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4.5 Bethe wave function

The ZF operators which create and annihilate states carrying definite momenta can be
also used to construct corresponding coordinate-space wave functions. For two-dimensional
integrable models they have a particular form and are referred to as Bethe wave functions.
The periodicity condition imposed on a Bethe wave function then leads to a set of equations
called in the context of two-dimensional integrable models the Bethe-Yang equations, and
in the context of spin chains the asymptotic Bethe equations. For models which have both
particles and anti-particles, the Bethe wave function approach provides only an approximate
description because of the virtual processes involving particle creation and annihilation.

To construct an N -particle Bethe wave function one divides the space RN into asymp-
totic domains � with

x�(1) < x�(2) < · · · < x�(N)

where � is a permutation of 1, 2, . . . , N

� =

✓

1

�(1)

2

�(2)
· · · N

�(N)

◆

,

Then, one assumes that in each asymptotic region the particles do not interact, and
therefore the wave function of N particles with flavors i1, i2, . . . , iN can be written as a
superposition of plane waves with momenta p1 > p2 > · · · > pN

 i
1

···iN (x1, . . . , xN |�) =
X

⌧2SN

Ai
1

···iN (�|⌧) eix� ·p⌧ , (4.48)

where the sum runs over all permutations of the momenta pi. The scalar product x� · p⌧ is
defined as

x� · p⌧ ⌘
N
X

j=1

x�(j)p⌧(j) ,

It is useful to have in mind that the invariance of the euclidean scalar product under the
action of �, ⌧ 2 SN implies that

X

j

x�(j)p⌧(j) =
X

j

xjp(��1⌧)(j) =
X

j

x(⌧�1�)(j)pj .

The amplitude Ai
1

···iN (�|⌧) is related to the probability of finding the particle with the
flavor ik (the ik-th particle in what follows) carrying the momentum p

��1⌧(k)
at the position

xk. That means that the index ik is attached to the coordinate xk.

The wave function (4.48) satisfies the following symmetry condition

 i
1

···ikik+1

···iN (x1, ..., xk, xk+1, ..., qN |�) =

= (�)✏ik ✏ik+1 i
1

···ik+1

ik···iN (x1, ..., xk+1, xk, ..., xN |↵k,k+1�) , (4.49)

where ↵k,k+1 is the transposition of k and k + 1. Since ✏i = 0 if the i-th particle is boson
and ✏i = 1 if it is fermion, one takes the minus sign if both particles are fermions, and the
plus sign otherwise.
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On the plane momenta pi are unrestricted. Compactifying the theory on a circle of large
but finite circumference L, one naturally requires the Bethe wave function to be periodic.
Periodicity condition leads to a system of equations for particle momenta which can be
regarded as quantisation thereof.
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✏i = 0 for boson

✏i = 1 for fermion

where ↵k,k+1 is the transposition of k and k + 1. Since ✏i = 0 if the i-th particle is boson
and ✏i = 1 if it is fermion, one takes the minus sign if both particles are fermions, and the
plus sign otherwise.

Because of the symmetry condition it is su�cient to determine the wave function only in
one domain which we take to be x1 < x2 < · · · < xN . To simplify the notations we omit
the subscript � = e, and write the wave function as

 i
1

···iN (x1, . . . , xN ) =
X

⌧2SN

ei x·p⌧ Ai
1

···iN (⌧) , x1 < x2 < · · · < xN . (4.50)

The amplitudes Ai
1

···iN (⌧) are related to Ai
1

···iN (e) ⌘ Ai
1

···iN through the S-matrix. To
find the relations one can use the following representation4 of the wave function (4.50)

 i
1

···iN (x1, . . . , xN ) = h⌦|AiN (xN )AiN�1(xN�1) . . . Ai
1(x1)|p1, . . . , pN ; Ai , (4.51)

where Ai(x) is the Fourier transform of the annihilation ZF operator

Ai(x) =

Z

dp eipx Ai(p) , (4.52)

and |p1, . . . , pN ; Ai is the following superposition of in-states with momenta pi

|p1, . . . , pN ; Ai =
X

j
1

...,jN

A†
j
1

(p1) · · · A†
jN

(pN )|⌦i Aj
1

···jN . (4.53)

The representation (4.51) is exact for the nonlinear Schrödinger model, and should be
considered as the definition of the Bethe wave function for relativistic and other models
which have both particles and anti-particles in their spectrum.

The wave function can be evaluated by using the ZF algebra and is given by the sum of
the form (4.50). For example, a two-particle wave function is given by

 ij(x1, x2) = h⌦|Aj(x2)A
i(x1)A

†
k(p1)A

†
l (p2)|⌦i Akl (4.54)

=

Z

dk2dk1e
ik

2

x
2

+ik
1

x
1 h⌦|Aj(k2)A

i(k1)A
†
k(p1)A

†
l (p2)|⌦i Akl

We have

Ai(k1)A
†
k(p1) = A†

m(p1)S
mi
ks (p1, k1)A

s(k1) + �ki �(k1 � p1) ,

so that

 ij(x1, x2) =

Z

dk2dk1e
ik

2

x
2

+ik
1

x
1

⇥ h⌦|Aj(k2)A
†
m(p1)S

mi
ks (p1, k1)A

s(k1)A
†
l (p2) + �ki �(k1 � p1)A

j(k2)A
†
l (p2)|⌦i Akl

and, therefore,

 ij(x1, x2) =

Z

dk2dk1e
ik

2

x
2

+ik
1

x
1

⇥ h⌦|Sji
kl(p1, k1)�(k2 � p1)�(k1 � p2) + �ki �

�
j (k1 � p1)�(k2 � p2)|⌦i Akl

= Aij eip1x1

+ip
2

x
2 + Sji

kl(p1, p2)A
kl eip2x1

+ip
1

x
2 ,

4This is the so-called reflection representation.
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where ↵k,k+1 is the transposition of k and k + 1. Since ✏i = 0 if the i-th particle is boson
and ✏i = 1 if it is fermion, one takes the minus sign if both particles are fermions, and the
plus sign otherwise.

Because of the symmetry condition it is su�cient to determine the wave function only in
one domain which we take to be x1 < x2 < · · · < xN . To simplify the notations we omit
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considered as the definition of the Bethe wave function for relativistic and other models
which have both particles and anti-particles in their spectrum.
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where ↵k,k+1 is the transposition of k and k + 1. Since ✏i = 0 if the i-th particle is boson
and ✏i = 1 if it is fermion, one takes the minus sign if both particles are fermions, and the
plus sign otherwise.

