Testbeam Analysis

UHI #

Hamburg University

Erik Butz

CMS Hamburg Meeting

31. Januar 2007

- Basic Setup
- Signal-to-Noise Analysis
- Resolution Studies

- CMS Tracker Modules from different Parts of Tracker are tested
- Modules are subjected to different radiation doses: 0.1, 0.28, 0.29, 0.58 and 0.65×10^{14} (1 MeV neutron equiv.)

Desy 22 testbeam provides electron beam in energy range of 1-6 GeV

- CMS Tracker Modules from different Parts of Tracker are tested
- Modules are subjected to different radiation doses: 0.1, 0.28, 0.29, 0.58 and 0.65×10^{14} (1 MeV neutron equiv.)

Desy 22 testbeam provides electron beam in energy range of 1-6 GeV

Basic Setup

- Modules were kept in special box to simulate environmental conditions close to those within the tracker
- Box can be shifted and/or rotated
- Temperature can be varied

Reminder: CMS Silicon Sensors

- Strip pitch: between 80 μm (first layer IB) and 205 μm (last OB layer)
- Thickness: 320 $\mu {
 m m}$ (inner), 500 $\mu {
 m m}$ (outer layers)
- 512 768 Strips \rightarrow 4-6 APV readout chips
- 15 different geometries are used in the tracker

11

Data Analysis – Cluster Finding

example cluster

- Clusters are being reconstructed with different algorithms
 - standard weighted algorithm (cuts on SNR of seed (4), neighbors (3) and cluster (5))
 - double centroid (center-of-gravity of seed with 2 neighbor strips is taken)
 - head-tail (first and last strip in cluster as well as average charge of strips is taken, suited for large clusters → at large incident angles)

8038

23.1

7.667

Data Analysis – Signal-to-Noise

700

number of entries snr **Entries** 600 Mean RMS χ^2 / ndf 90.56 / 47 500 Width $\textbf{0.9038} \pm \textbf{0.0392}$ • SNR distribution is fitted with MP $\textbf{19.97} \pm \textbf{0.07}$ 400 $\textbf{7999} \pm \textbf{97.5}$ convolution of gaus and landau Area GSigma $\textbf{3.413} \pm \textbf{0.106}$ 300 MPV is taken as SNR value for 200 respective run 100

0

7

10

20

30

40

50

60

70

80

90

100

S/N

- High signal-to-noise is desired to have good identification of signal in all kinds of operation scenarios
- Signal-to-Noise ratio is analyzed w.r.t. several parameters
 - Inclination angle
 - Energy
 - Depletion voltage
 - Temperature
- SNR of more than 10 is aimed for even after long (10y) period of operation

Signal-to-Noise Analysis – Angular Scans

• SNR (below Signal) is expected to change since the path through the detector material evolves as $S=a+\frac{b}{\cos(\alpha-c)}$

works good for angles which are not too large

Signal-to-Noise Analysis – Voltage Scans

Signal increasing strongly below depletion voltage

Signal-to-Noise Analysis – Temperature Scans

With increasing temperature, noise should increase \rightarrow SNR should become worse

Resolution Studies

- Resolution is obtained by taking residual between prediction from the telescope and the position reconstructed on the module ($r = x_{pred} x_{rec}$)
- Straight line fit is performed using all three telescope layers
- Due to relatively low energies, multiple scattering cannot be neglected

Resolution Studies II

• At low energy:

 $\sigma_{\text{Module,meas.}} = \sqrt{\sigma_{\text{Module,intr.}}^2 + \sigma_{\text{Multiple Scattering}}^2 + k_{\text{Geo}} \times \sigma_{\text{Telescope}}^2}$

 \bullet extrapolation to infinite energies by fitting $\sigma^2(\frac{1}{E^2})$ distribution

- Intercept of fit is effective resolution of the module at infinite energies →no multiple scattering
- $\bullet \, k_{\rm Geo}$ depedends only on geometry of setup
- →Intrinsic resolution of Module under given conditions can be determined

Resolution Studies

Resolution as function of irradiation (0° incident angle)

Slightly above expected digital resolution \rightarrow under investigation

Resolution Studies – Angular Studies

Angular Scans: Due to benifical charge sharing, resolution should get better up to $\arctan \frac{p}{d} = 20.87^{\circ}$ for OB1 (20.1° for OB2)

Outer Barrel ($p=122~\mu{
m m}$, $d=320~\mu{
m m}$)

Outer Barrel ($p=183~\mu{
m m}$, $d=500~\mu{
m m}$)

Resolution Studies – Cluster Algorithms

Resolution is investigated for different Cluster Algorithms

Simple weighted algorithm provides best results apart from large angles where head-tail algorithm performes best.

- Analysis of Testbeam Data mostly finished
- SNR ratios well behaved and well above desired level
- Resolution studies show expected behaviour of modules

- Some unresolved issues (0[°] Resolution→comparison with simulations planned to investigate possible origins)
- Internal Note planned, draft in preparation