
Introduction to  
Generative Adversarial

Networks (GANs).
April 29th 2019, Deep Learning and GPU Computing Seminar, DESY

Torben Ferber (torben.ferber@desy.de)

Introduction to GANs (Torben Ferber) �2

Overview
• Introduction to GANs

• GAN hell: Vanishing gradients and mode collapse

• WGAN-GP in PyTorch

• GAN metrics: How to measure performance

• GAN hacks

• Real examples

Introduction to GANs (Torben Ferber) �3

• Goal: “synthesise artificial samples, such as images, that are
indistinguishable from authentic samples”

• Generative modelling:

• observe samples to generate more samples

• infer density function that describes data

• Several different generative models, GANs are one of them

• GANs introduced to ML community in 2014 by Goodfellow et
al. [1], first ideas are much older

Introduction to GANs

[1] GANs (https://arxiv.org/abs/1406.2661)

https://arxiv.org/abs/1406.2661

Introduction to GANs (Torben Ferber) �4

Edmond de Belamy ($432,5000)

Introduction to GANs (Torben Ferber) �5

https://thispersondoesnotexist.com/

StyleGAN (https://arxiv.org/abs/1812.04948)

https://thispersondoesnotexist.com/
https://arxiv.org/abs/1812.04948

Introduction to GANs (Torben Ferber) �6

Generative models: Why?
• Generate simulated environments (e.g. for RL)

• Infer possible future states

• Recover missing information

• Multi-modal outputs (= many possible outputs)

• Image-to-image translation

• Cross-domain: Text-to-image

• …

Introduction to GANs (Torben Ferber) �7

Generative face completion

[1] http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Generative_Face_Completion_CVPR_2017_paper.pdf

http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Generative_Face_Completion_CVPR_2017_paper.pdf

Introduction to GANs (Torben Ferber) �8

Multi-domain image-to-image translation

[1] StarGAN (https://arxiv.org/abs/1711.09020)

https://arxiv.org/abs/1711.09020

Introduction to GANs (Torben Ferber) �9

GANs in words
• Two different models that are adversarial of each other (game theory): 
 
Each model tries to get the highest possible payoff

• Player 1: Generator (G) that tries to capture a training data distribution

• Player 2: Discriminator (D) that tries to identify if data came from the training
data or from the generator

• Ideal minimax two player game if G recovers training data and D=0.5 or in other
words: If the two players reach their Nash equilibrium

Introduction to GANs (Torben Ferber) �10

Introduction to GANs: Nash equilibrium
• Nash equilibrium first formulated by John Nash in the 1950s in the context of

game theory:

• Both players have chosen a strategy

• No player can benefit by changing the strategy if the other player sticks to
their current strategy  
 
→ Both strategies and payoffs constitute a Nash equilibrium

• In other words: A change in strategy will lead to a worse result for this player

THE example: “Prisoners dilemma” (https://en.wikipedia.org/wiki/Prisoner%27s_dilemma)

https://en.wikipedia.org/wiki/Prisoner%27s_dilemma

Introduction to GANs (Torben Ferber) �11

Introduction to GANs: Schematic

x sampled from data

Differentiable
function D

random noise z

Differentiable
function G

x’ from model: G(z)

D(x) tries to be near 1

G tries to make D(G(z)) near 1
D tries to make D(G(z)) near 0

Introduction to GANs (Torben Ferber) �12

Introduction to GANs: Schematic

x sampled from data

Neural Network: 
Discriminator D

random noise z

Neural Network: 
Discriminator G

x’ from model: G(z)

D(x) tries to be near 1

G tries to make D(G(z)) near 1
D tries to make D(G(z)) near 0ba

ck
-p

ro
pa

ga
tio

n

ba
ck

-p
ro

pa
ga

tio
n

generative

adversarial

Introduction to GANs (Torben Ferber) �13

Introduction to GANs: Schematics

http://billhooverart.com

Discriminator

Generator

http://billhooverart.com/

Introduction to GANs (Torben Ferber) �14

Introduction to GANs: Training process

In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

D

G

data

pg~pdata,  
D is partially accurate

[1] GANs (https://arxiv.org/abs/1406.2661)

Update D: 
D is trained until 
D* = pdata / (pdata +pg)

Update G: 
Gradient of D has guided
G to move towards data-
like regions

Nash equilibrium!  
D(x) = 0.5

Repeat many times

https://arxiv.org/abs/1406.2661

Introduction to GANs (Torben Ferber) �15

GANs: Loss function
• Objective function for the discriminator D is given by the cross entropy of a

binary classifier (D(x)=1 for data and =0 for fake): 

• Objective function for the generator G:  
 
 

• Minimax game value function:

Backpropagation
Now, we will go through some simple equations. The discriminator

outputs a value D(x) indicating the chance that x is a real image. Our

objective is to maximize the chance to recognize real images as real and

generated images as fake. i.e. the maximum likelihood of the observed

data. To measure the loss, we use cross-entropy as in most Deep

Learning: p log(q). For real image, p (the true label for real images)

equals to 1. For generated images, we reverse the label (i.e. one minus

label). So the objective becomes:

On the generator side, its objective function wants the model to

generate images with the highest possible value of D(x) to fool the

discriminator.

We often define GAN as a minimax game which G wants to minimize V
while D wants to maximize it.

Once both objective functions are defined, they are learned jointly by

the alternating gradient descent. We fix the generator model’s

parameters and perform a single iteration of gradient descent on the

discriminator using the real and the generated images. Then we switch

sides. Fix the discriminator and train the generator for another single

iteration. We train both networks in alternating steps until the

generator produces good quality images. The following summarizes the

data flow and the gradients used for the backpropagation.

Backpropagation
Now, we will go through some simple equations. The discriminator

outputs a value D(x) indicating the chance that x is a real image. Our

objective is to maximize the chance to recognize real images as real and

generated images as fake. i.e. the maximum likelihood of the observed

data. To measure the loss, we use cross-entropy as in most Deep

Learning: p log(q). For real image, p (the true label for real images)

equals to 1. For generated images, we reverse the label (i.e. one minus

label). So the objective becomes:

On the generator side, its objective function wants the model to

generate images with the highest possible value of D(x) to fool the

discriminator.

