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What is a Neural Network?

« A primitive model for a piece of brain matter

A series of geometric projections
9 Pro] * |I'm a particle physicist.

- Afew lines of linear algebra + some functions | tend to call data points: events
* To be honest gentle means
« Atype of function approximation crash course

* An optimization problem

- Afew lines of python code

*  We will go quickly through all of these views

 Follow the links later
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https://en.wikipedia.org/wiki/Artificial_neural_network

Me - Neurons

Pyramidal cells

Neurons as computational units are an old idea.
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Me

One of Cajal’s drawing

from what he saw under the
microscope

Golgi's method (1873): silver
staining of neural tissue

The idea that the neuron wiring is connected to learning is at least 120 years old

« Santiago Ramoén y Cajal, the father of modern neuroscience, had this idea in 1894
(learning through new connections).
This is not yet the idea of computation.
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https://en.wikipedia.org/wiki/Santiago_Ram%C3%B3n_y_Cajal
https://en.wikipedia.org/wiki/Golgi's_method

Me - Neurons

4

Neurons as computational units are an old idea.

« D.O. Hebb 1940 (Hebbian learning by modified synaptic strength)
« W. McCulloch and W. Pitts 1943 (sums and thresholds)
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Computation

It emerged later that
networks of such nodes
provide rich structures
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f(x) —Vv

y:f(iwixi)

Simple mathematical model

« Each neuron input gets multiplied by a weight,

» they are summed up
« and some function is applied.

BTW, to simple as a biological model
e.g. spikes, transmitters etc.
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https://en.wikipedia.org/wiki/Artificial_neural_network

Computation

)’=f(b+Zn:Wixi)

e

7

It will be useful to add a bias term i.e.
a constant term added as input

We have n inputs (real numbers) z;,i=1...n.
We assume that they form a vector space R™ .
In Machine Learning the input variables are called features Geometric interpretation -->
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Geometry

n
y = b+2 Wi X
i=1

The same equation with vectors:

y=>b+w'x

There is a geometrical picture for this calculation
« The inputs form a vector x and
the weights a vector w (NB not normalized)

* y=0:defines a plane | We assume that the input x
« The neuron = the node represents a separating hyperplane forms an Euclidian Space
cutting the space R" into two halves (distance!).

This is neither trivial nor

correct in general.
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Perceptron

Threshold:
)1
0(x):= {0

if x=0
else x <0

O(b + W%

The Perceptron is one of the oldest ideas

for machine learning and Artificial Intelligence.

Cutting the input space into

two halves. Learning means finding the best values

for band w
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https://en.wikipedia.org/wiki/Perceptron
https://en.wikipedia.org/wiki/History_of_artificial_intelligence

Mark | Perceptron

Some history

* This was really a machine with
potentiometers steered by
electric motors and a lot of wires

e |

=i

« The algorithm has been before
implemented on an early
IBM 704

i
N
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An IBM 704 computer in 195
Already at that time we have the idea to use specialized hardware for NN
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Some Vocabulary

 We are interested in Supervised Learning,
that means we have a Training Dataset
where we know the true Target Values

 Classification — Label %

« Binary
e.g. Background/Signal

 Multi-class

e.g. the picture shows a: cat, dog or horse
 Regression — Numerical target value

« Some numerical fit value as function of some
high-dimensional input vector

« We want to learn from the trainings dataset and
apply this to some other new data where we do not
know the label/target value
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The input variables are called features

We assume that they form an vector space with a
distance although we compare apples with orange

[
Y Jelcl!
« E.g. Temperature in C, mm rainfall and average hotel
prices in Euro and predict the number of hotel guest

 If/since there is no natural common unit we gain by
— Normalize the input features
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From 1 node to 1 layer
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Each node represents a projection N — 1:
pi=wXx +b

with its own weight vector and bias
A layer with multiple nodes form
an N — M mapping
(A high dimensional N to a low dimensional
M may even work with a randomly chosen
set of M axes if the data ‘lives’ on a low
dimensional subspace
(Johnson-Lindenstrauss lemma'))
Even if we just start with random w, we
will keep some separation power that
can be optimized by optimizing the
weights

« But see appendix on weight initialization
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https://en.wikipedia.org/wiki/Random_projection

Feedforward Network

« Each node represents a projection N — 1:

p; = w;'x
- T - 1 - with its own weight vector
Wil o (w11, w12, wis) | |21 L - We drop the bias for a while for simplicity
Wy | X = | (w21, w22, we3)| |22 = WX =D « A layer with multiple nodes form
_ng_ _(w317 w32, w33)_ | L3 an N — M mapping, i.e. it a layer can be

represented by some Matrix W of weights
« AN—N s called a dense network
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Feedforward Network
Multiple layers

* Multiple nodes form an N -> M mapping

» The weight vectors of one layer can be
considered as a Matrix W

* Multiple layers form a chain of mappings

§ =W V U %
< ~— =
2% 1 3IX3 3Ix1

But this 1s all trivial since ...
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Feedforward Network

DESY. | Intro NN | Dirk Kricker

* Multiple nodes form an N -> M mapping

» The weight vectors of one layer can be
considered as a Matrix W

* Multiple layers form a chain of mappings

2X3
— /\ —
y = A X
N~ S~~~
2% 1 3x1
«

... due to linearity this all collapses into one
mapping. The fun starts when we include some non-
linearity

