactions

• only no-lose for gravity... but new-physics could be at M_{PI}

Additional considerations:

 there is experimental evidence for BSM (dark matter, neutrino masses) but not necessarily light and strongly-coupled enough to be detectable at LHC

What can we (still) learn from LHC?

Still many open questions we could hope to address

- ◆ Naturalness: explain microscopic origin of EW scale
- ◆ Dark matter: if WIMP, it could be tested at colliders

Natural BSM can still be discovered at LHC

What can we (still) learn from LHC?

Still many open questions we could hope to address

- ◆ Naturalness: explain microscopic origin of EW scale
- ◆ Dark matter: if WIMP, it could be tested at colliders

Natural BSM can still be discovered at LHC

- ... but also **negative answer** could provide important information
- rule out classes of BSM theories
- encourage a paradigm shift

What can we (still) learn from LHC?

Broad search program that could cover a large range of BSM

- direct exploration (high-energy frontier)
- indirect tests (precision frontier)

Direct Searches at LHC

Direct searches for partners

Direct searches provide the simplest way to test scale of new physics

In many cases direct connection with tuning \rightarrow test of Naturalness

$$\Delta \geq \left(\frac{\Lambda_{\rm SM}}{500\,{\rm GeV}}\right)^2$$

Low-energy SUSY

 $\Lambda_{\rm SM} =$ **stop** mass

- current bounds ~ I TeV
- in minimal models (MSSM) additional tuning from gluinos m_{gluinos} > I TeV

Composite Higgs

 $\Lambda_{\rm SM} =$ **top partners** mass

• current bounds $\sim 1.2 \,\text{TeV}$

- Current bounds still allow minimal models with ~10% tuning!
- ▶ Fast progress with I3TeV runs, but slower at HL-LHC (saturation)

Fermionic partners

HL-LHC can push top partners scale well above the TeV, probing models with minimal tuning

Example: Projected bounds on top partners

[GeV]

 $m_{X_{5/3}}$

dashed lines show

amount of tuning Δ

- Current bounds still allow for ~ 5-10 % tuning
- HL-LHC tests multi-TeV states and completely probes $1/\Delta > 2$ %

/m = 0.5

[GeV]

 $m_{X_{5/3}}$

3500

SUSY partners

... similar situation for SUSY partners

- Bounds on the stop at HL-LHC can reach 1.5 TeV
- but still space for discovery

Indirect Searches at LHC

Higgs couplings

Precision measurement of **Higgs couplings** allows for test of SM and probe of BSM theories

- deviations expected in many BSM scenarios (eg. SUSY and composite Higgs)
- useful to derive bounds
 (can be competitive with direct searches)

 particularly relevant if a connection with naturalness (fine-tuning) can be established

Higgs couplings in SUSY

Higgs couplings modifications expected from mixing with second Higgs doublet

exclusions have no direct impact on fine-tuning in MSSM

Higgs couplings in SUSY

In MSSM main source of tuning from reproducing Higgs mass

• heavy stops needed to raise Higgs mass \rightarrow significant tuning

 \bullet minimal tuning ~ I % $~~\Delta\gtrsim100$

Higgs couplings in λ -SUSY

In non-minimal SUSY models one can avoid heavy stops

example: adding an extra singlet [Barbieri et al. '06, Hall et al. '12, Barbieri et al. '13]

$$W_{\lambda} = \lambda S H_u H_d \quad \longrightarrow \quad m_H^2 \sim m_Z^2 \left(\frac{1 - t_{\beta}^2}{1 + t_{\beta}^2}\right)^2 + 4\lambda^2 v^2 \frac{t_{\beta}^2}{(1 + t_{\beta}^2)^2}$$

correct Higgs mass requires sizable λ and moderate aneta

Tuning set by mass of heavy Higgses:

$$\Delta \gtrsim \frac{1}{\lambda^2} \left(\frac{m_{H^{\pm}}}{170 \text{ GeV}} \right)^2$$

direct connection between scalar sector and naturalness

Higgs couplings in λ -SUSY

Bounds from Higgs coupling measurements

 λ

Higgs couplings in CH

The Higgs compositeness induces modification of Higgs couplings

- coupling to gauge fields
 - universal, determined by symmetry: eg. SO(5)/SO(4) $\Rightarrow k_V = \sqrt{1-\xi}$

Yukawa's

• depends on partners quantum numbers: eg.

MCHM₅
$$k_F = \frac{1-2\xi}{\sqrt{1-\xi}}$$

MCHM₄ $k_F = \sqrt{1-\xi}$

Direct connection with tuning: $\Delta \gtrsim 1/\xi$ ($\xi = v^2/f^2$)

• current bounds $\xi \lesssim 0.1$ [ATLAS Collab. 1509.00672]

space for improvement? crucially related to systematics... see later

compositeness scale

Higgs couplings at HL-LHC

Slow progress on Higgs couplings in future runs

$L (fb^{-1})$	κ_{γ}	κ_W	κ_Z	ĸg	κ _b	κ _t	$\kappa_{ au}$	$\kappa_{Z\gamma}$	κ _{μμ}	BR _{SM}
300	[5,7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]	[14, 18]
3000	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[8, 8]	[7, 11]

CMS Projection

CMS Projection

Higgs couplings at HL-LHC

Systematics can play a crucial role for BSM interpretation

- Scenario I: systematics do not allow for improvement $(\xi \leq 0.1)$
- ◆ Scenario II: possible to probe ξ ≈ 0.05 → f ≈ 1.1 TeV