We often define GAN as a minimax game which G wants to minimize V
while D wants to maximize it.

Once both objective functions are defined, they are learned jointly by

the alternating gradient descent. We fix the generator model’s

parameters and perform a single iteration of gradient descent on the

discriminator using the real and the generated images. Then we switch

sides. Fix the discriminator and train the generator for another single

iteration. We train both networks in alternating steps until the

generator produces good quality images. The following summarizes the

data flow and the gradients used for the backpropagation.

Mode collapse: the generator collapses which produces limited

varieties of samples,

Diminished gradient: the discriminator gets too successful that

the generator gradient vanishes and learns nothing,

Unbalance between the generator and discriminator causing

overfitting, and

Highly sensitive to the hyperparameter selections.

Mode

Real-life data distributions are multimodal. For example, in MNIST,

there are 10 major modes from digit ‘0’ to digit ‘9’. The samples below

are generated by two different GANs. The top row produces all 10

modes while the second row creates a single mode only (the digit “6”).

This problem is called mode collapse when only a few modes of data

are generated.

Nash equilibrium

GAN is based on the zero-sum non-cooperative game. In short, if one

wins the other loses. A zero-sum game is also called minimax. Your

opponent wants to maximize its actions and your actions are to

minimize them. In game theory, the GAN model converges when the

discriminator and the generator reach a Nash equilibrium. This is the

optimal point for the minimax equation below.

Since both sides want to undermine the others, a Nash equilibrium

happens when one player will not change its action regardless of what

the opponent may do. Consider two player A and B which control the

value x and y respectively. Player A wants to maximize the value xy
while B wants to minimize it.

•

•

•

•

Source

Introduction to GANs (Torben Ferber) �16

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:

r✓d

1

m

mX

i=1

h
logD

⇣
x(i)

⌘
+ log

⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘i
.

end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:

r✓g
1

m

mX

i=1

log
⇣
1�D

⇣
G
⇣
z(i)

⌘⌘⌘
.

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.
Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

Proof. The training criterion for the discriminator D, given any generator G, is to maximize the
quantity V (G,D)

V (G,D) =

Z

x
pdata(x) log(D(x))dx+

Z

z
pz(z) log(1�D(g(z)))dz

=

Z

x
pdata(x) log(D(x)) + pg(x) log(1�D(x))dx (3)

For any (a, b) 2 R2 \ {0, 0}, the function y ! a log(y) + b log(1 � y) achieves its maximum in
[0, 1] at a

a+b . The discriminator does not need to be defined outside of Supp(pdata) [Supp(pg),
concluding the proof.

Note that the training objective for D can be interpreted as maximizing the log-likelihood for es-
timating the conditional probability P (Y = y|x), where Y indicates whether x comes from pdata
(with y = 1) or from pg (with y = 0). The minimax game in Eq. 1 can now be reformulated as:

C(G) =max
D

V (G,D)

=Ex⇠pdata [logD
⇤
G(x)] + Ez⇠pz [log(1�D⇤

G(G(z)))] (4)
=Ex⇠pdata [logD

⇤
G(x)] + Ex⇠pg [log(1�D⇤

G(x))]

=Ex⇠pdata


log

pdata(x)

Pdata(x) + pg(x)

�
+ Ex⇠pg


log

pg(x)

pdata(x) + pg(x)

�

4

[1] GANs (https://arxiv.org/abs/1406.2661)

https://arxiv.org/abs/1406.2661

Introduction to GANs (Torben Ferber) �17

The GAN hell

Vanishing gradients

Mode collapse

Introduction to GANs (Torben Ferber) �18

MinMax or MaxMin: Mode collapse
• minG maxD V(G, D):

• Good! Optimally the network will converge to pgen = pdata

• maxD minG V(G, D):

• Bad! Generator will converge to a point that is currently considered real rather
than fake

• If D catches that, G often just moves to the next node instead of the full
distribution

• Network design does not really specify minmax over maxmin: Mode collapse

Introduction to GANs (Torben Ferber) �19

Mode collapse

[1] arxiv:1611.02163

Published as a conference paper at ICLR 2017

Figure 2: Unrolling the discriminator stabilizes GAN training on a toy 2D mixture of Gaussians
dataset. Columns show a heatmap of the generator distribution after increasing numbers of training
steps. The final column shows the data distribution. The top row shows training for a GAN with
10 unrolling steps. Its generator quickly spreads out and converges to the target distribution. The
bottom row shows standard GAN training. The generator rotates through the modes of the data
distribution. It never converges to a fixed distribution, and only ever assigns significant probability
mass to a single data mode at once.

Figure 3: Unrolled GAN training increases stability for an RNN generator and convolutional dis-
criminator trained on MNIST. The top row was run with 20 unrolling steps. The bottom row is a
standard GAN, with 0 unrolling steps. Images are samples from the generator after the indicated
number of training steps.

generator, but without backpropagating through the generator. In both cases we find that the unrolled
objective performs better.

3.2 PATHOLOGICAL MODEL WITH MISMATCHED GENERATOR AND DISCRIMINATOR

To evaluate the ability of this approach to improve trainability, we look to a traditionally challenging
family of models to train – recurrent neural networks (RNNs). In this experiment we try to generate
MNIST samples using an LSTM (Hochreiter & Schmidhuber, 1997). MNIST digits are 28x28 pixel
images. At each timestep of the generator LSTM, it outputs one column of this image, so that
after 28 timesteps it has output the entire sample. We use a convolutional neural network as the
discriminator. See Appendix C for the full model and training details. Unlike in all previously
successful GAN models, there is no symmetry between the generator and the discriminator in this
task, resulting in a more complex power balance. Results can be seen in Figure 3. Once again,
without unrolling the model quickly collapses, and rotates through a sequence of single modes.
Instead of rotating spatially, it cycles through proto-digit like blobs. When running with unrolling
steps the generator disperses and appears to cover the whole data distribution, as in the 2D example.