Page 15



Nonlinearity

n In general, the activation function f
_ can be chosen arbitrarily but it has a
y=7b+ Z WiX; ) strong influence on the behavior of
=1 the resulting NN

)

All nonlinearity comes from the
mapping function
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Activation Functions

« ldentity f(z) =«
+ Simple threshold  f(z) = {O forz <0

(classic NN) 1 forz>0
« Sigmoid

(logistic function)
« Tanh
 RelLU (REctified Linear

Unit)

 Leaky RelLU
 RBF (see SVM)

« Softmax

https://en.wikipedia.org/wiki/Activation function
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https://en.wikipedia.org/wiki/Activation_function

Activation Functions

« Identity

« Simple threshold
(classic NN) 1

. Sigmoid  f(x) = i
(logistic function) ]- —|_ e~ % 0 > X

e Tanh

 RelLU (REctified Linear
Unit)

 Leaky RelLU
 RBF (see SVM)

« Softmax
https://en.wikipedia.org/wiki/Activation function
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Maps between 0 and 1
Useful for probability
model e.g output node
Not linear at origin
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https://en.wikipedia.org/wiki/Activation_function

Activation Functions

y
A
« Identity +1
« Simple threshold
(classic NN) o X
« Sigmoid
» Tanh f(x) = tanh(z) A
« ReLU (REctified Linear  Maps between -1 and 1
Unit) « Use to be popularin
. Leaky ReLU 1st generation NN

« Linear at origin
* RBF (see SVM) — loss of non-linearity

« Softmax « Saturates easily

https://en.wikipedia.org/wiki/Activation function
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https://en.wikipedia.org/wiki/Activation_function

Activation Functions

« ldentity f(z) =«
« Simple threshold

(classic NN)
« Sigmoid
« Tanh

f(.’L') L O fOI‘ r < O 1

) ReLU | | x forx >0

(REctified Linear Unit)
« Leaky RelLU « Threshold behaviour

* 0 below threshold

. RBF VM
(see SVM) - ldentity above threshold

* Softmax  Unrestricted growth
« Scale invariant
 Most popular choice now-
“Game changer”
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https://en.wikipedia.org/wiki/Activation_function

ReLUasacutin1D

 The condition 0 forz<O
defines a cut f(:l)) = {
on the input variable x r forx >0
 The cut on x is defined by the weight w and
the bias b
« Instead of cutting on x;,>X.
we scale x;, by w and shift the input .

distribution by b:

“we move the distribution to the cut”

* InaReLU layer the bias defines the scale

DESY. | Intro NN | Dirk Kricker

RelLU

—
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RelLU as a logic gate

RelU [—V

ib =-1/2

All kinds of can data manipulations
can be realize by ReLLU networks

negative weight — logic not
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W= Wr= 1/2 :D_

X y 2 y
0 0 0 0
1 0 1/2 |0
0 1 1/2 |0
1 1 1 1
wi=wy=1

X |y |z |y
0 0 0 0
1 0 1 1
0 1 1 1
1 1 2 1
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Universal Approximation

* Nodes with one input x and one output y

W11 W31 *  We get a piecewise linear function that can
L] i model an arbitrary function.

* Intuitively clear! that one hidden layer with
b, sufficient many nodes can approximate any
smooth function to a given accuracy ¢

f(z) — Fa(z)|dz <€
W1,10 W2 10 R"

— RelU

! https://en.wikipedia.org/wiki/Universal approximation theorem, G.Cybenko(1989)

DESY. | Intro NN | Dirk Krticker
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https://en.wikipedia.org/wiki/Universal_approximation_theorem

Universal Approximation

Wl,l Wy 1 é
ol ReLU [— 50
+
1

40

X — . Yy
- 30

20

W1 10 Wz 10
ReLU

b10

0
{wl,l,...,wljlo} — {1,1,1,1,1,1,1,1,1,1} 5
{w2,17 s 7w2,10} — {17 17 17 17 17 17 17 17 17 1} f(ajzn) ~ T
b1, -, b0} =10, -1, -2, -3, 4, -5,—6, -7, -8, -9} 1 layer of ReLU presents a

1 https://en.wikipedia.org/wiki/Universal approximation theorem piecewise linear approximation

DESY. | Intro NN | Dirk Kricker Page 24



https://en.wikipedia.org/wiki/Universal_approximation_theorem

Universal Approximation

Wi,1 Wy 1 z
—-— ReLU |— 2000
N 1800
1

1600
1400
X : Y 1200
1000

800

W1 10 W2 10
ReLU 600

+ 400

bio 200

| 1 1 1 | L 1 1 1 | 1 1 1 | 1 1 1
2 4 6 8 10

{wl,l,...,leo} = {1,1,1,1,1,1,1,1,1,1} . X
{war,...,wa10t = {1,2,4,8,16,32,64,128,256,512}  f(xin) ~ 2
{bl’ Y bm} — {O’ —1,-2,-3,-4,-5,-6, -7, =8, _9} 1 layer of ReLU presents a

1 https://en.wikipedia.org/wiki/Universal approximation theorem piecewise linear approximation
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https://en.wikipedia.org/wiki/Universal_approximation_theorem