Because of the symmetry condition it is su�cient to determine the wave function only in
one domain which we take to be x1 < x2 < · · · < xN . To simplify the notations we omit
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The representation (4.51) is exact for the nonlinear Schrödinger model, and should be
considered as the definition of the Bethe wave function for relativistic and other models
which have both particles and anti-particles in their spectrum.
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The representation (4.51) is exact for the nonlinear Schrödinger model, and should be
considered as the definition of the Bethe wave function for relativistic and other models
which have both particles and anti-particles in their spectrum.
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and, therefore,
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Aij((12)) = Aij , Aij((21)) = Sji
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kl .

For simplicity we only consider a model with bosonic particles of one kind, e.g. the
su(2) or sl(2) sector of the AdS5 ⇥ S5 model. Then the S-matrix is just a scalar function,
we have only one ZF operator, and the wave function in the region

x1 < x2 < · · · < xN (4.55)

takes the form
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Taking into account (4.52), dividing the integration region over momenta k1, . . . kN into N !
domains ⌧ with k⌧(1) > k⌧(2) > · · · > k⌧(N) where ⌧ is a permutation of 1, 2, . . . , N , we get
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Changing the integration variables so that the integration domain is always k1 > k2 > · · · >
kN , one can rewrite the last formula in the form (4.50)
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Since ⌧ is a dummy variable, we change ⌧�1 ! ⌧ and get
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The ZF operators A(k) and A†(p) do not commute. If their momenta k and p have no over-
lapping region, the operators simply change their order producing the S-matrix. However,
they produce an additional term with the �-function �(k � p) that does not contain any
more both A(k) and A†(p). This term can be considered as the pairing (contraction)

Ai(k)A†
j(p) = �ij�(k � p) . (4.56)
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where ↵k,k+1 is the transposition of k and k + 1. Since ✏i = 0 if the i-th particle is boson
and ✏i = 1 if it is fermion, one takes the minus sign if both particles are fermions, and the
plus sign otherwise.

Because of the symmetry condition it is su�cient to determine the wave function only in
one domain which we take to be x1 < x2 < · · · < xN . To simplify the notations we omit
the subscript � = e, and write the wave function as

 i
1

···iN (x1, . . . , xN ) =
X
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ei x·p⌧ Ai
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···iN (⌧) , x1 < x2 < · · · < xN . (4.50)

The amplitudes Ai
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···iN (⌧) are related to Ai
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1

···iN through the S-matrix. To
find the relations one can use the following representation4 of the wave function (4.50)
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where Ai(x) is the Fourier transform of the annihilation ZF operator

Ai(x) =
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dp eipx Ai(p) , (4.52)

and |p1, . . . , pN ; Ai is the following superposition of in-states with momenta pi
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The representation (4.51) is exact for the nonlinear Schrödinger model, and should be
considered as the definition of the Bethe wave function for relativistic and other models
which have both particles and anti-particles in their spectrum.

Example: two-body wave function

The wave function can be evaluated by using the ZF algebra and is given by the sum of
the form (4.50). For example, a two-particle wave function is given by
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For simplicity we only consider a model with bosonic particles of one kind, e.g. the
su(2) or sl(2) sector of the AdS5 ⇥ S5 model. Then the S-matrix is just a scalar function,
we have only one ZF operator, and the wave function in the region

x1 < x2 < · · · < xN (4.55)

takes the form
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Taking into account (4.52), dividing the integration region over momenta k1, . . . kN into N !
domains ⌧ with k⌧(1) > k⌧(2) > · · · > k⌧(N) where ⌧ is a permutation of 1, 2, . . . , N , we get
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Changing the integration variables so that the integration domain is always k1 > k2 > · · · >
kN , one can rewrite the last formula in the form (4.50)
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Since ⌧ is a dummy variable, we change ⌧�1 ! ⌧ and get
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The ZF operators A(k) and A†(p) do not commute. If their momenta k and p have no over-
lapping region, the operators simply change their order producing the S-matrix. However,
they produce an additional term with the �-function �(k � p) that does not contain any
more both A(k) and A†(p). This term can be considered as the pairing (contraction)

Ai(k)A†
j(p) = �ij�(k � p) . (4.56)
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The ZF operators A(k) and A†(p) do not commute. If their momenta k and p have no over-
lapping region, the operators simply change their order producing the S-matrix. However,
they produce an additional term with the �-function �(k � p) that does not contain any
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The ZF operators A(k) and A†(p) do not commute. If their momenta k and p have no over-
lapping region, the operators simply change their order producing the S-matrix. However,
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Bethe wave function

where ↵k,k+1 is the transposition of k and k + 1. Since ✏i = 0 if the i-th particle is boson
and ✏i = 1 if it is fermion, one takes the minus sign if both particles are fermions, and the
plus sign otherwise.

Because of the symmetry condition it is su�cient to determine the wave function only in
one domain which we take to be x1 < x2 < · · · < xN . To simplify the notations we omit
the subscript � = e, and write the wave function as

 i
1

···iN (x1, . . . , xN ) =
X

⌧2SN

ei x·p⌧ Ai
1

···iN (⌧) , x1 < x2 < · · · < xN . (4.50)

The amplitudes Ai
1

···iN (⌧) are related to Ai
1

···iN (e) ⌘ Ai
1

···iN through the S-matrix. To
find the relations one can use the following representation4 of the wave function (4.50)
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1

···iN (x1, . . . , xN ) = h⌦|AiN (xN )AiN�1(xN�1) . . . Ai
1(x1)|p1, . . . , pN ; Ai , (4.51)

where Ai(x) is the Fourier transform of the annihilation ZF operator

Ai(x) =

Z

dp eipx Ai(p) , (4.52)

and |p1, . . . , pN ; Ai is the following superposition of in-states with momenta pi

|p1, . . . , pN ; Ai =
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j
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...,jN
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j
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jN

(pN )|0i Aj
1

···jN . (4.53)

The representation (4.51) is exact for the nonlinear Schrödinger model, and should be
considered as the definition of the Bethe wave function for relativistic and other models
which have both particles and anti-particles in their spectrum.

Example: two-body wave function

The wave function can be evaluated by using the ZF algebra and is given by the sum of
the form (4.50). For example, a two-particle wave function is given by

 ij(x1, x2) = h⌦|Aj(x2)A
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so that
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4This is the so-called reflection representation.
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and, therefore,
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Thus,
Aij((12)) = Aij , Aij((21)) = Sji

kl(p1, p2)A
kl .

