

bmb+f - Förderschwerpunkt

CMS

Großgeräte der physikalischen Grundlagenforschung

Universität Hamburg

$\sum \chi^2$ Invariant Deformations and Constraints

Gero Flucke, Peter Schleper, Georg Steinbrück, **Markus Stoye** in collaboration with Volker Blobel University of Hamburg

Hamburg CMS-Meeting January 2007

Content:

$\sum \chi^2$ Invariant Deformations

- Classification of $\sum \chi^2$ Invariant Deformations.
- Identifying $\sum \chi^2$ Invariant Deformations via Diagonalization.
- Fitting of Deformations to Classifications.

Impact of Constraints

- Applying Initial Knowledge.
- Simultaneous Alignment of Different Tracker Components.
- Preferring Plausible (Rigid Body Like) Solutions.
- Results Summary

Summary and Outlook

- Summary
- Next Talk Outline

Classification of $\sum \chi^2$ Invariant Deformations

Some deformations remain undefined in a $\sum \chi^2$ minimization.

Shearing and bending

- Shearing: changing the ϕ and η measurements.
- Bending: changing the κ measurement.
- Change of bending and shearing amplitude along z. (twist)

a) shearing and bending in $r\phi$, twist:

b) shearing in z:

< 日 > (四 > (三 > (三 >)))

Classification of $\sum \chi^2$ Invariant Deformations

Expansion and shrinking

- An overall expansion increases the $\sum \chi^2$, since the size of the sensors is fixed.
- The distance between neighboring sensors in rφ is well defined (b).
- ⇒ Only oscillation between expansion and shrinking occur (a).

a) r-r ϕ mode 1 and mode 2:

b) $\Delta r \phi$ fixed by known strip pitch:

Classification of $\sum \chi^2$ Invariant Deformations

r-r ϕ Oscillations

- δ∆rφ ~ ∆r to keep the rφ distance between neighboring sensors constant. (a)
 ⇒ Harmonic r-rφ Oscillation!
- Δz is ~ to Δr (b, vertex tracks).
 ⇒ Δz couples to oscillation!

δ∆rφ Δr Δr b) Δz Δr

The nth r-r ϕ mode can be described as follows:

a)

 $\Delta \mathbf{r}(\phi) \sim \cos(n\phi + \alpha) \quad \Delta \mathbf{r}\phi(\phi) \sim \sin(n\phi + \alpha) \quad \Delta \mathbf{z}(\phi) \sim \cos(n\phi + \alpha)$

$\sum \chi^2$ Invariant Eigenvectors

An linear equation system needs to be solved to minimize the $\sum \chi^2$. The eigenvectors with the smallest eigenvalues have the least impact on the $\sum \chi^2$.

The scenario used for diagonalization:

- Single muons of 1 mio $Z \rightarrow \mu \mu$.
- All rods and ladders of tracker barrels.
- $u, v(2D), w, \gamma$ are the parameters per rod or ladder.

The $\sum \chi^2$ invariant eigenvectors are applied to the geometry and illustrated in the following.

 $\Rightarrow \sum \chi^2$ invariant eigenvectors systematically studied and compared to classification.

(日) (문) (문) (문) (문)

Left: First r-r ϕ oscillation, Right: second r-r ϕ oscillation

 \Rightarrow r-r ϕ oscillation clearly visible!

< 17 ×

Left: Third r-r ϕ oscillation, Right: Third r-r ϕ oscillation (phase shifted 90°).

 \Rightarrow Each mode occurs twice with a phase shift of $\alpha = 90^{\circ}!$

A (1) > (1)

Left: Twist (red: barrel-, black: barrel +), Right: z shearing.

 \Rightarrow The twist and z shearing clearly visible!

・ロト ・日子・ ・日下・ ・

≣ ▶

Forth mode of r-r ϕ oscillation.

The 10 deformations with least impact on $\sum \chi^2$ have been studied.

 \Rightarrow The deformations were covered by the classification scheme!

Fitting of Deformations to Classification

$r-r\phi$ Oscillations

Left: Fit of deformation from eigenvector (5*th* layer) to second mode. Right: Amplitude of oscillation versus radius of layer.

 \Rightarrow Deformation is clearly a harmonic oscillations!

・ 同 ト・ ・ ヨート・ ・ ヨート

Fitting of Deformations to Classification

Mean $\Delta r \phi(r)$ fitted to polynom of 2^{nd} order

Mean $\Delta z(r)$ fitted to polynom of 1^{st}

Shearing and bending Shearing and bending is fitted via polynoms to remaining misalignment (next sec.)