Universal Approximation

W11 Wy 1 = -
— ReLU |— 2000~
+ 1800— i )
i -« Al kinds of data analysis
b; 1600 — . .
raooE chains can be realize by
[N : y 12005_ RelLU networks, and all fits
: oooF- (aka regression)
b ° Aneural network is a
Ko V2,10 - Universal Function
o F Approximator
+ 400 PP
bio 200
0: | | | | 1 | | | | | | | | | | | | |
0 2 4 6 8 10
Xin
{wl,l, c o ,w1710} = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

{war,...,wa10t = {1,2,4,8,16,32,64, 128,256,512}  f(x;n) =~ 27
b1, biop = {0, -1, -2, -3, -4, =5, -6, -7, -8, —9} 1 layer of ReLU represents a

1 https://en.wikipedia.org/wiki/Universal approximation theorem piecewise linear approximation

DESY. | Intro NN | Dirk Kricker Page 26



https://en.wikipedia.org/wiki/Universal_approximation_theorem

RelLU Feedforward network

The parentheses become

2% 3 nested
X ~ =
N y = W F(V F(UX))
—~— N~
. 2% 1 3X3 31

with F(X) == [F(z;)]
i.e. F applied to each component of X

Now we can go deep! and F=ReLU
we also can write this with tensors
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RelLU Feedforward network

The parentheses become
nested

Y; = w@jF( F(uklxl))

with ¢ =1,2and j5,k,[=1,2,3

sum convention assumed

That’s why it 1s called TensorFlow™
In principal graphical, matrix and tensor notation are equal but conventional tensor notation is most general

What kind of structure can be approximated with a multilayer ReLU network?
This 1s related to the question how many linear areas can be described.
(As before in the universal approximation example we have linear areas)
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Cutting hyperplanes

, J=4 1 S+ S<53
*« How many independent areas do O/’ = o& C/Ja/{r p/aw .
we get with n hyperplanes? / lon /[ gz 4 K 4 ’
* Dimension d and the number of j s %//“/MP/OFWS C jj 3
different hyperplanes s
 This is also the maximum number A% Aﬂ’fs 7) -5 ‘/‘JI 0% or
fli its with S ReLU unit
ollr.1earun|SW| eLU units /4+ /””’057L Y “{ /1 Z 3
within one layer 2 5 c
* For example: 10 dimensional 04 3 ?\
input with 40 nodes may cut your é S o y
phase space into up to 8 /
max 1.2 billion pieces M=o A
more then parameters (~10x40+40) 10 cutsin2d => 56 pieces 5’; 6
more then data 40 cuts in 2d => 821 1
. 10 cuts in 10d => 1024
but there may be an appropriate

40 cuts in 10d => 1221246132

low dim configuration
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What is the advantage of being deep?

Not well understood theoretically but extremely successful

A common answer

X2

b & b L o o 0w e a o

* In classical Machine Learning we had been interested

in feature engineering, finding the best variable to e A'f"""":‘l’“"nw useless?
. «—a—~3 HL

solve the problem easily
* In adeep NN the first layer(s) can construct such high R I

level features themselves from low level features b

_ i n——Eh R LT L gyl

Another aspect, they can create iterative structures and x—g 3y L i "o T T
smoother structures with the same number of parameters
What ever it is, a NN is a very expressive function
approximator that uses a large number of parameter
to model complex problems
« Astonishing that they can be trained with sufficient

data

« How do we train an NN? 2d — 3 layers

% 02 04 06 08 1 12 14 16 18
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Loss Function - Regression

What can we do with a Neural Network?

Neural Network

 We can consider the NN as a complicated

model that translates some input x into X & Rn }A’ c Rm
some output y

depending on the weights and bias terms. y(X) _

(In the following: weight as generic term for estimated
weight and bias) truth

« This can be used for regression, i.e. fitting
some data: ¥ (X)

 We know the true values since we do
supervised learning

For example:
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Loss Function - Regression

Neural Network

We can consider the NN as a complicated

. . mn A

model that traAnsIates some input X into x € R y = f(X|W)

some output y

Depending on the weights and bias terms. y(X)

(In the following: weight as generic term for T

weight and bias) d
w € R

This can be used for regression, i.e. fitting
some data: y(x)

As we do it in curve fitting, we can optimize min loss (y S} (W))
the model parameters such that they —— W ’

describe the data best with respect to some
measure - the Loss Function (or Cost)

 E.g. Least Squares or MSE
(Mean Squared Error) \ .

minimizing w < training

1 .
Minimize loss wrt. to weights w lossysE (y7 y) — m Z(yz - %)2

DESY. | Intro NN | Dirk Kricker

Page 32



Loss minimization

)
AN . P 2
lOSS(Y, y> — (y — y> with —
@)
~ 7))
Yy — W 2 F( W 1 X) < Cé)h
m X1 mXh hxn nxl =
§-.
« To minimize the loss we take the derivative wrt. to w
: true values — |y
and setitto O \ J

« Chain rule

Similar for
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Loss minimization

1035(}’75’) — (5’ — Y)2 with
'5/’ — WQ F(W1 X)

m X1 mXh hxn nxl

* To minimize the loss we take the derivative wrt. to w

alOSS a(y - y)2 — & ay L E.g. for W, -
8wi [ 0 :> aW@ o 2(}’ o Y) 0 Similar for

oW,
| 0y

« Equation to be solved for W, ,

X

OF(z)
= Wy
8Wl : 82

« Chain rule — from the end to the beginning
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Backpropagation

« The previous chain rule calculation is known as

Backpropagation
. . . Oloss
The deviation between true and estimated y, AZOSS( ~ ) ~ AW
l.e. the loss, is back-propagated to a linear change of the y 8\)\7
weights. N
* Invented by different people in the 1960/70s We calculate a gradjent with

« NB: The chain rule creates a chain of factors that can be respect to the weights/biases

evaluated numerically

Oloss(y,y) Oloss(y,y) 0y OF(z) Oz

AW, 95  OF 0z OW,

« These are vector and matrix multiplication. If you need a Matrix
calculus primer or work it out with tensor indices but in reality ...