We rederive the same result but with a di↵erent emphasis

All ZF operators must be paired
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For simplicity we only consider a model with bosonic particles of one kind, e.g. the
su(2) or sl(2) sector of the AdS5 ⇥ S5 model. Then the S-matrix is just a scalar function,
we have only one ZF operator, and the wave function in the region

x1 < x2 < · · · < xN (4.56)

takes the form
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Taking into account (4.52), dividing the integration region over momenta k1, . . . kN into N !
domains ⌧ with k⌧(1) > k⌧(2) > · · · > k⌧(N) where ⌧ is a permutation of 1, 2, . . . , N , we get
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Changing the integration variables so that the integration domain is always k1 > k2 > · · · >
kN , one can rewrite the last formula in the form (4.50)
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For simplicity we only consider a model with bosonic particles of one kind, e.g. the
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Changing the integration variables so that the integration domain is always k1 > k2 > · · · >
kN , one can rewrite the last formula in the form (4.50)
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Thus,

Aij((12)) = Aij , Aij((21)) = Sji
kl(p1, p2)A

kl .

We rederive the same result but with a di↵erent emphasis
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For simplicity we only consider a model with bosonic particles of one kind, e.g. the
su(2) or sl(2) sector of the AdS5 ⇥ S5 model. Then the S-matrix is just a scalar function,
we have only one ZF operator, and the wave function in the region

x1 < x2 < · · · < xN (4.57)

takes the form
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Taking into account (4.52), dividing the integration region over momenta k1, . . . kN into N !
domains ⌧ with k⌧(1) > k⌧(2) > · · · > k⌧(N) where ⌧ is a permutation of 1, 2, . . . , N , we get
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Changing the integration variables so that the integration domain is always k1 > k2 > · · · >
kN , one can rewrite the last formula in the form (4.50)
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Since ⌧ is a dummy variable, we change ⌧�1 ! ⌧ and get
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The ZF operators A(k) and A†(p) do not commute. If their momenta k and p have no over-
lapping region, the operators simply change their order producing the S-matrix. However,
they produce an additional term with the �-function �(k � p) that does not contain any
more both A(k) and A†(p). This term can be considered as the pairing (contraction)

Ai(k)A†
j(p) = �ij�(k � p) . (4.58)

The necessary condition for the matrix element to be non-zero is that all ZF operators must
be contracted. Due to the restriction on the integration region, the non-zero result requires
ki = pi for any i. This allows to simplify the result as
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X

⌧2SN

ei p⌧ ·x Ai
1

···iN (⌧) , (4.59)

where the amplitude A⌧ is
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Prescription: to compute this amplitude, use the ZF algebra to permute A and A† with
di↵erent momenta, and the rule that

Ai(p)A†
j(p) = �ij

These formulas can be used to derive the Bethe-Yang equations by imposing the peri-
odicity condition on the wave function

 (x1, . . . , xk = 0, . . . , xN ) =  (x1, . . . , xk = L, . . . , xN ) . (4.61)

We can assume without loss of generality that the coordinates xi are ordered as 0 < x1 <
x2 < · · · < xk�1 < xk+1 < · · · < xN < L. The symmetry condition then relates the wave
functions in (4.61) to the ones with properly ordered coordinates

 (x1, . . . , xk = 0, . . . , xN ) =  (0, x1, . . . , xk�1, xk+1, . . . , xN ) ,

 (x1, . . . , xk = L, . . . , xN ) =  (x1, . . . , xk�1, xk+1, . . . , xN , L) .
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Changing the integration variables so that the integration domain is always k1 > k2 > · · · >
kN , one can rewrite the last formula in the form (4.50)
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more both A(k) and A†(p). This term can be considered as the pairing (contraction)

Ai(k)A†
j(p) = �ij�(k � p) . (4.58)

The necessary condition for the matrix element to be non-zero is that all ZF operators must
be contracted. Due to the restriction on the integration region, the non-zero result requires
ki = pi for any i. This allows to simplify the result as
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Prescription: to compute this amplitude, use the ZF algebra to permute A and A† with
di↵erent momenta, and the rule that

Ai(p)A†
j(p) = �ij

These formulas can be used to derive the Bethe-Yang equations by imposing the peri-
odicity condition on the wave function

 (x1, . . . , xk = 0, . . . , xN ) =  (x1, . . . , xk = L, . . . , xN ) . (4.61)

We can assume without loss of generality that the coordinates xi are ordered as 0 < x1 <
x2 < · · · < xk�1 < xk+1 < · · · < xN < L. The symmetry condition then relates the wave
functions in (4.61) to the ones with properly ordered coordinates

 (x1, . . . , xk = 0, . . . , xN ) =  (0, x1, . . . , xk�1, xk+1, . . . , xN ) ,
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and, therefore,
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Thus,
Aij((12)) = Aij , Aij((21)) = Sji

kl(p1, p2)A
kl .

For simplicity we only consider a model with bosonic particles of one kind, e.g. the
su(2) or sl(2) sector of the AdS5 ⇥ S5 model. Then the S-matrix is just a scalar function,
we have only one ZF operator, and the wave function in the region

x1 < x2 < · · · < xN (4.56)
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Taking into account (4.52), dividing the integration region over momenta k1, . . . kN into N !
domains ⌧ with k⌧(1) > k⌧(2) > · · · > k⌧(N) where ⌧ is a permutation of 1, 2, . . . , N , we get

 i
1

···iN (x1, . . . , xN ) =
X

⌧2SN

Z

k⌧(1)>k⌧(2)>···>k⌧(N)

dk1 . . . dkN

⇥ eikixih⌦|AiN (kN ) . . . Ai
1(k1)A

†
j
1

(p1) · · · A†
jN

(pN )|⌦i Aj
1

···jN .

Changing the integration variables so that the integration domain is always k1 > k2 > · · · >
kN , one can rewrite the last formula in the form (4.50)

 i
1

···iN (x1, . . . , xN ) =
X

⌧2SN

Z

k
1

>k
2

>···>kN

dk1 . . . dkN

⇥ eik⌧�1

(i)xih⌦|AiN (k⌧�1(N)) . . . Ai
1(k⌧�1(1))A

†
j
1

(p1) · · · A†
jN

(pN )|⌦i Aj
1

···jN .