6

Introduction to GANs (Torben Ferber) �20

Mode collapse

data generated

Introduction to GANs (Torben Ferber) �21

Vanishing gradients: Modified loss function
• Usually D has a much easier start than G, and D can reject all generated

samples as fake:

• log(1-D(G(z))→ 0

• Slightly modified Minimax game:

• Instead of training G to minimising log(1-D(G(z)),  
train G to maximise log(D(G(z))

• Math behind this: GANs are minimizing the Jenson-Shannon (JS) divergence,
which saturates if data distribution p and fake distribution q do not overlap

Introduction to GANs (Torben Ferber) �22

Vanishing gradients: Wasserstein distance

Figure 2: Optimal discriminator and critic when learning to di↵erentiate two Gaussians.

As we can see, the discriminator of a minimax GAN saturates and results in vanishing

gradients. Our WGAN critic provides very clean gradients on all parts of the space.

4 Empirical Results

We run experiments on image generation using our Wasserstein-GAN algorithm and
show that there are significant practical benefits to using it over the formulation
used in standard GANs.

We claim two main benefits:

• a meaningful loss metric that correlates with the generator’s convergence and
sample quality

• improved stability of the optimization process

4.1 Experimental Procedure

We run experiments on image generation. The target distribution to learn is the
LSUN-Bedrooms dataset [24] – a collection of natural images of indoor bedrooms.
Our baseline comparison is DCGAN [18], a GAN with a convolutional architecture
trained with the standard GAN procedure using the � logD trick [4]. The generated
samples are 3-channel images of 64x64 pixels in size. We use the hyper-parameters
specified in Algorithm 1 for all of our experiments.

9

[1] WGANs 1701.07875

Cross-Entropy minus self entropy 
→ Jenson-Shannon (JS) divergence

Maximum likelihood  
→ Kullbach-Leibler (KS) divergence

Introduction to GANs (Torben Ferber) �23

Vanishing gradients: Wasserstein distance
• Given the problems (vanishing gradients, mode collapse) of Vanilla GANs, is

there a better distance to measure the difference between real and fake?

[1] https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

Introduction to GANs (Torben Ferber) �24

Vanishing gradients: Wasserstein distance Transport plane

+ many more possibilities

Introduction to GANs (Torben Ferber) �25

Vanishing gradients: Wasserstein distance
• EMD is the infimum (greatest lower bound) of all transport planes:

• Using the Kantorovich-Rubinstein duality → 
 
 
 
where f(x) is a 1-Lifschitz function with |f(x1)-f(x2)| ≤ |x1 - x2|.

• A neural net can learn the function f(x) with two restrictions:

• We have to make sure that f(x) is (almost) 1-Lifschitz.

• We have to train the critic until (almost) convergence.
[1] WGANs (arXiv:1701.07875v3)

Introduction to GANs (Torben Ferber) �26

Vanishing gradients: Wasserstein distance

[1] https://de.wikipedia.org/wiki/Lipschitz-Stetigkeit

https://de.wikipedia.org/wiki/Lipschitz-Stetigkeit

Introduction to GANs (Torben Ferber) �27

Vanishing gradients: Wasserstein distance
• Weight clipping (original WGAN):

• Limit weights to -c < w < c.

• Gradient penalty (WGAN-GP, Improved WGAN): 
“A differentiable function f is 1-Lipschitz if and only if it has gradients with norm
at most 1 everywhere.” → penalty term in loss function if norm > 1

Computationally expensive
Do not use batch norm in critic

Clipping value c is hyperparameter: 
Very hard to optimize

Introduction to GANs (Torben Ferber) �28

[1] WGANs (arXiv:1701.07875v3)

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values ↵ = 0.00005, c = 0.01, m = 64, ncritic = 5.

Require: : ↵, the learning rate. c, the clipping parameter. m, the batch size.
ncritic, the number of iterations of the critic per generator iteration.

Require: : w0, initial critic parameters. ✓0, initial generator’s parameters.
1: while ✓ has not converged do
2: for t = 0, ..., ncritic do
3: Sample {x

(i)
}
m

i=1 ⇠ Pr a batch from the real data.
4: Sample {z

(i)
}
m

i=1 ⇠ p(z) a batch of prior samples.
5: gw rw

⇥
1
m

P
m

i=1 fw(x
(i))� 1

m

P
m

i=1 fw(g✓(z
(i)))

⇤

6: w w + ↵ · RMSProp(w, gw)
7: w clip(w,�c, c)
8: end for
9: Sample {z

(i)
}
m

i=1 ⇠ p(z) a batch of prior samples.
10: g✓ �r✓

1
m

P
m

i=1 fw(g✓(z
(i)))

11: ✓ ✓ � ↵ · RMSProp(✓, g✓)
12: end while

The fact that the EM distance is continuous and di↵erentiable a.e. means that
we can (and should) train the critic till optimality. The argument is simple, the
more we train the critic, the more reliable gradient of the Wasserstein we get, which
is actually useful by the fact that Wasserstein is di↵erentiable almost everywhere.
For the JS, as the discriminator gets better the gradients get more reliable but the
true gradient is 0 since the JS is locally saturated and we get vanishing gradients,
as can be seen in Figure 1 of this paper and Theorem 2.4 of [1]. In Figure 2
we show a proof of concept of this, where we train a GAN discriminator and a
WGAN critic till optimality. The discriminator learns very quickly to distinguish
between fake and real, and as expected provides no reliable gradient information.
The critic, however, can’t saturate, and converges to a linear function that gives
remarkably clean gradients everywhere. The fact that we constrain the weights
limits the possible growth of the function to be at most linear in di↵erent parts of
the space, forcing the optimal critic to have this behaviour.

Perhaps more importantly, the fact that we can train the critic till optimality
makes it impossible to collapse modes when we do. This is due to the fact that mode
collapse comes from the fact that the optimal generator for a fixed discriminator
is a sum of deltas on the points the discriminator assigns the highest values, as
observed by [4] and highlighted in [11].

In the following section we display the practical benefits of our new algorithm,
and we provide an in-depth comparison of its behaviour and that of traditional
GANs.

8

Introduction to GANs (Torben Ferber) �29

[1] WGAN-GPs (arXiv:1704.00028v3)

Algorithm 1 WGAN with gradient penalty. We use default values of � = 10, ncritic = 5, ↵ =
0.0001, �1 = 0, �2 = 0.9.
Require: The gradient penalty coefficient �, the number of critic iterations per generator iteration

ncritic, the batch size m, Adam hyperparameters ↵,�1,�2.
Require: initial critic parameters w0, initial generator parameters ✓0.