DESY. | Intro NN | Dirk Krticker Page 35


https://en.wikipedia.org/wiki/Backpropagation
https://en.wikipedia.org/wiki/Matrix_calculus

How to calculate all these derivatives?

« Deep Learning libraries are able to calculate
the derivative of a piece of code

« This is not a numerical approximation
(no small epsilon)

« This not symbolic differentiation
(not as in e.g. Mathematica)

« Think about it as
a derivative of your python code

computational graph

wl * @
w2 * @

(w3 * b) + (w4 * c)
f(d)

W> aC

DESY. | Intro NN | Dirk Kricker

It records your calculations (Forward step)

It then calculates by applying the chain rule
(Backward step) the gradients at the same

numerical value

The DL library keeps track of hundreds of
thousands of weights and more

There are different approaches to automatic
differentiation

The different libraries e.g. Tensorflow, Pytorch etc.
follow slightly different concepts

Important to understand if you want to define your
own special layers and loss function
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How do we do all this Numerical Linear Algebra?

- Efficient matrix manipulation is needed to make What is BLAS?

things fast - Basic Linear Algebra Subprograms (BLAS)

« All python Deep Learning libraries provide NumPy-

style operations

* NumPy is the most common tool for scientific,
numerical calculation

 We need to go as close to the “metal” as possible

e BLAS etc.

BTW NumPy, pandas and all that

« Vanderbilt University's Department of Biostatistics

« Short Terascale Python and NumPy course
(skip the docker installation part)

DESY. | Intro NN | Dirk Kricker

« aset of low-level routines for common linear algebra operations such
as vector addition, scalar multiplication, dot products, linear combinations,
and matrix multiplication

Defines an interface to make libraries interchangeable

BLAS implementations take advantage of special floating point
hardware e.g. SIMD instructions.

+ SIMD (Single instruction, multiple data )
vector register

* All modern CPUs come with these abilities
* SSE, AVX, AVX512, ...
« And GPUs
+ Highly parallel - Latest NVidia 2080 Ti (Turing) 4352 cores
» Rarely used directly in programming but by optimized libraries
+ openBLAS or MKL (Intel) or Apple's Accelerate framework
*  Multithreading!
* cuBLAS (NVIDIA)
* And other libraries e.g. cuDNN
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https://github.com/fonnesbeck/Bios8366/tree/master/notebooks
https://github.com/vincecr0ft/terascale_python
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/SIMD
https://blog.slavv.com/picking-a-gpu-for-deep-learning-3d4795c273b9
https://en.wikipedia.org/wiki/List_of_Nvidia_graphics_processing_units

: Oloss
Gradient Descent Aloss( P2 AW
oW

) &

<

loss
« The previous chain rule calculation is known as
Backpropagation

« We can not solve this directly due to the size of the
problem and the non-linear activation functions

« But we solve numerically and iteratively
for the optimal weights

« To find a local minimum of a function using gradient 1 - W
descent, one takes steps proportional to / \ Oloss
the negative of the gradient of the function at the
current point

X learning rate

« The step size is chosen according to some
learning rate
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Oloss

AW
oW

Gradient Descent Aloss(§) ~

« The previous chain rule calculation is known as
Backpropagation

Error Surface

« We can not solve this directly due to the size of the
problem and the non-linear activation functions

« But we solve numerically and iteratively
for the optimal weights

« To find a local minimum of a function using gradient
descent, one takes steps proportional to
the negative of the gradient of the function at the
current point

Error

« The step size is chosen according to some
learning rate
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Gradient Descent Aloss(§) ~

Iterative minimizing 3 "V
« The previous chain rule calculation is known as
Backpropagation

« We can not solve this directly due to the size of the
problem and the non-linear activation functions

« But we solve numerically and iteratively
for the optimal weights

« To find a local minimum of a function using gradient
descent, one takes steps proportional to
the negative of the gradient of the function at the
current point

« The step size is chosen according to some

learning rate
* In general a complicated high dimensional surface with many local minima

Shaking helps i.e. add some noise — Stochastic Gradient Descent
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Stochastic Gradient Descent - SGD
One data point lAII data points

lafter the other at once

« If we do gradient descent we have the choice - lloa gJepoch
between 2 alternatives I Computat\o _

« Batch gradient descent
Take all data and calculate then the loss and ‘

number of
data points

update the weights 4 weights
. 00

» Stochastic gradient descent (SGD) ed to find 9

Take just one data point and calculate the loss and

update the weights

gpochs need

Stochastic Mini-Batch Batch
« When all data points have been used we call it an

Epoch » Medium batch size can be processed efficiently

« Batch size typically means mini-batch (BLAS, cuBLAs)

