ψ^\prime : towards solving the 2/4-prong puzzle lessons from DIS channel

G. Grzelak, J. Ciborowski

ZEUS Analysis Forum, DESY, 23-Jan-2019

G. Grzelak (UW)

 $\psi(2S)/J/\psi(1S)$ in PHP

23-Jan-2019 1 / 10

R: PHP channel (stat. only errors)

• cross section ratio R of $\psi(2S)$ to J/ψ from 2-prong and 4-prong

stat only errors

- Three main ingredients to calculate R value:
 - Number of J/ψ and ψ' events in 3 *W* bins extracted from data
 - Branching ratio (BR) of investigated muon decay channels $BR(\psi(2S) \rightarrow \mu^+\mu^-) = 0.0079 \pm 0.0009 \sim 10\%$ uncertainty
 - Acceptance, efficiency for muons (trigger and offline)

伺下 イヨト イヨ

- acceptance calculation is based on MC simulation
- detector response to muons is poorly described in MC and needs to be corrected for various effect:
 - trigger (MUON chambers, BAC, three levels...)
 - offline (F/B/RMUON chamber, CAL, BAC, ...)
- MC needs to be reweighted w.r.t. to δ (W^{δ}), *b*-slope, ...
- unknown fraction of proton dissociative events
- ullet ightarrow source of additional systematic

Current approach: MC muon corrections

- single muon efficiency in (*p_tvs.* η) bins extracted from DATA (using TAG and PROBE method) to correct MC
- extracted for each HERA-II data taking period
- ullet requires big statistic, available only for muons from J/ψ
- works very well, correct control plots
 (W, θ_μ, etc... dominated by muons from J/ψ)
- corrections for muons from ψ' affected by low statistic used to extract the efficiency
- ullet \rightarrow yet another systematics

- what we need is not absolute acceptance but the ratio of acceptances for corresponding decay channels
- this can be estimated directly from data using DIS channels and independent DIS triggers
- no MC is needed !
- DATA is the ultimate answer for detector performance
- yes, DIS has much lower stat, than PHP but we can calculate acceptance corrections "per process" not for "single muon"
- initial study has shown that the expected statistical uncertainty is comparable to the systematics in the previous method and ψ' BR uncertainty

▲ □ ▶ ▲ □ ▶ ▲ □

- use DIS events without track matched to scattered electron (relatively low-Q² events) → preserve the 2-prong and 4-prong event topology,
- otherwise use exactly the same selection for DIS and PHP sample
- 2-PRONG: (μ⁺, μ⁻ form J/ψ and ψ') as TAG use DIS VM triggers (without MUON chambers triggers) corrections in 3 W bins (W from PHP formulae) → extract MUON efficiency (combined trigger plus off-line)
- 4-PRONG: (μ⁺, μ⁻ only from J/ψ, muons effic. cancels in R) as TAG use FLT30 → the only slot without CTD FLT track vetos → extract CTD FLT correction to MUON triggers (one global correction for all W bins due to slow pions π⁺, π⁻) (impossible to extract in old method)

イロト イポト イヨト イヨト

- efficiency for process, not for single muon \rightarrow requires the same final state topology of the process used to extract the effic
- the same distributions of muons from direct J/ ψ decay and cascade decay of ψ'
- similar distribution of muons form ψ' and Bethe-Heitler around ψ' mass peak (irreducible background)
- (W^{δ} dependence of DIS and PHP) (remember: we compare PHP and low- Q^2 DIS, no electron track)
- (*f*_{p.diss} fraction for DIS and PHP, is the same, cancels it out ?)

- many systematics related to MC is not present
- systematics will be dominated to the limited stat. of DIS events
- to control it one can relax the main selection cuts (*p_t*, *N_{SL}*, track-vertex matching, etc,...) → will increase the statistic of DIS events

- work already started
- one example: CTD FLT correction (w.r.t the FLT30 slot):

$$\frac{\textit{Acc}_{4\textit{PR}}}{\textit{Acc}_{2\textit{PR}}} = 1.33 \pm 0.19 \; (14\%)$$

average number for HERA-II

(for one particular set of selection cuts)

more results on next ZAF meeting