The Higgs Self-Couplings

The Higgs self-interactions

Measuring the **Higgs self-interactions** is an essential step to understand the structure of the **Higgs potential**

$$\mathcal{L} = -\frac{m_h^2}{2}h^2 - \lambda_3 v h^3 - \lambda_4 h^4 \qquad \qquad \kappa_\lambda \equiv \frac{\lambda_3}{\lambda_3^{\rm SM}}$$

distortions expected in many BSM scenarios

eg. Higgs-portal models can give large corrections only in Higgs self couplings

$$\mathcal{L} = \theta g_* m_* H^{\dagger} H \phi - \frac{m_*^4}{g_*^4} V(g_* \phi/m_*) \qquad \longrightarrow \qquad \frac{\delta \kappa_{\lambda}}{\delta c_z} \sim \frac{\theta g_*^2}{\lambda_3^{\text{SM}}} \gg 1$$
for $\theta, g_* \sim 1$

related to properties of EW phase transition (relevant for cosmology)

20

The trilinear Higgs coupling

Main channel double Higgs production via gluon fusion

Different final states accessible:

- $\bar{b}b\gamma\gamma$: cleanest channel, but low cross section
- $\bar{b}b\tau\tau$: larger statistics, but harder analysis
- $\overline{b}b\overline{b}b$, $\overline{b}bWW$, $\overline{b}bZZ$: limited impact

[HL- and HE-LHC Report '19]

Best channels

♦ only ~50 % determination of Higgs self coupling possible at HL-LHC

The trilinear Higgs coupling

Precision determination of Higgs trilinear coupling possible at future colliders

- ✦ <u>Hadron colliders:</u>
 - ► FCC-100 could reach ~5 % precision [Contino et al., FCC report 1606.09408]
 - ▶ High-energy LHC (~28 TeV) could reach ~20 % precision

[HL- and HE-LHC Report '19]

Lepton colliders:

- high-energy machines (CLIC) could reach ~10 % precision (directly through Higgs pair production) [CLIC Report '18]
- Iow-energy machines (CEPC, FCC-ee) could reach ~40 % precision (indirectly through single Higgs processes)
 [Di Vita et al.'17]

Higgs couplings are not the end of the story...

... LHC can also perform **other indirect tests**, probing the EW dynamics and the Higgs at high energy

example: di-boson production can probe deviations in the Higgs dynamics

- sizeable systematic errors in many cases do not allow for pole (or low-energy) precision measurements
- however we can exploit the high energy reach

energy helps accuracy

[Farina, GP, Pappadopulo, Ruderman, Torre, Wulzer ' I 6]

- sizeable systematic errors in many cases do not allow for pole (or low-energy) precision measurements
- however we can exploit the high energy reach

energy helps accuracy

[Farina, GP, Pappadopulo, Ruderman, Torre, Wulzer '16]

key point: deviations from SM typically grow with energy

$$\frac{\mathcal{A}_{\rm SM+BSM}}{\mathcal{A}_{\rm SM}} \sim 1 + \# \frac{E^2}{\Lambda^2}$$

→ LHC can match LEP sensitivity exploiting the **high energy** reach 0.1 % at 100 GeV → 10 % at 1 TeV LEP energy LHC energy

WZ: Reach at HL-LHC

Estimate of the bounds on $a_q^{(3)}(\overline{q}_L\sigma^a\gamma^\mu q_L)(iH^{\dagger}\sigma^a\overleftrightarrow{D}_{\mu}H)$

♦ Big improvement with respect to LEP

WZ: Reach at HL-LHC

Estimate of the bounds on $a_q^{(3)}(\overline{q}_L\sigma^a\gamma^\mu q_L)(iH^\dagger\sigma^a \overleftrightarrow{D}_\mu H)$

- ♦ Big improvement with respect to LEP
- ✦ Accuracy plays an important role for the BSM reach
 - weakly coupled new physics only accessible with low systematics (<<100%)

Conclusions

Conclusions

The discovery of a SM-like Higgs boson changed our perspectives

- I. confirmation of SM theory predictions (overall understanding of EWSB)
- 2. **no more guaranteed discovery** at colliders ... but still plenty of room for discovery/learning

Two main directions for HL-LHC:

- direct exploration
 - probe new resonances (eg. partners of the top) ----> test tuning ~ few %
- indirect tests
 - Higgs couplings (single Higgs couplings and Higgs self-interactions)
 - precision measurements of EW processes (can indirectly test Higgs dynamics)

Backup

The Naturalness argument

Although not a theorem, **Naturalness** provides a **guideline** for BSM

A large SM cut-off (i.e. a high new-physics scale) implies a significant amount of **fine-tuning**

$$\Delta \ge \frac{\delta_{\rm SM} m_H^2}{m_H^2} \simeq \left(\frac{125\,{\rm GeV}}{m_H}\right)^2 \left(\frac{\Lambda_{\rm SM}}{500\,{\rm GeV}}\right)^2$$

"Standard" Natural scenarios

Two ''standard'' approaches to the Naturalness problem

Low-energy SUSY

- Elementary Higgs
- SUSY partners with opposite statistics
- **Bosonic partners** of the top (stops) stabilise Higgs mass

Composite Higgs

- Higgs as a bound state (Goldstone) of a new strong sector
- Fermionic partners of the top stabilize Higgs mass

Natural frameworks to discuss LHC implications for Naturalness

Test universal theories in WZ production channel [Franceschini, GP, Pomarol, Riva, Wulzer'17]

+ better determination on trilinear gauge couplings (δg_1^Z) with respect to global fit at LEP

Test universal theories in WZ production channel [Franceschini, GP, Pomarol, Riva, Wulzer' 17]

- + better determination on trilinear gauge couplings (δg_1^Z) with respect to global fit at LEP
- + LHC and LEP probe **independent operators**
 - correlations can exist in specific theories (eg. composite Higgs $\widehat{S} \simeq -\delta g_1^Z$) 32