» Stochastic gradient descent introduces some
noisiness which can be an advantage to avoid
local minima

» SGD converges faster - frequent updates

» The exact size is a hyperparameter that can be
tuned - typical value 32-256 or more
(2" to fit into memory)

» Talking about loss on the slides before | had been
a bit unprecise we optimize the average loss
over a (mini-) batch
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AZ : ” n learning rate

 There are many refinements available for the Wl — Wt — AY
optimizer, often heuristic

 Momentum: Gradient descent is often very slow near
the optimum — Remember the last step
» Creates an average oscillating part (changing
gradient sign) is damped
Gradient descent in a 'canyon’, i.e.

gradient different in the 2 dimensions
without and with momentum

A = fyAi_l +n

« Different kind of adaptive behavior (lecture Hinton)

dL
dW
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https://en.wikipedia.org/wiki/Stochastic_gradient_descent
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

AZ : ” n learning rate

« There are many refinements available for the Wit — W' — A?
optimizer, often heuristic

 Momentum: Gradient descent is often very slow near
the optimum — Remember the last step
» Creates an average oscillating part (changing
gradient sign) is damped
Gradient descent in a 'canyon’, i.e.

gradient different in the 2 dimensions

- Different kind of adaptive behavior (lecture Hinton) without and with momentum

BTW remember the gradient calculation: At = f}/AZ_l 4+ n

A OF () W
- e X

", 0z

Normalizing input data to zero mean helps to learn
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https://en.wikipedia.org/wiki/Stochastic_gradient_descent
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Optimizer

« There are many refinements available for the
optimizer, often heuristic

« Different kind of adaptive behavior (lecture Hinton)

ADAM:

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; ® g¢;. Good default settings for the tested machine learning problems are « = 0.001,
B = 0.9, B2 = 0.999 and € = 103, All operations on vectors are element-wise. With 3! and 3}
we denote 31 and (35 to the power ¢.

Require: «: Stepsize
Require: (3, 3> € [0,1): Exponential decay rates for the moment estimates
Require: f(6): Stochastic objective function with parameters 6

Momentum: Gradient descent is often very slow near Require: ,: Initial parameter vector

the optimum — Remember the last step

« Creates an average oscillating part is damped

Would like to have an adaptive learning rate for each
weight etc. — developed over the last 20-30y

Popular and efficient choice at present:

ADAM
(Adaptive Moment Estimation, 2014)

The general SGD of your DL Library

Defaults will do the job in most cases after playing a
bit to find a working learning rate

Batch size and learning rate a correlated

DESY. Intro DL | Dirk Krticker | 1st Terascale ML School

mo < 0 (Initialize 1°* moment vector)

vo ¢+ 0 (Initialize 2" moment vector)

t <— 0 (Initialize timestep)

while #; not converged do
t+—t+1
gt < Vo [i(0:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my¢ < 1 -mi—1 + (1 — B1) - g+ (Update biased first moment estimate)
v < P2 vy + (1 — Ba) - gf (Update biased second raw moment estimate)
my < my /(1 — %) (Compute bias-corrected first moment estimate)
0y < vy /(1 — B%) (Compute bias-corrected second raw moment estimate)
0; < 0;_1 — - My /(v/0; + €) (Update parameters)

end while

return 60; (Resulting parameters)

Overview: https://arxiv.org/abs/1609.04747
Seminal paper by LeCun (1998)
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https://arxiv.org/abs/1412.6980v8
https://arxiv.org/abs/1609.04747
http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

Learning curve

« ltis useful to observe the learning process over several
epochs

* Epoch == when all data has been used

* For the iterative learning we use all data randomly in
mini-batches until all data has been used and then we
start from the beginning with the same data

+ Atoo large learning rate will result in jumpy or even non
converging behavior (not shown in this example)

* Atoo small will not learn at all/fast enough

«  You need an independent data sample: test data !

« Sufficiently large not to be fooled by statistical fluctuations

* At some point the loss/metric on test data will become
worse than on the trainings data — biased on trainings
data

* Your net learns accidental patterns in your trainings
data that does not generalize

* At some point the loss/metric may become worse on the
test data — overtraining

DESY. Intro DL | Dirk Krticker | 1st Terascale ML School
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model loss

rain

Learning curve

040

« ltis useful to observe the learning process over several
epochs 8-

* Epoch == when all data has been used

* For the iterative learning we use all data randomly in
mini-batches until all data has been used and then we
start from the beginning with the same data 025

+ Atoo large learning rate will result in jumpy or even non
converging behavior (not shown in this example)

o

2 4 6 8
epoch

*  Atoo small will not learn at all/fast enough model accuracy
—— ftain

«  You need an independent data sample: test data ! T

« Sufficiently large not to be fooled by statistical fluctuations e

* At some point the loss/metric on test data will become

worse than on the trainings data — biased on trainings » 088
data E
&
* Your net learns accidental patterns in your trainings 086
data that does not generalize
 Extra metric, for example in classification 15