Since ⌧ is a dummy variable, we change ⌧�1 ! ⌧ and get
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The ZF operators A(k) and A†(p) do not commute. If their momenta k and p have no over-
lapping region, the operators simply change their order producing the S-matrix. However,
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Periodicity condition for the Bethe wave function

Changing the integration variables so that the integration domain is always k1 > k2 > · · · >
kN , one can rewrite the last formula in the form (4.50)
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The ZF operators A(k) and A†(p) do not commute. If their momenta k and p have no over-
lapping region, the operators simply change their order producing the S-matrix. However,
they produce an additional term with the �-function �(k � p) that does not contain any
more both A(k) and A†(p). This term can be considered as the pairing (contraction)

Ai(k)A†
j(p) = �ij�(k � p) . (4.58)

The necessary condition for the matrix element to be non-zero is that all ZF operators must
be contracted. Due to the restriction on the integration region, the non-zero result requires
ki = pi for any i. This allows to simplify the result as
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···iN (x1, . . . , xN ) =
X
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ei p⌧ ·x Ai
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where the amplitude A⌧ is
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Prescription: to compute this amplitude, use the ZF algebra to permute A and A† with
di↵erent momenta, and the rule that

Ai(p)A†
j(p) = �ij

General case

These formulas can be used to derive the Bethe-Yang equations by imposing the peri-
odicity condition on the wave function

 (x1, . . . , xk = 0, . . . , xN ) =  (x1, . . . , xk = L, . . . , xN ) . (4.61)

We can assume without loss of generality that the coordinates xi are ordered as 0 < x1 <
x2 < · · · < xk�1 < xk+1 < · · · < xN < L. The symmetry condition then relates the wave
functions in (4.61) to the ones with properly ordered coordinates

 (x1, . . . , xk = 0, . . . , xN ) =  (0, x1, . . . , xk�1, xk+1, . . . , xN ) ,

 (x1, . . . , xk = L, . . . , xN ) =  (x1, . . . , xk�1, xk+1, . . . , xN , L) .
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Changing the integration variables so that the integration domain is always k1 > k2 > · · · >
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Prescription: to compute this amplitude, use the ZF algebra to permute A and A† with
di↵erent momenta, and the rule that
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General case

These formulas can be used to derive the Bethe-Yang equations by imposing the peri-
odicity condition on the wave function

 (x1, . . . , xk = 0, . . . , xN ) =  (x1, . . . , xk = L, . . . , xN ) . (4.61)

We can assume without loss of generality that the coordinates xi are ordered as 0 < x1 <
x2 < · · · < xk�1 < xk+1 < · · · < xN < L. The symmetry condition then relates the wave
functions in (4.61) to the ones with properly ordered coordinates

 (x1, . . . , xk = 0, . . . , xN ) =  (0, x1, . . . , xk�1, xk+1, . . . , xN ) ,
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The ZF operators A(k) and A†(p) do not commute. If their momenta k and p have no over-
lapping region, the operators simply change their order producing the S-matrix. However,
they produce an additional term with the �-function �(k � p) that does not contain any
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We can assume without loss of generality that the coordinates xi are ordered as 0 < x1 <
x2 < · · · < xk�1 < xk+1 < · · · < xN < L. The symmetry condition then relates the wave
functions in (4.61) to the ones with properly ordered coordinates
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The ZF operators A(k) and A†(p) do not commute. If their momenta k and p have no over-
lapping region, the operators simply change their order producing the S-matrix. However,
they produce an additional term with the �-function �(k � p) that does not contain any
more both A(k) and A†(p). This term can be considered as the pairing (contraction)

Ai(k)A†
j(p) = �ij�(k � p) . (4.58)

The necessary condition for the matrix element to be non-zero is that all ZF operators must
be contracted. Due to the restriction on the integration region, the non-zero result requires
ki = pi for any i. This allows to simplify the result as
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where the amplitude A⌧ is
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Prescription: to compute this amplitude, use the ZF algebra to permute A and A† with
di↵erent momenta, and the rule that

Ai(p)A†
j(p) = �ij

These formulas can be used to derive the Bethe-Yang equations by imposing the peri-
odicity condition on the wave function

 (x1, . . . , xk = 0, . . . , xN ) =  (x1, . . . , xk = L, . . . , xN ) . (4.61)

We can assume without loss of generality that the coordinates xi are ordered as 0 < x1 <
x2 < · · · < xk�1 < xk+1 < · · · < xN < L. The symmetry condition then relates the wave
functions in (4.61) to the ones with properly ordered coordinates

 (x1, . . . , xk = 0, . . . , xN ) =  (0, x1, . . . , xk�1, xk+1, . . . , xN ) ,

 (x1, . . . , xk = L, . . . , xN ) =  (x1, . . . , xk�1, xk+1, . . . , xN , L) .
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Changing the integration variables so that the integration domain is always k1 > k2 > · · · >
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Prescription: to compute this amplitude, use the ZF algebra to permute A and A† with
di↵erent momenta, and the rule that

Ai(p)A†
j(p) = �ij

General case

These formulas can be used to derive the Bethe-Yang equations by imposing the peri-
odicity condition on the wave function

 (x1, . . . , xk = 0, . . . , xN ) =  (x1, . . . , xk = L, . . . , xN ) . (4.61)

We can assume without loss of generality that the coordinates xi are ordered as 0 < x1 <
x2 < · · · < xk�1 < xk+1 < · · · < xN < L. The symmetry condition then relates the wave
functions in (4.61) to the ones with properly ordered coordinates

 (x1, . . . , xk = 0, . . . , xN ) =  (0, x1, . . . , xk�1, xk+1, . . . , xN ) ,
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Prescription: to compute this amplitude, use the ZF algebra to permute A and A† with
di↵erent momenta, and the rule that

Ai(p)A†
j(p) = �ij

Periodicity condition for the Bethe wave function ⌘ Coordinate Bethe Ansatz

These formulas can be used to derive the Bethe-Yang equations by imposing the peri-
odicity condition on the wave function

 (x1, . . . , xk = 0, . . . , xN ) =  (x1, . . . , xk = L, . . . , xN ) . (4.61)

We can assume without loss of generality that the coordinates xi are ordered as 0 < x1 <
x2 < · · · < xk�1 < xk+1 < · · · < xN < L. The symmetry condition then relates the wave
functions in (4.61) to the ones with properly ordered coordinates

