Search for A/H \rightarrow ttbar @ ATLAS

LHC Physics Discussions 18 November 2019

Katharina Behr

In a nutshell

> First and (so far) only ATLAS result [Phys. Rev. Lett. 119 (2017) 191803]

- Using 20.3 ifb of 8 TeV data
- > Piggy-backing on earlier ATLAS ttbar resonance search @ 8 TeV [JHEP08(2015)148]
 - 1-lepton channel
 - Used only resolved-topology selection, targetting resonance masses < ~700 GeV

In a nutshell

> First and (so far) only ATLAS result [Phys. Rev. Lett. 119 (2017) 191803]

- Using 20.3 ifb of 8 TeV data
- > Piggy-backing on earlier ATLAS ttbar resonance search @ 8 TeV [JHEP08(2015)148]
 - 1-lepton channel
 - Used only resolved-topology selection, targetting resonance masses < ~700 GeV
 - Search in m(ttbar) spectrum
 - Main background: SM ttbar production
 - Powheg+Pythia8 @ NLO
 - Remove bins with m(ttbar) < 320 GeV to avoid turn-on region where higher-order background effects become important

Systematic uncertainties

- > Extra uncertainties compared to Z' search
 - Top-quark mass uncertainty
 - Interference modelling: difference between diagram-subtraction and diagram removal scheme
 - Reweighting uncertainty
 - Signal MC scales
 - Flat 7.3% variation
 - Additional variation with bins at low-/high-end of spectrum anti-correlated

Systematic uncertainties [%]	Total bkg	S	S+I
Luminosity [55]	1.7	1.9	1.9
PDF	2.5	2.1	12
$t\bar{t}$ initial-/final-state radiation	3.2	—	_
$t\bar{t}$ parton shower + fragmentation	4.9	_	_
$t\bar{t}$ normalization	5.7	_	_
$t\bar{t}$ event generator	0.5	—	_
Top quark mass	0.5	2.2	13
Jet energy scale	6.4	4.9	9.3
Jet energy resolution	1.3	1.6	1.7
<i>b</i> -tagging: <i>b</i> -jet efficiency	1.5	1.3	1.1
<i>b</i> -tagging: <i>c</i> -jet efficiency	0.2	0.2	0.8
Electron efficiency	0.3	0.4	0.7
Muon efficiency	0.9	1.0	1.0
Signal MC scales		7.3	7.3
Reweighting		—	5.0
MC statistical uncertainty	0.5	2.4	11
Total uncertainty	11	10	25

> Based on modified likelihood function

$$\mu \cdot S + \sqrt{\mu} \cdot I + B = (\mu - \sqrt{\mu}) \cdot S + \sqrt{\mu} \cdot (S + I) + B$$

> Implemented by hand in RooFit+RooStats+HistFactory setup

> Requires S and S+I samples for each model point

Signal Interpolation

> Reweighting to produce S+I from (broad) pure S samples

Event weights = from matrix-element ratios

Event-by-event basis

Weights = matrix elements ratios calculated in $\rm Madgraph5$

$$\mathcal{W}_{\text{new}}(\{\boldsymbol{s}_i\}_{\text{new}}, \{\boldsymbol{p}_j\}) = \frac{|\text{ME}(\{\boldsymbol{s}_i\}_{\text{new}}, \{\boldsymbol{p}_j\})|^2}{|\text{ME}(\{\boldsymbol{s}_i\}_{\text{old}}, \{\boldsymbol{p}_j\})|^2} \times \mathcal{W}_{\text{old}}(\{\boldsymbol{s}_i\}_{\text{old}}, \{\boldsymbol{p}_j\})$$

Weights depend on

- 4-momenta of incoming and outgoing partons {p_j}
- Initial and target signal parameters $\{m_{A/H}, \tan\beta, \cos(\beta \alpha)\} = \{s_i\}_{new,old}$

Signal Interpolation

> Reweighting to produce S+I from pure S samples

- Event weights = from matrix-element ratios
- Input: broad (low tanb) pure signal samples S

> <u>Targets</u>:

- Larger tanb values
- Slightly different mass values, $\Delta m = 50 \text{ GeV}$

Results

> Benchmark: generic type-II 2HDM in the alignment limit

- A and H do not interfere with each other \rightarrow can simply add their interference patterns

Results

> Benchmark: generic type-II 2HDM in the alignment limit

- A and H do not interfere with each other \rightarrow can simply add their interference patterns
- > Triangular interpolation between signal points
 - Checked that interpolation is sane = no complete cancellation of peak and dip

Higher-order corrections (current approach)

- > Signal + interference modelled with leading-order UFO
- > Signal cross-section available at NLO
 - K_s = $\sigma_{_{\rm NLO}}/\sigma_{_{\rm LO}}$
- > Interference cross-section at approximate NLO
 - $K_{I} = \sqrt{K_{S}} K_{B}$
 - $(S + I)_{corr} = [(S + I) S] \cdot K_{I} + S \cdot K_{S}$
- > Irreducible background from SM ttbar production
 - Powheg+Pythia8 @ NLO
 - Cross-section corrected to NNLO+NNLL

•
$$K_{\rm B} = \sigma_{\rm NNLO+NNLL} / \sigma_{\rm NLO}$$

Higher-order corrections (plans + ideas)

> Higher-order corrections worth investigating, in particular in the turn-on region

- UFO for $gg \rightarrow A/H \rightarrow ttbar$ at (approximate) NLO available [here]
- Alternative approaches exist [arxiv:1611.08119]

> Cooperation among ATLAS, CMS, and theory sensible to make sure results are comparable

> Background modelling in the turn-on region?

> New LHC benchmark model for dark matter searches: **2HDM + pseudoscalar mediator** [JHEP 1705 (2017) 138]

- Joint effort from ATLAS + CMS + Theory [LHC DMWG whitepaper]
- > Rich collider phenomenology

> Re-interpretation of preliminary 8 TeV ATLAS result [ATLAS-CONF-2016-073]

- > Rough estimate of constraints via simple crosssection rescaling
- Not accurate as width/shape differences in the interference pattern neglected

Conclusion

- > Initial ATLAS result on Run 1 data for generic type-II 2HDM with $m_A = m_H$
- > Model dependence of interference renders signal interpolation crucial

> Next steps:

- Higher-order corrections are needed
 - Signal at (approximate) NLO
 - Background modelling in turn-on region
- Other benchmarks are interesting, e.g. for dark matter, CP-violation, ...

Dialog between CMS and ATLAS and theory groups on benchmarks would be useful!