Accuracy=(correct labels)/(all labels)
as additional performance measure or metric

o
]
o
(=2]
[=4]

i
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Short recap

« Aset of layers + Activation function * Dense Network
« We train by stochastic gradient descent - MSE
« The DL library handles all the complicated « Stochastic Gradient Descent

derivatives by automatic differentiation .
* Learning rate

* For speed-up vector units or GPU together with « Momentum
highly optimized numerical libraries . SGD
« presenting our data in (mini-)batches * Adam
« Mini-batches are anyhow good for the extra * Learning curve
noise

« Train-test splitting
» Generalization capability of the trained network

must be checked on a test sample
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Binary Classification — Cross Entropy Loss

More on loss functions - Classification

 For classification we need a different loss

functions . s
Binary classification

« Binary Cross Entropy

+  For the last node we take a | signal  or
Sigmoid or Logistic function background

T —x
1 ‘I‘ € What to do if our true values are not real numbers but just
integer labels 0,1 ?
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Binary Cross Entropy

sigmoid output node

« We want to do binary classification:
Neural Network

* We have labeled trainings data:

Background vs signal i N . -~ O 1
« Some input variables x; label y; € {0, 1} x € R y — f(X|W) Yy < [ ) ]

Note: y is discrete now

y labels

* We want to get a probability y € [0, 1]

that we have a signal
. Cat — ] d

Cat: P(1]x;, w) = 9; w € R

Dog: P(O|X1,W) =1 yAz

« That’s a binomial model for which we can get the
optimal weights w by a Maximum Likelihood fit

* The likelihood for one batch of n events with
n=ny+n, and the -InL
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Binary Cross Entropy

« We want to do binary classification:

We have labeled trainings data:
Background vs signal \

Some input variables x; label y; € {0,1}
Note: y is discrete now

We want to get a probability y € [0,1]
that we have a signal

signal (cat): P(l ’XZ‘, W) — yAz
bckgrnd (dog): P(O’XZ, W) =1 yAz

That’s a binomial model for which we can get the
optimal weights w by a Maximum Likelihood fit

The likelihood for one batch of n events with
n=ng+n, and the -inL

DESY. Intro DL | Dirk Krticker | 1st Terascale ML School

Nns ny
L(wlbatch) = | [ 9: ][ (1 = 9)
i=1 =1

—In L(w|batch) = Zlnyz Zln 1—9;)

using the label ~ ~
- — Z [yz Ing;, + (1 — yz) 111(1 - y])]
1=1
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Binary Cross Entropy

« We want to do binary classification:

Nns ny
« We have labeled trainings data: L(W‘batCh) — H ?)z H (1 — ?)J)

Background vs signal \

« Some input variables x; label y; € {0,1}
Note: y is discrete now

* We want to get a probability y € [0,1]
that we have a signal —In L(w|batch) = Z Iny; — Z In(1 — gj)

* signal (cat): P(l ’XZ‘, W) — y}
N using the label
bckgrnd (dog): P(O’Xi, W) =1 — Y; ’ — = Z [yz Ing; + (1 — yz) ln(l - f&])]
1=1
« That’s a binomial model for which we can get the

optimal weights w by a Maximum Likelihood fit . This expression is called cross entropy

» The likelihood for one batch of n events with (up to 1/n)
n=ng+n, and the -inL * Minimizing this expression provides the
best optimal weight
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Binary Cross Entropy
Entropy = /ln(p(a:))p(x) dx

Reminder: Entropy is the averaged <in(p)>

« Shannon Entropy for some thing distributed with p /

Cross entropy is averaged over a different

distribution ¢ Cross Entropy = [ In(p(x)) ¢(x) dz
Gibb’s inequality

/ln(p)p dx < /ln(p)q dx

1 ) X
Cross Entropy Loss T E i log(9;) + (1 — y;) log(1 — 9;)]
is @ measure how similar two distributions are 1=1 |[jaa [network
similar

The minimum is p(x)=¢(x) . Minimizing makes

« Can be easily generalized to more then 2 classes
DESY. Intro DL | Dirk Kriicker | 1st Terascale ML School Page 52


Gibbs'%20inequality

And if we have more than 2 classes?

* For classification we need different loss i gy
. € J
+ Multi-class classification - {1,..,K} labels Ply=j|x) = —
X' W
« Similar logic, replace the binomial model by a Zkzl € K

multinomial model

Softmax (smooth version of max/multidim

version of logistic function _ _
For example 10 classes: typical output is a

vector of probabilities for the different classes
that add up to 1

(one hot encoding) true: [0,0,0,0,0,0,1,0,0,0]
predicted: [0.005, 0.007, 0.011, 0.018, 0.032, 0.019, 0.830, 0.005, 0.042, 0.031]

used together with sparse cross entropy
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https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/loss.py
https://en.wikipedia.org/wiki/Softmax_function

Summary

* is a universal function approximator

* |s a chain of linear transformations and non-linear
activation functions,

* is able to learn everything,

« learns by modifying the weights/biases,

« s trained by backpropagation and stochastic
gradient descent using the gradient with respect to
the weights/biases

 there are several heuristic algorithms for a
adaptive SGD, eg Adam

DESY. | Intro NN | Dirk Kricker

uses cross entropy for discrete labels, i.e.
classification

» with a logistic function for binary labels
or softmax as multiclass version

ReLU is the most important (game changing)
activation function

At the end of the day, the only thing you have to do
is to plug together prebuild pieces that implements
the knowledge of decades

« Standing on the shoulders of giants

« Or more like putting together a
Billy bookcase
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NEURALA NATVERK