- Shearing well described by polynom of 1st order.
- Bending well described by adding a quadratic term.

 \Rightarrow Deformation fit well into shearing, bending and r-r ϕ oscillation scheme!

Content:

χ^2 Invariant Deformations

- Classification of $\sum \chi^2$ Invariant Deformations.
- Identifying $\sum \chi^2$ Invariant Deformations via Diagonalization.
- Fitting of Deformations to Classifications.

Impact of Constraints

- Applying Initial Knowledge.
- Simultaneous Alignment of Different Tracker Components.
- Preferring Plausible (Rigid Body Like) Solutions.
- Results Summary

Summary and Outlook

- Summary and Conclusion
- Next Talk Outline

Relative Parametrization

Via constraints relative alignment parameters can be introduced:

- Rod position and orientation w.r.t. half barrel (or layer).
- Layer position and orientation w.r.t. half barrel.
- half barrel and orientation w.r.t. pixel.

 \Rightarrow Allows to correctly apply initial knowledge.

 \Rightarrow No iterations between hierarchies necessary.

Coordinate system definition:

• \sum pixel half barrel movements and rotations = 0.

 \Rightarrow No external reference system used!

Studies of Impact of Initial Knowledge

Studies were performed in the following scenario:

- First data scenario misalignment up to rod and ladder level.
- All rods, ladders, half barrels aligned.
- $u, v(2D), w, \gamma$ are the parameters per alignable.
- Single muons of 2 mio. $Z \rightarrow \mu \mu$ events.
- Initial relative alignment parameter uncertainties as given by misalignment.
- If γ was not misaligned, an uncertainty of 10 $\mu {\rm rad}$ was assumed.
- Coordinate system defined via constraints.

 \Rightarrow Similar scenario as in CMS NOTE 2006/11, but without fixing any rods or ladders!

(日) (문) (문) (문) (문)

Residuals of Global Rod Positions

Residuals of Rod Positions in $r\phi$.

Residuals of Rod Positions in z.

(D) (A) (A)

The RMS of the r ϕ residuals decreases from 77 μ m without initial knowledge (blue) to 9 μ m with initial knowledge (black).

 \Rightarrow The residuals improve significantly!

Residuals of Global Rod Positions

Residuals of Rod Positions in r.

Residuals of Rod Rotation γ .

(日) (同) (三) (三)

The RMS of the r residuals decreases from 80 μ m without initial knowledge (blue) to 21 μ m with initial knowledge (black).

 \Rightarrow The residuals improve significantly!

Remaining Deformations

Mean $\Delta x(r)$.

Mean $\Delta r \phi(r)$.

Bias due to initial correlated misalignment clearly visible. Applying initial knowledge improves the alignment, but some systematic deformations remain.

 \Rightarrow Initial knowledge reduces bias.

Remaining Deformations

 $\Delta z(r)$ is still biased, even if initial knowledge applied.

 \Rightarrow Some deformation remain even if initial knowledge applied.

(日) (圖) (불) (불)

크

Global Correlations (Monitoring via MP output)

Global Correlation of u.

Global correlations of γ

 \Rightarrow Improvement, but still large correlations remain (up to 0.9998)!

Global correlations are an useful tool to monitor alignment quality without knowledge of the misalignment.

Upper Limit of Global Correlations

Global Correlation of u

Global correlations of γ

Global correlations of different alignment parameter types. Initial knowledge was applied. Strip half barrels have highest correlations!

 \Rightarrow Global correlation of strip half barrels give upper limit of correlations!

Reminder: Fast linear equation solvers require extra effort to calculate global correlation!

Adding More Tracker Components

So far a strategy with simultaneous alignment was used:

• Pixel and Barrel aligned simultaneously!

Following this strategy TEC, TID and TPE are added to the scenario:

- The TID, TPE and a TEC layer per TEC have been added.
- Misaligned with the *first data taking* scenario up to sensor level!
- Aligned to the wedge Petal level.
- u, v, w, γ for each alignable.
- Scenario is denoted by +EC in legends.

 \Rightarrow The completely different geometry of the endcaps should constrain deformations!

Selecting Plausible Deformations

It can be chosen if internal deformation (bending, shearing ...) of a higher structures are preferred or if translations and rotations of a higher structures are preferred.

• Reducing the uncertainty of alignment parameters w.r.t. higher structure reduces the internal deformations of the higher structure.