 (x1, . . . , xk = 0, . . . , xN ) =  (0, x1, . . . , xk�1, xk+1, . . . , xN ) ,

 (x1, . . . , xk = L, . . . , xN ) =  (x1, . . . , xk�1, xk+1, . . . , xN , L) .
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General case

These formulas can be used to derive the Bethe-Yang equations by imposing the periodicity
condition on the wave function

 i
1

... ik(x1, . . . , xk = 0, . . . , xN ) =  i
1

... ik(x1, . . . , xk = L, . . . , xN ) . (4.84)

We can assume without loss of generality that the coordinates xi are ordered as 0 < x1 <
x2 < · · · < xk�1 < xk+1 < · · · < xN < L. The symmetry condition then relates the wave
functions in (4.84) to the ones with properly ordered coordinates

 (x1, . . . , xk = 0, . . . , xN ) =  (0, x1, . . . , xk�1, xk+1, . . . , xN ) ,

 (x1, . . . , xk = L, . . . , xN ) =  (x1, . . . , xk�1, xk+1, . . . , xN , L) .

Then in eq.(4.59) we pick the term with the plane wave eipixi with xk = 0 for the wave func-
tion (0, x1, . . . , xk�1, xk+1, . . . , xN ), and with xk = L for the wave function (x1, . . . , xk�1, xk+1, . . . , xN , L).
The periodicity and symmetry conditions then lead to the following equation
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We start with the first line and commute Ai
1(p1) to the left until it rests between Aik+1(pk+1)

and Aik�1(pk�1). The commutation relation to use is

Ai(p1)A
j(p2) = Sij

kl(p1, p2)A
l(p2)A

k(p1) . (4.85)

Upon performing these commutations, the first line transforms into
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The amplitude here is computed by using the contraction rule and we find
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Thus, the left hand side gives
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Analogous calculation is done for the right hand side and one gets
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Thus, the periodicity condition boils down to
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General case

These formulas can be used to derive the Bethe-Yang equations by imposing the periodicity
condition on the wave function

 i
1

... ik(x1, . . . , xk = 0, . . . , xN ) =  i
1

... ik(x1, . . . , xk = L, . . . , xN ) . (4.84)

L is the size of the box (length of a circle)

We can assume without loss of generality that the coordinates xi are ordered as 0 <
x1 < x2 < · · · < xk�1 < xk+1 < · · · < xN < L. The symmetry condition then relates the
wave functions in (4.84) to the ones with properly ordered coordinates

 (x1, . . . , xk = 0, . . . , xN ) =  (0, x1, . . . , xk�1, xk+1, . . . , xN ) ,

 (x1, . . . , xk = L, . . . , xN ) =  (x1, . . . , xk�1, xk+1, . . . , xN , L) .

Then in eq.(4.59) we pick the term with the plane wave eipixi with xk = 0 for the wave func-
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Periodicity condition for the Bethe wave function
fundamental sector

so that the periodicity condition takes the form

 ij(0, x) = (�1)✏i✏j ji(x, L) (4.63)

Substituting here the explicit form of the two-body function we get

Aij eip2x + Sji
kl(p1, p2)A

kl eip1x = (�1)✏i✏j
⇣

Aji eip1x1

+ip
2

L + Sij
kl(p1p2)A

kl eip2x+ip
1

L
⌘

.

This yields two equations

(�1)✏i✏jSij
kl(p1, p2)A

kl = e�ip
1

LAij , (4.64)

Sji
kl(p1, p2)A

kl = (�1)✏i✏jAji eip2L (4.65)

Since Aij arbitrary these relations are equivalent to

(�1)✏i✏jSij
kl(p1, p2) = e�ip

1

L�ik�
j
l , (4.66)

Sji
kl(p1, p2) = (�1)✏i✏j�jk�

i
l eip2L (4.67)

With the unitarity condition S12(p1, p2)S21(p2, p1) = the second equation is rewritten as

Sji
kl(p2, p1)(�1)✏j✏i = e�ip

2

L�jk�
i
l (4.68)

It is convenient to introduce the so-called graded S-matrix with matrix elements

Sijkl(p1, p2) = (�1)✏i✏jSij
kl(p1, p2) (4.69)

Then the equations can be rewritten in the matrix form

eip1LS(p1, p2) = , eip2LS(p2, p1) = . (4.70)

General case

These formulas can be used to derive the Bethe-Yang equations by imposing the periodicity
condition on the wave function

 (x1, . . . , xk = 0, . . . , xN ) =  (x1, . . . , xk = L, . . . , xN ) . (4.71)

We can assume without loss of generality that the coordinates xi are ordered as 0 < x1 <
x2 < · · · < xk�1 < xk+1 < · · · < xN < L. The symmetry condition then relates the wave
functions in (4.71) to the ones with properly ordered coordinates

 (x1, . . . , xk = 0, . . . , xN ) =  (0, x1, . . . , xk�1, xk+1, . . . , xN ) ,

 (x1, . . . , xk = L, . . . , xN ) =  (x1, . . . , xk�1, xk+1, . . . , xN , L) .

Then in eq.(4.59) we pick the term with the plane wave eipixi with xk = 0 for the wave func-
tion (0, x1, . . . , xk�1, xk+1, . . . , xN ), and with xk = L for the wave function (x1, . . . , xk�1, xk+1, . . . , xN , L).
The periodicity and symmetry conditions then lead to the following equation

h⌦|AiN (pN ) · · · Aik+1(pk+1)A
ik�1(pk�1) · · · Ai
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†
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This yields two equations
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kl = e�ip
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LAij , (4.64)

Sji
kl(p1, p2)A

kl = (�1)✏i✏jAji eip2L (4.65)

Since Aij arbitrary these relations are equivalent to
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Sji
kl(p2, p1)(�1)✏j✏i = e�ip

2

L�jk�
i
l (4.68)

It is convenient to introduce the so-called graded S-matrix with matrix elements

Sijkl(p1, p2) = (�1)✏i✏jSij
kl(p1, p2) (4.69)

Then the equations can be rewritten in the matrix form

eip1LS(p1, p2) = , eip2LS(p2, p1) = . (4.70)

General case

These formulas can be used to derive the Bethe-Yang equations by imposing the periodicity
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 (x1, . . . , xk = 0, . . . , xN ) =  (x1, . . . , xk = L, . . . , xN ) . (4.71)