1: while ✓ has not converged do
2: for t = 1, ..., ncritic do
3: for i = 1, ...,m do
4: Sample real data x ⇠ Pr, latent variable z ⇠ p(z), a random number ✏ ⇠ U [0, 1].
5: x̃ G✓(z)
6: x̂ ✏x+ (1� ✏)x̃
7: L(i) Dw(x̃)�Dw(x) + �(krx̂Dw(x̂)k2 � 1)2

8: end for
9: w Adam(rw

1
m

Pm
i=1 L

(i), w,↵,�1,�2)
10: end for
11: Sample a batch of latent variables {z(i)}mi=1 ⇠ p(z).
12: ✓ Adam(r✓

1
m

Pm
i=1�Dw(G✓(z)), ✓,↵,�1,�2)

13: end while

critic. In each case, the critic trained with weight clipping ignores higher moments of the data dis-
tribution and instead models very simple approximations to the optimal functions. In contrast, our
approach does not suffer from this behavior.

3.2 Exploding and vanishing gradients

We observe that the WGAN optimization process is difficult because of interactions between the
weight constraint and the cost function, which result in either vanishing or exploding gradients
without careful tuning of the clipping threshold c.

To demonstrate this, we train WGAN on the Swiss Roll toy dataset, varying the clipping threshold c
in [10�1, 10�2, 10�3], and plot the norm of the gradient of the critic loss with respect to successive
layers of activations. Both generator and critic are 12-layer ReLU MLPs without batch normaliza-
tion. Figure 1b shows that for each of these values, the gradient either grows or decays exponentially
as we move farther back in the network. We find our method results in more stable gradients that
neither vanish nor explode, allowing training of more complicated networks.

4 Gradient penalty

We now propose an alternative way to enforce the Lipschitz constraint. A differentiable function
is 1-Lipschtiz if and only if it has gradients with norm at most 1 everywhere, so we consider di-
rectly constraining the gradient norm of the critic’s output with respect to its input. To circumvent
tractability issues, we enforce a soft version of the constraint with a penalty on the gradient norm
for random samples x̂ ⇠ Px̂. Our new objective is

L = E
x̃⇠Pg

[D(x̃)]� E
x⇠Pr

[D(x)]

| {z }
Original critic loss

+� E
x̂⇠Px̂

⇥
(krx̂D(x̂)k2 � 1)2

⇤
.

| {z }
Our gradient penalty

(3)

Sampling distribution We implicitly define Px̂ sampling uniformly along straight lines between
pairs of points sampled from the data distribution Pr and the generator distribution Pg . This is
motivated by the fact that the optimal critic contains straight lines with gradient norm 1 connecting
coupled points from Pr and Pg (see Proposition 1). Given that enforcing the unit gradient norm
constraint everywhere is intractable, enforcing it only along these straight lines seems sufficient and
experimentally results in good performance.

Penalty coefficient All experiments in this paper use � = 10, which we found to work well across
a variety of architectures and datasets ranging from toy tasks to large ImageNet CNNs.

4

Introduction to GANs (Torben Ferber) �30

WGANs: Schematics

http://billhooverart.com

Critic

Generator

http://billhooverart.com/

Introduction to GANs (Torben Ferber) �31

Other losses?

[1] https://towardsdatascience.com/gan-objective-functions-gans-and-their-variations-ad77340bce3c

← 2017 Hype

← 2018 Hype

← 2014 Hype

https://towardsdatascience.com/gan-objective-functions-gans-and-their-variations-ad77340bce3c

Introduction to GANs (Torben Ferber) �32

[1] Google Brain, arXiv:1711.10337v4

“We find that most models can reach similar scores with enough
hyperparameter optimization and random restarts.

(…) improvements can arise from a higher computational budget
and tuning more than fundamental algorithmic changes.”

tl; dr: Hyperparameters are more important than loss functions.  
(This is heavily debated and probably problem-dependent.)

Introduction to GANs (Torben Ferber) �33

GAN Inference: Only needs the generator

x sampled from data

Neural Network: 
Discriminator D

random noise z

Neural Network: 
Discriminator G

x from model: G(z)

D(x) tries to be near 1

G tries to make D(G(z)) near 1
D tries to make D(G(z)) near 0ba

ck
-p

ro
pa

ga
tio

n

ba
ck

-p
ro

pa
ga

tio
n

Introduction to GANs (Torben Ferber) �34

Introduction to GANs (Torben Ferber) �35

ML on HTCondor

#!/bin/bash
source /etc/profile.d/modules.sh
module load anaconda3

WORK_DIR=`mktemp -d`
scp <path_to_my_data_on_pnfs> $WORK_DIR

python <path_to_my_script>/myscript.py -i traindir $WORK_DIR

2) submit.sh

Universe = vanilla
Executable = submit.sh
Log = job.log.$(Cluster)-$(Process)
Error = job.err.$(Cluster)-$(Process)
Output = job.out.$(Cluster)-$(Process)
RequestMemory = 4096
Request_GPU = 1
Requirements = (OpSysAndVer == "CentOS7")
+RequestRuntime = 18000
notification = Error
Queue 1

1) submit.htc

import matplotlib.pyplot as plt
plt.switch_backend('agg')

import torch
...

3) myscript.py

Introduction to GANs (Torben Ferber) �36

[1] https://pytorch.org/

https://pytorch.org/

Introduction to GANs (Torben Ferber) �37

WGAN-GP in PyTorch

Algorithm 1 WGAN with gradient penalty. We use default values of � = 10, ncritic = 5, ↵ =
0.0001, �1 = 0, �2 = 0.9.
Require: The gradient penalty coefficient �, the number of critic iterations per generator iteration

ncritic, the batch size m, Adam hyperparameters ↵,�1,�2.
Require: initial critic parameters w0, initial generator parameters ✓0.