Two scenarios have been studied:

- preferring half barrel rigid body parameters.
- preferring layer rigid body parameters.

Technically the rod parameters have been reduced by a factor of 10. The remaining rod uncertainty of 10-20 μm is still in the order of a single hit measurement.

Note: Also other deformations (eg. twist, shearing) could be introduced as preferred deformations.

Choosing the most plausible solution

Residuals of Global Rod Positions

Barrel r.b.p. preferred: $r\phi$ residuals RMS = 4.9 μ m, Mean = 0.5 μ m.

⇒ Default misalignment scenario aligned successfully to rod level!

Choosing the most plausible solution

Remaining Deformations

Mean $\Delta r \phi(r)$.

Mean $\Delta z \phi(\mathbf{r})$.

(D) (A) (A)

All deformations are suppressed if barrel r.b.p. are preferred. Layer r.b.p. still allow shearing and bending, but no higher mode r-r ϕ oscillations and twist.

 \Rightarrow Adding endcaps helps significantly to reduce deformations!

Results Summary

Summary Table of Position uncertainties

The table summarizes the results shown in the previous plots.

	Not Al.	None	Mis. σ	pr. layer	+ EC	pr. bar.
RMS u [μm]	149.8	77.5	9.1	8.47	4.66	4.90
Mean u $[\mu m]$	-15.3	-10.0	17.2	-6.70	2.17	-0.58
RMS v [µm]	200.9	64.7	37.6	35.8	33.8	35.2
Mean v [μ m]	198.4	106.8	30.2	2.50	-2.7	-4.9
RMS w [µm]	144.1	80.3	20.6	13.6	22.3	23.
Mean w $[\mu m]$	-1.0	-2.2	-0.7	-1.62	-0.31	-1.1
RMS γ [μ rad]	0.00	30.2	2.5	-	-	0.3
Mean γ [μ rad]	0.00	50.3	0.1	-	-	-0.0

Table: Remaining position uncertainties for different scenarios.

\Rightarrow Using constraints improves the alignment.

<回> < 注) < 注) < 注)

Content:

$\sum \chi^2$ Invariant Deformations

- Classification of $\sum \chi^2$ Invariant Deformations.
- Identifying $\sum \chi^2$ Invariant Deformations via Diagonalization.
- Fitting of Deformations to Classification.

Impact of Constraints

- Applying Initial Knowledge.
- Simultaneous Alignment of Different Tracker Components.
- Preferring Plausible (Rigid Body Like) Solutions.
- Results Summary

Summary and Outlook

- Summary and Conclusion
- Outline of Next Talk

Summary and Conclusion

Studies of critical deformations of the tracker:

- $\sum \chi^2$ invariant deformation classified.
- Classification confirmed via fits to determined $\sum \chi^2$ invariant Deformation.

Studies of the impact of constraints:

- Applying initial knowledge helps a lot.
- Aligning different tracker components simultaneously: The different geometric properties of the structures reduce the probability of remaining deformation!
- A plausible (rigid body like movements preferred) solution of $\sum \chi^2$ minimum can be chosen: The results improve.

 \Rightarrow Constraints are an effective tool for alignment.

Summary and Conclusion

Green: used in study Red: not used in study.

⇒ The fist data misalignment scenario can be aligned standalone to rod level with single tracks and constraints to a precision O(10) smaller than the intrinsic resolution of sensors!

This Presentation:

Results were presented utilizing constraints and single muon tracks. Constraints will be most important in the beginning.

 \Rightarrow This is a valid strategy for the starup phase.

Next Presentation

If more data is collected the alignment is less dependent on initial uncertainties and preferred solutions. Cosmics, Z^0 with mass and vertex constrains can be used suppress deformations. A new high pt cosmic muon dataset (25k) has been produced.

Content:

- Impact of Z⁰ with mass ans vertex constrains
- Impact of cosmic muons.
- \Rightarrow The result is a strategy for the longterm alignment.

Туре	u μ m	v μ m	w μ m	$\gamma~\mu$ rad
TOB Half Barrels	105	105	500	90
TIB Half Barrels	67	67	500	59
TPB Half Barrels	13	13	13	10
TOB Rods [†]	100	100	100	10*
TIB Rods [†]	200	200	200	10*
TPB Ladders [†]	5	5	5	10*

Table: Initial Uncertainties of alignment parameters corresponding to the *first data rod level* misalignment scenario except for the uncertainties labeled with *, which are not misaligned. Uncertainties in rows labeled with [†] are reduced by a factor of 10 in the barrel dominated scenario.