FORWARD PHOTONS

Borysova Maryna

07/01/19

LAYOUT FOR THE LUXE EXPERIMENT

Photons produced at IP1 proceed down their own beamline through the converter foil and the tracking spectrometer

THE CLASSICAL BETHE-HEITLER PAIR SPECTRUM

The classical Bethe-Heitler formula is currently used: H.Bethe, W.Heitler, Proc.Roy.Soc.A146 (34)83

$$\Phi (\mathbf{E}_0) d\mathbf{E}_0 = \frac{\mathbf{Z}^2}{137} \left(\frac{e^2}{mc^2} \right)^2 4 \frac{\mathbf{E}_{0+}^2 \mathbf{E}_{+}^2 + \frac{2}{3} \mathbf{E}_0 \mathbf{E}_{+}}{(h\nu)^3} d\mathbf{E}_0 \left(\log \frac{2\mathbf{E}_0 \mathbf{E}_{+}}{h\nu mc^2} - \frac{1}{2} \right).$$

energies involved are large compared with mc²

The idea - to check if in a toy model any photon spectrum could be restored if we have the classical BH distribution and characteristic shapes of photon spectrum

TESTING: LINEAR

$\int \sigma(E\gamma, Ee) g(E\gamma, p1, p2) dE\gamma$

fitting allows finding the parameters quite well

****	kakaka	****	k sko	****	kakakakakakakakakakak		
Minimizer	is	Minuit	1	Migrad	he h		
Chi2				=	5.73475e-09		
NDf				=	98		
Edm				=	1.13143e-08		
NCalls				=	189		
p0				=	100	+/-	1.06734e-07
p1				=	17.5	+/-	6.94118e-09
p1				=	17.5	+/-	6.9411

TESTING: EXPONENTIAL

$\int \sigma(E\gamma, Ee)g(E\gamma, p1, p2)dE\gamma$

fitting allows finding the parameters with high precision

******	TT-TT-T	*******	1.71.7	******	r 		
Minimizer	is	Minuit	/	Migrad			
Chi2				=	8.52694e-11		
NDf				=	98		
Edm				=	1.70646e-10		
NCalls				=	167		
p0				=	105	+/-	1.72634e-07
p1				=	0.3	+/-	1.73966e-10

TESTING: COMPTON-LIKE

$\int \sigma(E\gamma, Ee)g(E\gamma, p1, p2)dE\gamma$

fitting allows finding the parameters quite well :

*******	**	******	*	*****	*****		
Minimizer	is	Minuit	/	Migrad	Improved		
Chi2				=	5.92197e-07		
NDf				=	97		
Edm				=	1.27179e-06		
NCalls				=	342		
p0				=	1.9899	+/-	0.00109921
p1				=	1.99569	+/-	0.000468708
p2				=	7.99435	+/-	0.000639219

WHAT'S NEXT

- use Geant4 produced photon and e+/e- spectra.
- test if we could fit and find other parameters describing the process: target material (Z), its thickness.