1: while ✓ has not converged do
2: for t = 1, ..., ncritic do
3: for i = 1, ...,m do
4: Sample real data x ⇠ Pr, latent variable z ⇠ p(z), a random number ✏ ⇠ U [0, 1].
5: x̃ G✓(z)
6: x̂ ✏x+ (1� ✏)x̃
7: L(i) Dw(x̃)�Dw(x) + �(krx̂Dw(x̂)k2 � 1)2

8: end for
9: w Adam(rw

1
m

Pm
i=1 L

(i), w,↵,�1,�2)
10: end for
11: Sample a batch of latent variables {z(i)}mi=1 ⇠ p(z).
12: ✓ Adam(r✓

1
m

Pm
i=1�Dw(G✓(z)), ✓,↵,�1,�2)

13: end while

critic. In each case, the critic trained with weight clipping ignores higher moments of the data dis-
tribution and instead models very simple approximations to the optimal functions. In contrast, our
approach does not suffer from this behavior.

3.2 Exploding and vanishing gradients

We observe that the WGAN optimization process is difficult because of interactions between the
weight constraint and the cost function, which result in either vanishing or exploding gradients
without careful tuning of the clipping threshold c.

To demonstrate this, we train WGAN on the Swiss Roll toy dataset, varying the clipping threshold c
in [10�1, 10�2, 10�3], and plot the norm of the gradient of the critic loss with respect to successive
layers of activations. Both generator and critic are 12-layer ReLU MLPs without batch normaliza-
tion. Figure 1b shows that for each of these values, the gradient either grows or decays exponentially
as we move farther back in the network. We find our method results in more stable gradients that
neither vanish nor explode, allowing training of more complicated networks.

4 Gradient penalty

We now propose an alternative way to enforce the Lipschitz constraint. A differentiable function
is 1-Lipschtiz if and only if it has gradients with norm at most 1 everywhere, so we consider di-
rectly constraining the gradient norm of the critic’s output with respect to its input. To circumvent
tractability issues, we enforce a soft version of the constraint with a penalty on the gradient norm
for random samples x̂ ⇠ Px̂. Our new objective is

L = E
x̃⇠Pg

[D(x̃)]� E
x⇠Pr

[D(x)]

| {z }
Original critic loss

+� E
x̂⇠Px̂

⇥
(krx̂D(x̂)k2 � 1)2

⇤
.

| {z }
Our gradient penalty

(3)

Sampling distribution We implicitly define Px̂ sampling uniformly along straight lines between
pairs of points sampled from the data distribution Pr and the generator distribution Pg . This is
motivated by the fact that the optimal critic contains straight lines with gradient norm 1 connecting
coupled points from Pr and Pg (see Proposition 1). Given that enforcing the unit gradient norm
constraint everywhere is intractable, enforcing it only along these straight lines seems sufficient and
experimentally results in good performance.

Penalty coefficient All experiments in this paper use � = 10, which we found to work well across
a variety of architectures and datasets ranging from toy tasks to large ImageNet CNNs.

4

Introduction to GANs (Torben Ferber) �38

WGAN-GP in PyTorch: Input → Output

1 GeV photons in the Belle II barrel calorimeter (GEANT4)
Each cell is a 5×5cm CsI(Tl) crystal

Introduction to GANs (Torben Ferber) �39

WGAN-GP in PyTorch: Sample real data
from torch.utils.data import Dataset

class ClusterImage(Dataset):
 """
 Dataset of cluster images.
 """
 def __init__(self,
 df_x,
 df_monitor,
):

 self.images = df_x.values.astype(dtype=np.float32)
 self.monitor = df_monitor.values.astype(dtype=np.float32)
 self.y = np.ones(len(self.images))

todo: clip to remove outliers
todo: scale to [-1, 1] using sklearn MinMaxScaler

 def __len__(self):
 return self.y.shape[0]

 def __getitem__(self, idx):
 return (self.images[idx], self.monitor[idx], self.y[idx])

Introduction to GANs (Torben Ferber) �40

WGAN-GP in PyTorch: Sample real data

import torch, uproot, pandas

read ROOT input file(s)
tree = uproot.open('/pnfs/desy.de/../myfile.root')['mytree']
df = tree.pandas.df(['var1','var2', 'pixel_*'])

create dataset
dataset = ClusterImage(df_x = df.filter(like='pixel_').fillna(value=0.0),
 df_m = df[['var1', 'var2']])

create dataloader
data_loader = torch.utils.data.DataLoader(dataset=dataset,
 batch_size=512,
 shuffle=True,
 num_workers=12) # Number of CPUs

Use ROOT without installing #$@&%*!

pip install uproot --user

Introduction to GANs (Torben Ferber) �41

WGAN-GP in PyTorch: Training

import time

N_CRITIC_STEPS = 5

for epoch in range(N_EPOCHS):

 # start timer
 t0 = time.time()

 #loop through batches (no need for class labels right now)
 for batch_number, (images, monitor, y) in enumerate(data_loader):

 if critic_step < N_CRITIC_STEPS:
 # train critic
 else:
 # train generator

 # end timer
 t_epoch = time.time() - t0
 print('time per epoch: %2.2f seconds' % (t_epoch))

hyperparameter 
Important: Train WGANs until
(almost) convergence

Introduction to GANs (Torben Ferber)

critic_fc(
 (layer_module): ModuleList(
 (0): Linear(in_features=25, out_features=50)
 (1): LeakyReLU(negative_slope=0.1)
 (2): Dropout(p=0.05)
 (3): Linear(in_features=50, out_features=50)
 (4): LeakyReLU(negative_slope=0.1)
 (5): Dropout(p=0.05)
 (6): Linear(in_features=50, out_features=25)
 (7): LeakyReLU(negative_slope=0.1)
 (8): Dropout(p=0.05)
 (9): Linear(in_features=25, out_features=1)
)
)

�42

WGAN-GP in PyTorch: Networks and optimizers

No sigmoid!

generator_fc(
 (layer_module): ModuleList(
 (0): Linear(in_features=10, out_features=50)
 (1): LeakyReLU(negative_slope=0.1)
 (2): Linear(in_features=50, out_features=25)
 (3): LeakyReLU(negative_slope=0.1)
 (4): Linear(in_features=25, out_features=25)
 (5): Tanh()
)
)