We can assume without loss of generality that the coordinates xi are ordered as 0 < x1 <
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 (x1, . . . , xk = 0, . . . , xN ) =  (0, x1, . . . , xk�1, xk+1, . . . , xN ) ,
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so that the periodicity condition takes the form
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Let us now look at the unitarity condition S12(p1, p2)S21(p2, p1) = . Recall that the
S-matrix in the matrix form is represented via its matrix elements as

S(p1, p2) = Skl
ij (p1, p2) Ei

k ⌦ Ej
l (4.68)

so that in indices the unitarity condition takes the form

Skl
ij (p1, p2)S

mn
lk (p2, p1) = �ni �lj (4.69)

We now take the second equation (4.67), multiply it with Ssm
ij (p2, p1) and use the unitary

condition above to get
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L�jk�
i
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It is convenient to introduce the graded identity

Ig = (�1)✏i✏j Ei
i ⌦ Ej

j (4.73)

With the graded identity the equations (4.66) and (4.72) can be written in the matrix form

eip1LIg12S12(p1, p2) = , eip2LS21(p2, p1)I
g
21 = . (4.74)

Note the definition of the so-called graded S-matrix with matrix elements

Sijkl(p1, p2) = (�1)✏i✏jSij
kl(p1, p2) (4.75)

80

so that the periodicity condition takes the form

 ij(0, x) = (�1)✏i✏j ji(x, L) (4.63)

Substituting here the explicit form of the two-body function we get

Aij eip2x + Sji
kl(p1, p2)A

kl eip1x = (�1)✏i✏j
⇣

Aji eip1x1

+ip
2

L + Sij
kl(p1p2)A

kl eip2x+ip
1

L
⌘

.

This yields two equations

(�1)✏i✏jSij
kl(p1, p2)A

kl = e�ip
1

LAij , (4.64)

Sji
kl(p1, p2)A

kl = (�1)✏i✏jAji eip2L (4.65)

Since Aij arbitrary these relations are equivalent to

(�1)✏i✏jSij
kl(p1, p2) = e�ip

1

L�ik�
j
l , (4.66)

Sji
kl(p1, p2) = (�1)✏i✏j�jk�

i
l eip2L (4.67)

Let us now look at the unitarity condition S12(p1, p2)S21(p2, p1) = . Recall that the
S-matrix in the matrix form is represented via its matrix elements as

S(p1, p2) = Skl
ij (p1, p2) Ei

k ⌦ Ej
l (4.68)

so that in indices the unitarity condition takes the form

Skl
ij (p1, p2)S

mn
lk (p2, p1) = �ni �lj (4.69)

We now take the second equation (4.67), multiply it with Ssm
ij (p2, p1) and use the unitary

condition above to get

Sji
kl(p1, p2)S

sm
ij (p2, p1) = (�1)✏i✏j�jk�

i
lS

sm
ij (p2, p1)e

ip
2

L eip2L (4.70)

so that

e�ip
2

L�mk �sl = Ssm
lk (p2, p1)(�1)✏l✏k (4.71)

or

Sji
kl(p2, p1)(�1)✏k✏l = e�ip

2

L�jk�
i
l (4.72)

It is convenient to introduce the graded identity

Ig = (�1)✏i✏j Ei
i ⌦ Ej

j (4.73)

With the graded identity the equations (4.66) and (4.72) can be written in the matrix form

eip1LIg12S12(p1, p2) = , eip2LS21(p2, p1)I
g
21 = . (4.74)
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Changing the integration variables so that the integration domain is always k1 > k2 > · · · >
kN , one can rewrite the last formula in the form (4.50)

 i
1

···iN (x1, . . . , xN ) =
X

⌧2SN

Z

k
1

>k
2

>···>kN

dk1 . . . dkN

⇥ eik⌧�1

(i)xih⌦|AiN (k⌧�1(N)) . . . Ai
1(k⌧�1(1))A

†
j
1

(p1) · · · A†
jN

(pN )|⌦i Aj
1

···jN .

Since ⌧ is a dummy variable, we change ⌧�1 ! ⌧ and get

 i
1

···iN (x1, . . . , xN ) =
X

⌧2SN

Z

k
1

>k
2

>···>kN

dk1 . . . dkN

⇥ eik⌧(i)xih⌦|AiN (k⌧(N)) . . . Ai
1(k⌧(1))A

†
j
1

(p1) · · · A†
jN

(pN )|⌦i Aj
1

···jN .

The ZF operators A(k) and A†(p) do not commute. If their momenta k and p have no over-
lapping region, the operators simply change their order producing the S-matrix. However,
they produce an additional term with the �-function �(k � p) that does not contain any
more both A(k) and A†(p). This term can be considered as the pairing (contraction)

Ai(k)A†
j(p) = �ij�(k � p) . (4.58)

The necessary condition for the matrix element to be non-zero is that all ZF operators must
be contracted. Due to the restriction on the integration region, the non-zero result requires
ki = pi for any i. This allows to simplify the result as

 i
1

···iN (x1, . . . , xN ) =
X

⌧2SN

ei p⌧ ·x Ai
1

···iN (⌧) , (4.59)

where the amplitude A⌧ is

Ai
1

···iN (⌧) = h0|AiN (p⌧(N)) . . . Ai
1(p⌧(1))A

†
j
1

(p1) . . . A†
jN

(pN )|0i Aj
1

···jN . (4.60)

Prescription: to compute this amplitude, use the ZF algebra to permute A and A† with
di↵erent momenta, and the rule that

Ai(p)A†
j(p) = �ij

Two-body case

In the two-body case we have

 ij(0, x) =  ij(L, x) (4.61)

the wave functions on the left and the right hand side belong to di↵erent sectors. To rewrite
the wave-function on the right hand side via the one of the fundamental sector we use the
symmetry condition

 ij(L, x) = (�1)✏i✏j ji(x, L) , (4.62)
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so that the periodicity condition takes the form

 ij(0, x) = (�1)✏i✏j ji(x, L) (4.63)

Substituting here the explicit form of the two-body function we get

Aij eip2x + Sji
kl(p1, p2)A

kl eip1x = (�1)✏i✏j
⇣

Aji eip1x1

+ip
2

L + Sij
kl(p1p2)A

kl eip2x+ip
1

L
⌘

.

