ATLAS results for $t\bar{t}H$ Multilepton with 80 fb⁻¹

Kirill Grevtsov on behalf of ATLAS $t\bar{t}H$ -ML team DESY

DESY LHC Discussions

October 21, 2019

Top quark Yukawa coupling

Top quark Yukawa coupling (y_t) : Probe Electroweak Symmetry Breaking

- Indirect measurements:
 - \blacktriangleright through loops in ggH and its decay to $\gamma\gamma$ (only SM in loop)
- Direct measurements:
 - tīH (tH) productions

If new physics scenarios exist, will see significant deviations from SM prediction

A search for $t\bar{t}H$ in multilepton final states with 80fb⁻¹ ATLAS-CONF-2019-045

- Analysis strategy
- Object identification
- Event selections and classification
- Background estimates
- Systematic uncertainties
- Results
- Summary

$t\bar{t}H$ Multilepton analysis Analysis strategy

- Analysis targets:
 - Higgs decays to WW, ZZ and $\tau\tau$ (veto $H \rightarrow ZZ^* \rightarrow 4\ell$)
 - Semi- and dileptonic tt decays
- Six orthogonal analysis channels:
 - categorised by the number and flavour of lepton " candidates

Number of light ℓ

- Backgrounds:
 - Reducible: $t\bar{t}$, V+jets
 - Non-prompt light leptons
 - charge misID
 - electrons from photon conversion
 - Irreducible: $t\bar{t}V$, VV, rare top, etc
 - V vector boson, Z or W
- Signal extraction:
 - A maximum-likelihood fit over 25 event categories

Object identification

- High multiplicity final state:
 - Leptons
 - Calorimeter and track based identification
 - Specific lepton BDT isolation suppressing ℓ from semi-leptonic *b*-decays

- BDT to reject charge miss assignment
- Three categories of selected electron candidates: very tight and two conversion types material conversion (rec.displaced CV) and internal conversion candidates those further suppressed with track invariant masses and conversion radius
- Jets
 - anti-k_t jets R = 0.4
 - Use jet vertex tagger to remove PU jets
 - b-tagged jets @70% WP
- Select \(\tau_{had}\)
 - 1- and 3-prong
 - multivariate analysis discriminants to reject jets and electrons faking a tau
- Remove overlapping objects

Event selections and classification

- Six orthogonal channels
 - with further split to gain significance
 - ▶ In $2\ell SS0\tau_{had}$ and 3ℓ channels, control regions are defined for the bkg. determination
 - Total 25 categories
- Event level BDTs are employed to further separate signal from bkg¹
 - ► 2ℓSS0τ_{had}: a combination of 2 BTDs (vs ttW, vs. fakes/tt) in 2D space
 - 3ℓ: a multi-dimensional BDT (vs. tt̄W, tt̄Z, VV, fakes/tt̄)

 \rightarrow cross-check analysis using **cut-and-count categorisation** were developed for these two most sensitive channels

- 4 ℓ : BDT (vs. $t\bar{t}Z$ and ZZ)
- $1\ell 2\tau_{had}$: BDT (vs. $t\bar{t}$)

In total 877 events are selected in data

- There are 170 SM $t\bar{t}H$ events **expected** after selection
 - 0.42% of all produced $t\bar{t}H$ events

¹except $3\ell 1\tau_{had}$ and $2\ell SS1\tau_{had}$ Kirill Grevtsov (ATLAS – DESY)

Background composition

- $\blacksquare \ {\rm Dominant \ backgrounds \ in } \\ {\rm channel} \rightarrow$
 - non-prompt: e, μ (2 $\ell, 3\ell, 4\ell$)
 - $\blacktriangleright t\bar{t}W(2\ell,3\ell)$
 - $\blacktriangleright t\bar{t}Z (3\ell, 4\ell)$
 - au_{had} (au_{had} channels)
- The QmisID and fake τ_{had} are estimated using data-driven techniques
- All the other backgrounds are estimated using the simulation
- Yields of tt W and non-prompt are adjusted via normalization factor (NF) in the final Fit

Kirill Grevtsov (ATLAS - DESY)

ATLAS tTH-ML

Irreducible background

$t\bar{t}W$ modelling

• Modelling of $t\bar{t}W$ is very challenging

▶ To minimise dependence of μ_{ttH} on $t\bar{t}W$ prediction, introduce 3 normalization factors:

 $\hat{\lambda}^{2\ell \rm LJ}_{ttW} = 1.56^{+0.30}_{-0.28}, \ \hat{\lambda}^{2\ell \rm HJ}_{ttW} = 1.26^{+0.19}_{-0.18}, \ \text{and} \ \hat{\lambda}^{3\ell}_{ttW} = 1.68^{+0.30}_{-0.28}.$

Additional uncertainties associated with modelling of *b*-jet multiplicity and *W* -boson charge asymmetry introduced to account for observed discrepancy between data and pre-fit bkg.