~
ﬁ @ /Q\
N— _

1 b‘b@& ‘ % Features

2a Train} Test

2b »‘

e

« Normalize

3 y Metric
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NEURALA NATVERK Assembly Instruction [[{-%

e I

import tensorflow as tf
/ \ mnist = tf.keras.datasets.fashion_mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
Xx_train, x_test = x_train / 255.0 - 0.5, x_test / 255.0 - 0.5

~I1x & python

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dense (10, activation='softmax')
ID]
=model.compile(optimizer="'adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy’])
history = model.fit(x_train, y_train,

validation_data=(x_test,y_test),
batch_size=32, epochs=5 )
] x model.evaluate(x_test, y_test)

import numpy as np

fiveImages = x_test[0:5]

predictions model.predict(fivelmages)

predictions np.argmax(predictions,axis=1)

ReLU import matplotlib.pyplot as plt

class_names = ['T-shirt/top', 'Trouser', 'Pullover’,
'Dress', 'Coat’, 'Sandal', 'Shirt’,

'Sneaker', 'Bag', 'Ankle boot']
Flatte“ plt.figure(figsize=(10,10))

for i in range(5):
plt.subplot(1l,5,i+1)
SOftmax plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(fiveIlmages[i]., cmap=plt.cm.binary)

x-entropy plt.xlabel(class_names[predictions[i]])

plt.show()
Adam

Y4
J .

~
/

X X X X X

Ankle boot Pullover Trouser Trouser
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A Slmple Keras Implementation - Link to this example on Google’s free collab

« 1. File Menu: Save a copy to your Google drive
« 2. click the: 1

import tensorflow as tf
mnist = tf.keras.datasets.fashion_mnist J

(x_train, y_train), (x_test, y_test) = mnist.load_data() Ankle boot Pullover Trouser frouser s

Xx_train, x_test = x_train / 255.0 - 0.5, x_test / 255.0 - 0.5

Input dimension: 28x28=784

model = tf.keras.models.Sequential([ 10 classes
tf.keras.layers.Flatten(input_shape=(28, 28)), . .
tf.keras.layers.Dense(512, activation='relu'), 60k tralnlngS data, 1Ok test data
tf.keras.layers.Dense(512, activation='relu'), ~70 millions trainings pixel
tf.keras.layers.Dense (10, activation='softmax')
1)
model, summary () » 1818 Nodes*
model.compile(optimizer="adam’, . .
loss='sparse_categorical_crossentropy’, Trainable params. 669706
metrics=['accuracy'])
model.fit(x_train, y_train, Run times: batch size of 32 on a CPU
validation_data=(x_test,y test), s
. 60000/60000 [==============================] - 22s 365us/sample - loss: 0.4656 - acc: 0.8297
batch_size=32, epochs=5 Epoch 2/5
) p 60000/60000 [==============================] - 21s 356us/sample - loss: 0.3558 - acc: 0.8698
Epoch 3/5
60000/60000 [==============================] - 21s 355us/sample - loss: 0.3214 - acc: 0.8796
model.evaluate(x_test, y_test) Epoch 4/5
60000/60000 [==============================] - 22s 375us/sample - loss: 0.2995 - acc: 0.8885
Epoch 5/5
60000/60000 [==============================] - 22s 371lus/sample - loss: 0.2805 - acc: 0.8946
10000/10000 [==============================] - 1ls 79us/sample - loss: 0.3432 - acc: 0.8769

[0.3431608176469803, 0.8769]
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https://github.com/zalandoresearch/fashion-mnist
https://colab.research.google.com/drive/1j6Yn0R6UbkgmgVYg1LBSDPxR4Kj1N5Xp
https://www.cell.com/cell/fulltext/S0092-8674(18)30787-6?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0092867418307876%3Fshowall%3Dtrue

Where to go from here?

* Deep learning Resources

*  PLAY with the code! . : L :
just google, or click on my subjective list

« The example from the previous slide is complete, working code _
» https://www.deeplearningbook.org/

 TF tutorials Wikined o g . I

. ikipedia — but a wide range of qualit
 The fun starts when we look into complicated J q Y
architectures, there are 77

. CNN (Convolutional NN) = Philipp Heuser » https://medium.com/topic/machine-learning

» https://stats.stackexchange.com/

* https://machinelearningmastery.com/start-here/

 Autoencoder

. Generative ® httDSZ//dataeliXir.Com/

» https://towardsdatascience.com/

« VAE
. GAN (Generative ) = Torben Ferbel — 5l ® . gnd many more including a lot of rubbish you have to
o —l judge yourself
* Recurrent (memory) net 1/«
* RNN

* (Ceat sheets: https://becominghuman.ai/cheat-sheets-
« LSTM for-ai-neural-networks-machine-learning-deep-learning-
big-data-678c51b4b463

. ... We only had a small DNN example
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https://www.tensorflow.org/tutorials
https://en.wikipedia.org/wiki/Artificial_neural_network
https://www.deeplearningbook.org/
https://en.wikipedia.org/wiki/Portal:Machine_learning
https://stats.stackexchange.com/
https://medium.com/topic/machine-learning
https://machinelearningmastery.com/start-here/
https://dataelixir.com/
https://towardsdatascience.com/
https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-678c51b4b463

Thank you

IDEA style thanks to https://idea-instructions.com/ (CC by-nc-sa 4.0)
Rosenblatt and overfitting image from Wikipedia



https://idea-instructions.com/

Xavier Initialization

Why do we care about the size of the weights?