This yields two equations

(�1)✏i✏jSij
kl(p1, p2)A

kl � e�ip
1

LAij , (4.64)

Sji
kl(p1, p2)A

kl = (�1)✏i✏jAji eip2L (4.65)

These relations are equivalent to the following equations on the amplitude Akl

h

(�1)✏i✏jSij
kl(p1, p2) � e�ip

1

L�ik�
j
l

i

Akl = 0 , (4.66)
h

Sji
kl(p1, p2) � (�1)✏i✏j�jk�

i
l eip2L

i

Akl = 0 (4.67)

Let us now look at the unitarity condition S12(p1, p2)S21(p2, p1) = . Recall that the
S-matrix in the matrix form is represented via its matrix elements as

S12(p1, p2) = Skl
ij (p1, p2) Ei

k ⌦ Ej
l (4.68)

so that in indices the unitarity condition takes the form

Skl
ij (p1, p2)S

mn
lk (p2, p1) = �ni �lj (4.69)

We now take the second equation (4.67), multiply it with Ssm
ij (p2, p1) and use the unitary

condition above to get

Sji
kl(p1, p2)S

sm
ij (p2, p1) = (�1)✏i✏j�jk�

i
lS

sm
ij (p2, p1)e
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L eip2L (4.70)

so that
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2

L�mk �sl = Ssm
lk (p2, p1)(�1)✏l✏k (4.71)

or

Sji
kl(p2, p1)(�1)✏k✏l = e�ip

2

L�jk�
i
l (4.72)

It is convenient to introduce the graded identity

Ig = (�1)✏i✏j Ei
i ⌦ Ej

j (4.73)

With the graded identity the equations (4.66) and (4.72) can be written in the matrix form

eip1LIg12S12(p1, p2) = , eip2LS21(p2, p1)I
g
21 = . (4.74)

and recall

Note the definition of the so-called graded S-matrix with matrix elements

Sijkl(p1, p2) = (�1)✏i✏jSij
kl(p1, p2) (4.75)
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they produce an additional term with the �-function �(k � p) that does not contain any
more both A(k) and A†(p). This term can be considered as the pairing (contraction)

Ai(k)A†
j(p) = �ij�(k � p) . (4.58)

The necessary condition for the matrix element to be non-zero is that all ZF operators must
be contracted. Due to the restriction on the integration region, the non-zero result requires
ki = pi for any i. This allows to simplify the result as

 i
1

···iN (x1, . . . , xN ) =
X

⌧2SN

ei p⌧ ·x Ai
1

···iN (⌧) , (4.59)

where the amplitude A⌧ is

Ai
1

···iN (⌧) = h0|AiN (p⌧(N)) . . . Ai
1(p⌧(1))A

†
j
1

(p1) . . . A†
jN

(pN )|0i Aj
1

···jN . (4.60)

Prescription: to compute this amplitude, use the ZF algebra to permute A and A† with
di↵erent momenta, and the rule that

Ai(p)A†
j(p) = �ij

Two-body case

In the two-body case we have

 ij(0, x) =  ij(L, x) = (�1)✏i✏j ji(x, L) (4.61)

the wave functions on the left and the right hand side belong to di↵erent sectors. To rewrite
the wave-function on the right hand side via the one of the fundamental sector we use the
symmetry condition

 ij(L, x) = (�1)✏i✏j ji(x, L) , (4.62)
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so that the periodicity condition takes the form
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Let us now look at the unitarity condition S12(p1, p2)S21(p2, p1) = . Recall that the
S-matrix in the matrix form is represented via its matrix elements as
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so that in indices the unitarity condition takes the form
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We now take the second equation (4.67), multiply it with Ssm
ij (p2, p1) and use the unitary

condition above to get
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It is convenient to introduce the graded identity
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With the graded identity the equations (4.66) and (4.72) can be written in the matrix form

eip1LIg12S12(p1, p2) = , eip2LS21(p2, p1)I
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21 = . (4.74)
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Note the definition of the so-called graded S-matrix with matrix elements
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With the graded identity the equations (4.66) and (4.72) can be written in the matrix form
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Akl = 0 ,
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and recall

Note the definition of the so-called graded S-matrix with matrix elements

Sijkl(p1, p2) = (�1)✏i✏jSij
kl(p1, p2) (4.76)

Three-body case

Let us write down all partial amplitudes
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2

i
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The full wave-function is, therefore,
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It is convenient to introduce the graded identity

Ig = (�1)✏i✏j Ei
i ⌦ Ej

j (4.74)

With the graded identity the equations (4.66) and (4.72) can be written in the matrix form

eip1LIg12S12(p1, p2) = , eip2LS21(p2, p1)I
g
21 = . (4.75)

h

(�1)✏i✏jSij
kl(p1, p2) � e�ip

1

L�ik�
j
l

i

Akl = 0 ,
h

Sji
lk(p2, p1)(�1)✏k✏l � e�ip

2

L�ik�
j
l

i

Akl = 0

and introduce

Note the definition of the so-called graded S-matrix with matrix elements

Sijkl(p1, p2) = (�1)✏i✏jSij
kl(p1, p2) (4.76)

Three-body case

Let us write down all partial amplitudes

Ai
1

i
2

i
3((123)) = h0|Ai

3(p3)A
i
2(p2)A

i
1(p1)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3 = Ai

1

i
2

i
3 ,

Ai
1

i
2

i
3((213)) = h0|Ai

3(p3)A
i
2(p1)A

i
1(p2)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3

= Si
2

i
1

j
1

j
2

(p1, p2)�
i
3

j
3

Aj
1

j
2

j
3 ,

Ai
1

i
2

i
3((231)) = h0|Ai

3(p1)A
i
2(p3)A

i
1(p2)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3 (4.77)

= Smi
1

j
1

j
2

(p1, p2)S
i
3

i
2

mj
3

(p1, p3) Aj
1

j
2

j
3

Ai
1

i
2

i
3((321)) = h0|Ai

3(p1)A
i
2(p2)A

i
1(p3)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3

= Si
3

i
2

kl (p1, p2)S
ki

1

j
1

m(p1, p3)S
lm
j
2

j
3

(p2, p3) Aj
1

j
2

j
3

Ai
1

i
2

i
3((312)) = h0|Ai

3(p2)A
i
2(p1)A

i
1(p3)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3

= Si
2

i
1

j
1

k (p1, p3)S
i
3

k
j
2

j
3

(p2, p3) Aj
1

j
2

j
3

Ai
1

i
2

i
3((132)) = h0|Ai

3(p2)A
i
2(p3)A

i
1(p1)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3

= �i1j
1

Si
3

i
2

j
2

j
3

(p2, p3) Aj
1

j
2

j
3 .

