NAF ATLAS Report

NAF User Committee Meeting

11. November 2009

Wolfgang Ehrenfeld (DESY)
Jan Erik Sundermann (Universität Freiburg)

Outline

- Exemplary ATLAS use cases
- Open issues

Overview

NAF usage during the last half year:

→ Some ATLAS power users but in general larger number of users

Exemplary Use Cases

- Examples for ATLAS usage of NAF resources:
 - User analysis using NAF grid and batch resources
 - Private Monte Carlo production
 - Monte-Carlo tuning using Tevatron data
 - Calculation of Higgs-production cross sections
 - Model fitting using Fittino

Use Case: User Analysis

- Analysis of officially produced ATLAS MC
 - Input data stored on NAF grid storage element
- Jobs submitted to the grid or local batch system
 - Using ganga or custom scripts for job submission
 - Input data copied to local disk
 - Jobs produce (flat) ntuples for subsequent analysis
- Output stored on the NAF grid storage element, NAF Lustre space or remote AFS space
- Output copied afterwards to the home institute
- Typical user problems with grid submission:
 - "Software too large for input sandbox"
 - "Failure rate higher than for local jobs"

Use Case: Monte-Carlo Tuning

- Tuning of ATLAS Monte-Carlo using Tevatron data:
 - Using Rivet toolkit installed by user
 - Some problems running SL4,32bit software on SL5,64bit WNs
 - Software currently installed on Lustre (too large for homes)
 - User would prefer central installation
 - Produces large number of MC events
 - Repeat Tevatron analysis on truth level
- Use case characteristics:
 - Almost no input data, only configuration
 - Very small output data (histograms) stored on Lustre
 - Jobs 100% CPU-limited

Use Case: Cross Section Calculations

- Calculation of Higgs-production cross sections in vector boson fusion
 - Calculations done for many different Higgs masses and beam-energies taking PDF uncertainties into account
- Use case characteristics:
 - Calculation quite slow due to electro weak corrections
 - 100% CPU-limited
 - Output very small, basically one number

Open Issues: Lustre

- Most of the time full (user do not clean up)
- Automatic clean up needed now (or sudo access)
- Some files should stay longer in /scratch
 - A: large space for ntuples and log files from production (should be removed after prod → automatic cleanup)
 - B: small space for code, histograms, ganga repository ... (should stay longer)
- Separate instances? Quota? AFS?
 But now is the time!

Open Issues: Lustre/AFS

- Some of the use cases for smaller files with longer life time can be solved by AFS
 - What is the limit for the home directory?
 - What is the limit for user AFS scratch directory?
 - Can user AFS scratch directory be created automatically? Mounted into home?

Open Issues: Storage

- Concerning storage the NAF is two sites!
 - dCache: DESY-HH, DESY-ZN
 - Lustre: /scratch/hh, /scratch/zn
 - Need to optimize data to cpu matching in the future (batch system)

Other Open Issues

cmt problem:

- cmt is slow on multi user machines and AFS
- User see this at atlas setup and compilation time
- This is a major show stopper!
- How can we solve this problem?
 - Copy of ATLAS software on Lustre or local?

User notification:

- News web-page does not contain information about planned down-times, software and operations are mixed
- motd (or similar) would be useful

Summary and Conclusions

- Wide range of ATLAS applications ranging from typical user analysis on ATLAS data to CPU-intensive calculations
- NAF well accepted by users
- Feedback by users very positive
- The remaining open issues should be approach before LHC experiments start taking data