[-1, 1]

critic_optimizer = torch.optim.RMSprop(critic.parameters(), lr=0.00005)
generator_optimizer = torch.optim.RMSprop(generator.parameters(), lr=0.00005)

if torch.cuda.is_available():
 critic.cuda()
 generator.cuda()

GPU

N=10

Introduction to GANs (Torben Ferber) �43

WGAN-GP in PyTorch: Critic and generator training
critic.zero_grad()

clamp weights
for p in critic.parameters():
p.data.clamp_(-C, C)

prediction on data
pred_real = torch.mean(critic(images))

get latent noise vector
z = to_var(torch.randn(batch_size, N_Z))

generate images
fake_images = generator(z)

prediction on fake data
pred_fake = torch.mean(critic(fake_images))

gradient penalty
gradient_penalty = calc_gradient_penalty(critic,
 images.data,
 fake_images.data,
 batch_size,
 LAMBDA)

loss and back propagation
critic_loss = pred_fake - pred_real + gradient_penalty
critic_loss.backward()
critic_optimizer.step()

critic_step += 1

C = 0.01

N_Z = 10

generator.zero_grad()

get latent noise vector
z = to_var(torch.randn(batch_size*2, N_Z))

generate images
fake_images = generator(z)

prediction on fake data
pred_fake = torch.mean(critic(fake_images))

loss and back propagation
generator_loss = -pred_fake
generator_loss.backward()
generator_optimizer.step()

N_Z = 10

LAMBDA = 10.0

def to_var(x):
 if torch.cuda.is_available():
 x = x.cuda()
 return Variable(x)

Introduction to GANs (Torben Ferber)

M
et

ric
s

https://github.com/scikit-hep/uproot
https://medium.com/@jonathan_hui/gan-how-to-measure-gan-performance-64b988c47732

Introduction to GANs (Torben Ferber) �45

Metrics: Visual
• Works well for real images using real humans to judge image quality

“2-4-legged-Horse-Cow”
(Over-generalization)

“Many-eyed-dog” 
(CNN insensitive)

“The skinned dog.” 
(Orthogonal 2D projection)

[1] Ian Goodfellow 2016

https://github.com/scikit-hep/uproot
https://medium.com/@jonathan_hui/gan-how-to-measure-gan-performance-64b988c47732

Introduction to GANs (Torben Ferber) �46

• Losses are difficult:

• Vanilla GANs play a minimax game where losses are traded

• WGAN loss is (somewhat) proportional to image quality

• Better:

• Feature differences like 1D Wasserstein distances (from scipy)

• Quality measures from image processing:

• Structural similarity (SSIM)

• Kernel principal component analysis (kPCA)

• Classification based metrics (Inception score, …)

How good is the GAN?

https://github.com/scikit-hep/uproot
https://medium.com/@jonathan_hui/gan-how-to-measure-gan-performance-64b988c47732

Introduction to GANs (Torben Ferber) �47

WGAN-GP in PyTorch: Input → Output

Introduction to GANs (Torben Ferber) �48

WGAN-GP in PyTorch: Input → Output

Introduction to GANs (Torben Ferber) �49

WGAN-GP in PyTorch: Input → Output

Introduction to GANs (Torben Ferber) �50

WGAN-GP in PyTorch: Input → Output

Introduction to GANs (Torben Ferber) �51

WGAN-GP in PyTorch: Input → Output

Introduction to GANs (Torben Ferber) �52

How good is the GAN?

https://github.com/scikit-hep/uproot
https://medium.com/@jonathan_hui/gan-how-to-measure-gan-performance-64b988c47732

Introduction to GANs (Torben Ferber) �53

Precision, recall, and F1
• Quality indicator for (multi) mode discriminative  

models.

• Precision: P = Tp / (Tp + Fp)

• Recall: R = Tp / (Tp+Fn)

• F1: F1 = 2×(P×R)/(P+R), Bad is 0, Good is 1

• Be aware that relative importance of precision and
recall is very problem dependent:

• Assume you want to detect nuclear missile
attacks and have one false negative…

 [1] https://en.wikipedia.org)

https://en.wikipedia.org/

Introduction to GANs (Torben Ferber) �54

PRD Curves (Precision and recall for distributions)

 [1] “Assessing Generative Models via Precision and Recall“ https://arxiv.org/abs/1806.00035
[2] https://github.com/msmsajjadi/precision-recall-distributions

P

(a)

Q

(b) (c) (d) (e) (f)

Figure 2: Intuitive examples of P and Q.

0 1

(a)

0

1

↵

�

0 1

(b)

�

0 1

(c)

�

0 1

(d)

�

0 1

(e)

�

0 1

(f)

�

Figure 3: PRD(Q,P) for the examples above. Figure 4: Illustration of the algorithm.

The FID [9] provides an alternative approach which requires no labeled data. The samples are first
embedded in some feature space (e.g., a specific layer of Inception network for images). Then,
a continuous multivariate Gaussian is fit to the data and the distance computed as FID(x, g) =
||µx � µg||22 + Tr(⌃x + ⌃g � 2(⌃x⌃g)

1
2), where µ and ⌃ denote the mean and covariance of the

corresponding samples. FID is sensitive to both the addition of spurious modes as well as to mode
dropping (see Figure 5 and results in [18]). [4] recently introduced an unbiased alternative to FID,
the Kernel Inception Distance. While unbiased, it shares an extremely high Spearman rank-order
correlation with FID [14].

Another approach is to train a classifier between the real and fake distributions and to use its accuracy
on a test set as a proxy for the quality of the samples [11, 17]. This approach necessitates training of
a classifier for each model which is seldom practical. Furthermore, the classifier might detect a single
dimension where the true and generated samples differ (e.g., barely visible artifacts in generated
images) and enjoy high accuracy, which runs the risk of assigning lower quality to a better model.

To the best of our knowledge, all commonly used metrics for evaluating generative models are
one-dimensional in that they only yield a single score or distance. A notion of precision and recall
has previously been introduced in [18] where the authors compute the distance to the manifold of the
true data and use it as a proxy for precision and recall on a synthetic data set. Unfortunately, it is not
possible to compute this quantity for more complex data sets.