Forward view

Large weights will increase the signal after passing each
layer. If we use a activation function as tanh,
it will go into saturation.

Small weights will result in a signal that mainly stays in the
linear part of the tanh around 0. Then our network starts to
loose its non-linearity.

Backward view

Deep neural networks become difficult to train because of
the vanishing gradient problem. If we follow the gradient
through the different layers, it tends to become smaller.
The effect strongly depends on the initial size, i.e. variance
of the weights

This had been studied by Xavier Glorot and Yoshua
Bengio (2010) and later by He at al. (2015)

The problem can be mitigated by choosing the proper
variance when randomly initializing the weights.

DESY. Intro DL | Dirk Krticker | 1st Terascale ML School
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—Layer 1
Layer 2
—Layer 3
50 —Layer 4|
[ Layer 5
0 i f e "%‘ﬂ%ﬂ' i 1
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Backpropagated gradients
10 T T T T T l T T T T T
, '{r.;bl'l'. —Layer 1
J‘“.Jw Il'fl Layer 2
I ”".J‘I | —Layer 3
5r dejﬂ m'sll'ﬁ —Layer 4| |
iy Vh" ‘l]_lf.,‘,‘ Layer 5
o f“h |1 Ny Bl
0 —-M ] ‘I.x I i I i ; "-"A':".“a-_n.ﬁu-

-025 -02 -0.15 -0.1

-0.05 0 005 0.1 015 02 025
Backpropagated gradients

(Glorot and Bengio, 2010)
The optimal variance is different for forward and

backward step but they propose to initialize with

Var(w) = ~—v— for example by sampling
inTNout
uniformly from + +6 The details depend on
inTNout

the activation functions. ReLU had been studied by
He et al.
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http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://arxiv.org/pdf/1502.01852.pdf
https://mnsgrg.com/2017/12/21/xavier-initialization/

Cutting hyperplanes

* How many independent
areas do we get with n
hyperplanes?

e Dimension d and the

number of different

hyperplanes s

e This 1s also the
maximum number of

NN
A
o

linear units with s ReLU
units within one layer
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Cutting hyperplanes

J=A g/ S-3
How many independent areas do we - / f
get with n hyperplanes? O/I O& C/)a/{(” ,0 o j Al
Dimension d and the number of j By 7—9//7%)7” //O? neS (WJ) /[ {@ 1 ”( 3 < ?

different hyperplanes s

This is also the maximum number of A%— Aﬂ/fs 7) 5 + -’] a4 v

linear units with s ReLU units within

one layer /4+ P 057L 4 “{ 2 ’Z 3
For example: 10 dimensional input with 5 c
d 3 M4

40 nodes may cut your phase space

into up to 1.2 billion pieces S
Z( ] T

e
e <G
10 cutsin2d => 56 pieces 5’; ( 1
40 cuts in 2d => 821
10 cuts in 10d => 1024 ‘

40 cuts in 10d => 1221246132
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Cutting hyperplanes - DL

Layer 1 Layer 2 Layer 3
X2 X2 &
e .>< f
c@® d
X

>< (b) ! (c)
a® b

O O

X1 X2

(a)
:x1 it i s s S e

(e) (f) (2)
Bounding and Counting Linear Regions of Deep Neural Networks, Serra et
al., https://arxiv.org/abs/1711.02114
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https://arxiv.org/abs/1711.02114

1 layer

X, y <-[0,2]
z=0.5(x+y)

a=ReLU(x+y-2) a=RelLU(-x+y)

z=05(x+y)inxy z=05%a+b)inxy

a=RelLU(-x-y+2) 2=05%+0.5dinxy
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2 layers

z=0.125"(a+b+c+d+e+)inxy e =ReLU( 0.36"x + 0.36"y - 0.43 } in x,y f=ReLU(-0.36"x + 0.36"y - 0.29 ) in X,y z=05% + 0.5 inxy

z=0.0625"(a+b+c+d+e+f+g+h)inxy g =ReLU( 0.53"x - 0.46°y - 0.07 ) in x,y h =ReLU( 0.53"x + 0.46"y - 0.99 ) in x,y z=05% +0.5Tinxy
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3 layers

z=0.25"(a+b+c+d)inxy
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Cutting hyperplanes - DL

Figure 1: Binary classification using a shallow model with 20 hidden units (solid line) and a deep
model with two layers of 10 units each (dashed line). The right panel shows a close-up of the left
panel. Filled markers indicate errors made by the shallow model.

On the Number of Linear Regions of Deep Neural Networks, Montufar et al.,
https://arxiv.org/abs/1402.1869

https://arxiv.org/abs/1312.6098
Bounding and Counting Linear Regions of Deep Neural Networks, Serra et al.,

https://arxiv.org/abs/1711.02114

DESY. crash course DL Page 67
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Cutting hyperplanes - DL

e Multilayer networks are often more expressive (but not always for large input dimension, see paper)
* More complicated boundaries can be described with the same number of nodes

* But these boundaries are not independent (kind of fractal structure)

* For the ReLU networks one can show quantitative bounds on the number of linear units, see paper

Deep is better than large
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