- The inclusive ttZ/γ^* with $(m(e^+e^-)>1\text{GeV})$ is computed at NLO
- ttZ/γ^* with $m(e^+e^-)<1$ GeV modelled via PS and is corrected by a scale factor estimated in 2ℓ IntC and 3ℓ IntC:

 $\hat{\lambda}_e^{\textit{IntC}} = 0.83 \pm 0.32$

- Normalization factor is validated in $Z \rightarrow \mu^+ \mu^- \gamma^* (\rightarrow e^+ e^-)$ region
 - A 25% uncertainty is assigned as extrapolation uncertainty for "internal conversion" CR to other region

Non prompt lepton estimates

- Non-prompt leptons labeled according origin in simulated tt sample:
 - heavy (HF) or light (LF) flavour hadron decays
 - material conversion (MatC)
- Event categories introduced in $2\ell SS$, 3ℓ are used to estimate fakes:
 - ► 2ℓ MatC and 3ℓ MatC control regions are enriched in mat conv.
 - 7 CRs in 2ℓ and 1 CR in 3ℓ are enriched in HF
 - Kinematic distribution are used to optimize the sensitivity for HF
 - HT^{lep} (scalar sum of lep) are introduced provide separation against $t\bar{t}W$
 - \blacktriangleright 3 NF for HF e, μ and mat.conv. are estimated from likelihood fit
- Normalization factor for HF μ , has the largest impact on $t\bar{t}H$

 $\hat{\lambda}_e^{MatC} = 1.61 \pm 0.48, \ \hat{\lambda}_e^{had} = 1.12 \pm 0.38$, and $\hat{\lambda}_\mu^{had} = 1.20 \pm 0.18$

Estimation of non-prompt is validated in background dominated BDT score distribution

• The largest systematic uncertainties come from $t\bar{t}W$ and $t\bar{t}\ell\ell$ modelling

Uncertainty source	Δû	
Jet energy scale and resolution	+0.13	$\frac{-0.13}{-0.13}$
$t\bar{t}(Z/\gamma^*)$ (high mass) modelling	+0.09	-0.09
tfW modelling (radiation generator PDF)	+0.08	-0.08
Fake π_{-} , background estimate	+0.00	-0.07
$t\bar{t}W$ modelling (ortranslation)	10.05	0.05
till aross section	+0.05	-0.05
Circulation example size	+0.05	-0.05
Simulation sample size	+0.05	-0.05
ttH modelling	+0.04	-0.04
Other background modelling	+0.04	-0.04
Jet flavour tagging and τ_{had} identification	+0.04	-0.04
Other experimental uncertainties	+0.03	-0.03
Luminosity	+0.03	-0.03
Diboson modelling	+0.01	-0.01
$t\bar{t}\gamma^*$ (low mass) modelling	+0.01	-0.01
Charge misassignment	+0.01	-0.01
Template fit (non-prompt leptons)	+0.01	-0.01
Total systematic uncertainty	+0.25	-0.22
Intrinsic statistical uncertainty	+0.23	-0.22
$t\bar{t}W$ normalisation factors	+0.10	-0.10
Non-prompt leptons normalisation factors (HF, material conversions)	+0.05	-0.05
Total statistical uncertainty	+0.26	-0.25
Total uncertainty	+0.36	-0.33

 Fakes impact is reducing its size with more statistics

 Additional uncertainties to cover data/MC disagreements as a function of NBjets and Lepton charge for tīW

 Jet energy scale and resolution still plays a major role

- Simultaneous fit in 25 categories
 - ▶ 17 (2ℓSS and 3ℓ) used to determine/constrain different backgrounds
 - ▶ 8 signal regions to measure $\sigma_{t\bar{t}H}$

Simultaneous fit in 25 categories

- ▶ 17 (2ℓSS and 3ℓ) used to determine/constrain different backgrounds
- ▶ 8 signal regions to measure $\sigma_{t\bar{t}H}$
 - a BDT discriminant is used in 2 $\ell {
 m SS}$, 3 ℓ and 1 $\ell 2 au_{\it had}$

• the total event yield is used in the remaining four signal regions

- Significance with respect to background-only hypothesis = $1.8 (3.1)\sigma$ obs (exp)
- The best-fit value of μ is $\hat{\mu_{ttH}} = 0.58^{+0.36}_{-0.33}$
- Data prefers higher $t\bar{t}W$ cross section w.r.t to theoretical predictions:

$$\hat{\lambda}_{ttW}^{2\ell \text{LJ}} = 1.56^{+0.30}_{-0.28}, \ \hat{\lambda}_{ttW}^{2\ell \text{HJ}} = 1.26^{+0.19}_{-0.18}, \text{ and } \hat{\lambda}_{ttW}^{3\ell} = 1.68^{+0.30}_{-0.28}$$

- Consistent results for $\mu_{t\bar{t}H}$ and $t\bar{t}W$ NFs are obtained using cross check analysis based on cut-and-count categorisation
- Alternative scenario with only one $t\bar{t}W$ normalisation:

•
$$\hat{\mu_{ttH}} = 0.70^{+0.36}_{-0.33}$$
 and $\hat{\lambda}_{ttW} = 1.39^{+0.17}_{-0.16}$

Compatibility with the main result is 0.59 standard deviation

$t\bar{t}H$ Multilepton analysis

Summary

- Search for $t\bar{t}H$ in multilepton final states has been performed with 80fb⁻¹
- For a Higgs at 125 GeV, the measured signal strength is $0.58^{+0.36}_{-0.33}$, which correspond to $1.8\sigma(3.1\sigma)$ obs.(exp.) significance w.r.t bkg.-only hypothesis
- The measured cross section is $\hat{\sigma}(ttH) = 294^{+182}_{-162}$ fb and consistent with SM prediction
- $t\bar{t}W$ normalization is found to be in excess of the theoretical prediction, an improved description of $t\bar{t}W$ is needed to reach greater precision in the feature

Backup

DESY.

Irreducible background

$t\bar{t}W$ modelling

- Additional uncertainties associated with modelling of *b*-jet multiplicity and *W* -boson charge asymmetry introduced to account for observed discrepancy between data and pre-fit bkg.
- Extrapolation uncertainty:
 - Affects only the shape of the b-jet multiplicity and total charge distributions
 - For *b*-jet multiplicity, $\pm 25(\mp 35)\%$ for $1(\geq 2)$ *b*-jets
 - ▶ For total charge distribution $\pm 20(\mp 35)\%$ for positive (negative) total charge

Back to modelling

Non-prompt leptons Validation

• Comparison between data and signal-plus-background prediction in the $2\ell SS0\tau_{had}$ channel after event selection for (a) the event yield, split in four separate categories depending on the flavour of the sub-leading lepton and the b-jet multiplicity, and (b) the score of the BDT trained to discriminate $t\bar{t}H$ signal from $t\bar{t}$ background

Back to non-prompt estimation

- A search for $t\bar{t}H$ in multilepton final states with 80fb⁻¹
 - > The significance of the observed (expected) excess above the background-only expectation ($\mu = 0$) is 1.8 (3.1) σ
 - The best-fit value of µ is

•
$$\hat{\mu} = 0.58^{+0.26}_{-0.25} \text{ (stat.)}^{+0.19}_{-0.15} \text{ (exp.)}^{+0.13}_{-0.11} \text{ (bkg. th.)}^{+0.08}_{-0.07} \text{ (sig. th.)} = 0.58^{+0.36}_{-0.33}$$

- Measured tTH cross section
 - $\hat{\sigma}(t\bar{t}H) = 294^{+132}_{-127} \text{ (stat.)}^{+94}_{-74} \text{ (exp.)}^{+73}_{-56} \text{ (bkg. th.)}^{+41}_{-39} \text{ (sig. th.) fb} = 294^{+182}_{-162} \text{ fb}$

QMisID and τ_{had} fakes

Charge mis-assignment

- ► The electron charge mis-assignment rate vs p_T and $|\eta|$ is measured in data using OS/SS from $Z \rightarrow e^{\pm}e^{\mp}$ events for the three types of electrons
- ▶ The total uncertainty for very tight electrons is 30%, with the dominant uncertainty at low p_T originating from the closure tests and at high p_T from limited statistics from $Z \rightarrow e^{\pm}e^{\mp}$ events

Fake τ_{had} estimation

- ▶ In $2\ell SS + \tau_{had}$, $3\ell \tau_{had}$
 - A fake τ_{had} factor scale factor as a function of $p_T^{\tau_{had}}$, is determined in $2\ell OS \tau_{had}$ control region
 - Total systematics uncertainty depends on $p_T^{\tau_{had}}$ and is on average ~13 (60)% for one-prong (three-prong) τ_{had}
- ► 1ℓ+2τ_{had}:
 - Fake τ_{had} is estimated from control region identical to the signal region but with same charge τ_{had}
 - Fakes(OS) = Data(SS)-Truth(SS) \rightarrow equal probability for a jet to be reconstructed as a positively or negatively charge τ_{had}
 - An 22% systematics uncertainty from non-closure in CR is taken

Back to bkg composition

$t\bar{t}W$ higher order QCD and EW corrections

- A normalisation factor of **1.2** applied on top of the YR4 cross section for ttW
- Origin of the correction factor:
 - Factor 1.11 to account for missing QCD corrections in higher order XS
 - ttW+0j@NLO → ttW+0,1j@NLO
 - estimated using dedicated samples generated with Sherpa 2.2.1 using the MEPS@NLO
 prescription, and cross-checked with the NLO generator MadGraph5_aMC@NLO 2.2.1 using
 the FxFx prescription
 - Factor 1.09 to account for missing EW corrections
 - [1711.02116] shows "subleading" NLO EWK corrections, not included in YR4 XS, can be large
 - primarily because of the large NLO3 term driven by the ttW+1-jet diagrams with a Higgs boson exchanged in the t-channel