3 PRD: Precision and Recall for Distributions

In this section, we derive a novel notion of precision and recall to compare a distribution Q to a
reference distribution P . The key intuition is that precision should measure how much of Q can be
generated by a “part” of P while recall should measure how much of P can be generated by a “part”
of Q. Figure 2 (a)-(d) show four toy examples for P and Q to visualize this idea: (a) If P is bimodal
and Q only captures one of the modes, we should have perfect precision but only limited recall. (b) In
the opposite case, we should have perfect recall but only limited precision. (c) If Q = P , we should
have perfect precision and recall. (d) If the supports of P and Q are disjoint, we should have zero
precision and recall.

3.1 Derivation

Let S = supp(P) \ supp(Q) be the (non-empty) intersection of the supports2 of P and Q. Then, P
may be viewed as a two-component mixture where the first component PS is a probability distribution
on S and the second component PS is defined on the complement of S. Similarly, Q may be rewritten
as a mixture of QS and QS . More formally, for some ↵̄, �̄ 2 (0, 1], we define

P = �̄PS + (1 � �̄)PS and Q = ↵̄QS + (1 � ↵̄)QS . (1)

This decomposition allows for a natural interpretation: PS is the part of P that cannot be generated
by Q, so its mixture weight 1 � �̄ may be viewed as a loss in recall. Similarly, QS is the part of Q
that cannot be generated by P , so 1 � ↵̄ may be regarded as a loss in precision. In the case where

2For a distribution P defined on a finite state space ⌦, we define supp(P) = {! 2 ⌦ | P (!) > 0}.

3

Precision α
Recall β

https://arxiv.org/abs/1806.00035
https://github.com/msmsajjadi/precision-recall-distributions

Introduction to GANs (Torben Ferber) �55

Inception score (IS)
• Use a powerful and well-trained discriminator (originally Inception-v3 on

ImageNet)

• A well performing GAN generator will produce:

• Clear images for every mode (low entropy for conditional label distribution)

• All modes, correct fraction of modes (high entropy for marginal distribution)

• IS = Exponential of KL distance between class distribution and marginal
distribution

• High score is better (unbound)

[1] arxiv:1606.03498

Introduction to GANs (Torben Ferber) �56

Inception score (IS)

[1] https://cdn-images-1.medium.com/max/2400/1*23gj_d3dxfm5FoKae_pc5Q.png

https://cdn-images-1.medium.com/max/2400/1*23gj_d3dxfm5FoKae_pc5Q.png

Introduction to GANs (Torben Ferber) �57

Inception score (IS): Potential problems
• IS depends on (powerful) classifier and their training data

• Classifiers often rely on CNNs which generally rely on local textures. This is not
necessarily what one desires.

• Generator overtraining will not be penalized

• Low variance of images per mode will not be penalized

• → Fréchet Inception Distance (FID) is generally superior (but more
complicated): Small FID is better

Introduction to GANs (Torben Ferber) �58

There is not one single metric to compare GANs.

Introduction to GANs (Torben Ferber)

Im
pr

ov
em

en
ts

Ibaraki-Bosozoku

https://github.com/scikit-hep/uproot
https://medium.com/@jonathan_hui/gan-how-to-measure-gan-performance-64b988c47732

Introduction to GANs (Torben Ferber) �60

One sided-label smoothing (for Vanilla GANs)
• Goal: Avoid overconfidence of Discriminator

• Almost trivial idea, but very powerful.

• Smooth labels for real images (1→0.9): Reduce confidence for real images to
reduce steep gradients.

• Never (!) smooth labels for fake images (0→0.1): This would encourage the
generator to continue producing wrong images.

• A variant is to smooth with a random value instead of a fixed 0.1.

[1] https://arxiv.org/abs/1701.00160

https://arxiv.org/abs/1701.00160

Introduction to GANs (Torben Ferber) �61

Instance and label noise
• Goal: Create overlapping distributions

• Add noise to generated and real
images before passing them to
generator (instance noise)

• and/or flip labels of real images (label
noise)

• Can stabilise early training but will
reduce image quality

def add_instance_noise(images, std=0.1):

 noise = Variable(std * torch.randn(images.shape))
 return images + noise

[1] https://www.inference.vc/

https://www.inference.vc/

Introduction to GANs (Torben Ferber) �62

Minibatch discrimination
• Goal: Avoid mode collapse

• Measure similarity of all images in a
batch. If similarity increases: Mode
collapse

• Add similarity measure(s) as input to
(first) fully connected layer

• Can be computationally intensive if
batch size is large

• Poor man’s version: Just detect if images
are the same by checking one statistics,
e.g. the mean

class critic(nn.Module):

...

 def main(self, x):
 out = torch.cat((x,
 self.mbd(x).cuda()), dim=1)

 for layer in self.layer_module:
 out = layer(out)

 return out.view(out.size(0), -1)

Cimage

MBD

C

FC
FC

[1] arxiv:1606.03498

Introduction to GANs (Torben Ferber) �63

Batch normalization
• Goal: Stable training (used in DCGAN and generally in every CNN)

• Problem: Introduces intra-batch correlations  
Solution: Virtual Batch Norm using a reference batch chosen before training

Figure 21: Two minibatches of sixteen samples each, generated by a generator net-
work using batch normalization. These minibatches illustrate a problem that occurs
occasionally when using batch normalization: fluctuations in the mean and standard
deviation of feature values in a minibatch can have a greater e↵ect than the individual
z codes for individual images within the minibatch. This manifests here as one mini-
batch containing all orange-tinted samples and the other containing all green-tinted
samples. The examples within a minibatch should be independent from each other,
but in this case, batch normalization has caused them to become correlated with each
other.

4.3 Virtual batch normalization

Since the introduction of DCGANs, most GAN architectures have involved some
form of batch normalization. The main purpose of batch normalization is to im-
prove the optimization of the model, by reparameterizing the model so that the
mean and variance of each feature are determined by a single mean parameter
and a single variance parameter associated with that feature, rather than by a
complicated interaction between all of the weights of all of the layers used to
extract the feature. This reparameterization is accomplished by subtracting the
mean and dividing by the standard deviation of that feature on a minibatch
of data. It is important that the normalization operation is part of the model,
so that back-propgation computes the gradient of features that are defined to
always be normalized. The method is much less e↵ect if features are frequently
renormalized after learning without the normalization defined as part of the
model.

Batch normalization is very helpful, but for GANs has a few unfortunate side
e↵ects. The use of a di↵erent minibatch of data to compute the normalization
statistics on each step of training results in fluctuation of these normalizing
constants. When minibatch sizes are small (as is often the case when trying to
fit a large generative model into limited GPU memory) these fluctuations can
become large enough that they have more e↵ect on the image generated by the
GAN than the input z has. See figure 21 for an example.

32

[1] GANs (https://arxiv.org/abs/1406.2661)

https://arxiv.org/abs/1406.2661

Introduction to GANs (Torben Ferber) �64

Experience replay
• Keep a history of generated images

• Feed a (small) fraction of old images to discriminator
to avoid overtraining of the discriminator

[1] https://xkcd.com/1757/

https://xkcd.com/1757/

Introduction to GANs (Torben Ferber) �65

Historical averaging
• Keep history of model parameters θ for the last t models (or keep the running

average)

• Add L2 penalty to loss function if current model parameters deviate too much
from past average:

Introduction to GANs (Torben Ferber) �66

Class conditioning
• Standard (W)GANs have no additional information about the modes in data

• Several problems in GANs are related to that: Slow training, mode collapse,
bad perceived image quality, …

• Possible solution is called class conditioning:

• Class-conditional (add class to latent space of generator)

• Class discrimination (add class discrimination to discriminator)

• Combinations of those

Introduction to GANs (Torben Ferber) �67

Class conditioning

[1] https://github.com/znxlwm/pytorch-generative-model-collections

https://github.com/znxlwm/pytorch-generative-model-collections

Introduction to GANs (Torben Ferber)

Re
se

ar
ch

https://github.com/scikit-hep/uproot
https://medium.com/@jonathan_hui/gan-how-to-measure-gan-performance-64b988c47732

Introduction to GANs (Torben Ferber) �69

CaloGAN(s)
[1] “CaloGAN: Simulating 3D High Energy Particle
Showers in Multi-Layer Electromagnetic
Calorimeters with Generative Adversarial Networks”
arXiv:1712.10321 (LAGAN: arXiv:1701.05927)

5

FIG. 4: Composite Generator, illustrating three stream with attentional layer-to-layer dependence.

FIG. 5: Composite Discriminator, depicting additional domain specific expressions included in the final feature space.

5

FIG. 4: Composite Generator, illustrating three stream with attentional layer-to-layer dependence.

FIG. 5: Composite Discriminator, depicting additional domain specific expressions included in the final feature space.

Introduction to GANs (Torben Ferber) �70

LHCbGAN

Generator
input

5x1:
px, py, pz, ...

256x4x4

128x8x8

64x16x16

32x32x32 30x30

Discriminator

256x4x4

128x8x8

64x16x16

32x32x32

Regressor (pretrained)

256x4x4

128x8x8

64x16x16

32x32x32

real

fake

30x30

30x30

score

input

1x1

5x1

Upsampling 2x + Conv + BN + ReLU

Conv s2 + LeakyReLU (gray = fixed)

CxHxW output tensor size (w/o batch size)

CxHxWCxHxW

noise
Nx1

Training scheme

FC + reshape

concat

Figure 1: Model architecture. Pre-trained regressor for the particle parameters prediction
makes our model conditional. Thanks to building up the information from the pre-trained re-
gressor into the discriminator gradient we learn G to produce a specific calorimeter response.

⇥ 32 with ReLu activation functions. After this procedure, we crop the last output to obtain
the image of the desired size 30 ⇥ 30.

As for the discriminator, it takes a batch of images as input (all images in the batch are
real or generated by G) and returns the score D(y) or D(ŷ) as it is described in [11]. The
discriminator architecture is simply the reversed generator architecture (i.e. sizes of layers
go in the opposite order). It implies that we have a 30 ⇥ 30 matrix as input, from which we
obtain output layers of size 32 ⇥ 32 ⇥ 32, 64 ⇥ 15 ⇥ 16, 128 ⇥ 8 ⇥ 8, followed by reshaping,
which leads to 256 ⇥ 4 ⇥ 4, and by applying LeakyRelu activation function we get the final
score. The model scheme is presented in Fig. 1.

How to train WGAN with gradient penalty in a conditional manner is described in the
following section.

4.2 Training strategy

Due to the nature of WGAN loss, conditioning on the continuous value is a non-trivial task.
To overcome this issue we suggest embedding a pre-trained regressor in our model. We
train a neural network to predict the particle parameters by the calorimeter response. As for
architecture, it has the same one as the discriminator but with a perceptual loss described
in [16], because it was seen to work better compared to standard MSE. By building up the
information from the pre-trained regressor into the discriminator gradient, we obtain the con-
ditional model because we train the generator and the discriminator together. As a result, the
discriminator makes the generator produce a specific calorimeter response.

Matrices from our dataset are pretty sparse because almost all information is located
in central cells (see Fig. 2). To make the optimization process easier we apply a box-cox
transformation. This mapping helps to smooth the data that makes the optimization process
more stable. Results obtained with the described model are presented in the following section.

[2] “Generative Models for Fast Calorimeter
Simulation: the LHCb case” arXiv:1812.01319v2

Introduction to GANs (Torben Ferber) �71

Summary
• GANs are cool, fun, and sometimes almost magical

• GANs are difficult

• GANs are a young field in ML with ongoing basic research

• Numerous applications in physics (simulation, calibration, understanding, …)

• Many things that are irrelevant when creating human faces are very relevant
for physics

• Get in touch to learn from each other

Introduction to GANs (Torben Ferber) �72

Summary
• GANs are cool, fun, and sometimes almost magical

• GANs are difficult

• GANs are a young field in ML with ongoing basic research

• Numerous applications in physics (simulation, calibration, understanding, …)

• Many things that are irrelevant when creating human faces are very relevant
for physics

• Get in touch to learn from each other

Deutsches Elektronen Synchrotron
www.desy.de

Contact

Torben Ferber
torben.ferber@desy.de
ORCID: 0000-0002-6849-0427

http://www.desy.de
mailto:torben.ferber@desy.de