The full wave-function is, therefore,

 i
1

i
2

i
3(x1, x2, x3) = Ai

1

i
2

i
3 eip1x1

+ip
2

x
2

+ip
3

x
3

+ Si
2

i
1

j
1

j
2

(p1, p2)�
i
3

j
3

Aj
1

j
2

j
3 eip2x1

+ip
1

x
2

+ip
3

x
3

+ Smi
1

j
1

j
2

(p1, p2)S
i
3

i
2

mj
3

(p1, p3) Aj
1

j
2

j
3 eip2x1

+ip
3

x
2

+ip
1

x
3

+ Si
3

i
2

kl (p1, p2)S
ki

1

j
1

m(p1, p3)S
lm
j
2

j
3

(p2, p3) Aj
1

j
2

j
3 eip3x1

+ip
2

x
2

+ip
1

x
3

+ Si
2

i
1

j
1

k (p1, p3)S
i
3

k
j
2

j
3

(p2, p3) Aj
1

j
2

j
3 eip3x1

+ip
1

x
2

+ip
2

x
3

+ �i1j
1

Si
3

i
2

j
2

j
3

(p2, p3) Aj
1

j
2

j
3 eip1x1

+ip
3

x
2

+ip
2

x
3

81

It is convenient to introduce the graded identity

Ig = (�1)✏i✏j Ei
i ⌦ Ej

j (4.74)

With the graded identity the equations (4.66) and (4.72) can be written in the matrix form

eip1LIg12S12(p1, p2) = , eip2LS21(p2, p1)I
g
21 = . (4.75)

h

(�1)✏i✏jSij
kl(p1, p2) � e�ip

1

L�ik�
j
l

i

Akl = 0 ,
h

Sji
lk(p2, p1)(�1)✏k✏l � e�ip

2

L�ik�
j
l

i

Akl = 0

and introduce

A = AmnEm ⌦ En (4.76)

Note the definition of the so-called graded S-matrix with matrix elements

Sijkl(p1, p2) = (�1)✏i✏jSij
kl(p1, p2) (4.77)

Three-body case

Let us write down all partial amplitudes

Ai
1

i
2

i
3((123)) = h0|Ai

3(p3)A
i
2(p2)A

i
1(p1)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3 = Ai

1

i
2

i
3 ,

Ai
1

i
2

i
3((213)) = h0|Ai

3(p3)A
i
2(p1)A

i
1(p2)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3

= Si
2

i
1

j
1

j
2

(p1, p2)�
i
3

j
3

Aj
1

j
2

j
3 ,

Ai
1

i
2

i
3((231)) = h0|Ai

3(p1)A
i
2(p3)A

i
1(p2)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3 (4.78)

= Smi
1

j
1

j
2

(p1, p2)S
i
3

i
2

mj
3

(p1, p3) Aj
1

j
2

j
3

Ai
1

i
2

i
3((321)) = h0|Ai

3(p1)A
i
2(p2)A

i
1(p3)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3

= Si
3

i
2

kl (p1, p2)S
ki

1

j
1

m(p1, p3)S
lm
j
2

j
3

(p2, p3) Aj
1

j
2

j
3

Ai
1

i
2

i
3((312)) = h0|Ai

3(p2)A
i
2(p1)A

i
1(p3)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3

= Si
2

i
1

j
1

k (p1, p3)S
i
3

k
j
2

j
3

(p2, p3) Aj
1

j
2

j
3

Ai
1

i
2

i
3((132)) = h0|Ai

3(p2)A
i
2(p3)A

i
1(p1)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3

= �i1j
1

Si
3

i
2

j
2

j
3

(p2, p3) Aj
1

j
2

j
3 .

The full wave-function is, therefore,

 i
1

i
2

i
3(x1, x2, x3) = Ai

1

i
2

i
3 eip1x1

+ip
2

x
2

+ip
3

x
3

+ Si
2

i
1

j
1

j
2

(p1, p2)�
i
3

j
3

Aj
1

j
2

j
3 eip2x1

+ip
1

x
2

+ip
3

x
3

+ Smi
1

j
1

j
2

(p1, p2)S
i
3

i
2

mj
3

(p1, p3) Aj
1

j
2

j
3 eip2x1

+ip
3

x
2

+ip
1

x
3

+ Si
3

i
2

kl (p1, p2)S
ki

1

j
1

m(p1, p3)S
lm
j
2

j
3

(p2, p3) Aj
1

j
2

j
3 eip3x1

+ip
2

x
2

+ip
1

x
3

+ Si
2

i
1

j
1

k (p1, p3)S
i
3

k
j
2

j
3

(p2, p3) Aj
1

j
2

j
3 eip3x1

+ip
1

x
2

+ip
2

x
3

+ �i1j
1

Si
3

i
2

j
2

j
3

(p2, p3) Aj
1

j
2

j
3 eip1x1

+ip
3

x
2

+ip
2

x
3

81

so that the periodicity condition takes the form

 ij(0, x) = (�1)✏i✏j ji(x, L) (4.63)

Substituting here the explicit form of the two-body function we get

Aij eip2x + Sji
kl(p1, p2)A

kl eip1x = (�1)✏i✏j
⇣

Aji eip1x1

+ip
2

L + Sij
kl(p1p2)A

kl eip2x+ip
1

L
⌘

.

This yields two equations
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LAij , (4.64)
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kl(p1, p2)A

kl = (�1)✏i✏jAji eip2L (4.65)

These relations are equivalent to the following equations on the amplitude Akl
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i
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i
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Let us now look at the unitarity condition S12(p1, p2)S21(p2, p1) = . Recall that the
S-matrix in the matrix form is represented via its matrix elements as

S12(p1, p2) = Skl
ij (p1, p2) Ei

k ⌦ Ej
l , (4.68)

so that in indices the unitarity condition takes the form
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ij (p1, p2)S
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We now take the second equation (4.67), multiply it with Ssm
ij (p2, p1) and use the unitary

condition above to get
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column

It is convenient to introduce the graded identity

Ig = (�1)✏i✏j Ei
i ⌦ Ej

j (4.74)

With the graded identity the equations (4.66) and (4.72) can be written in the matrix form
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matrix Bethe�Yang equations



Periodicity condition for the Bethe wave function

Three-body case

Let us write down all partial amplitudes
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Three-body case

Let us write down all partial amplitudes

Ai
1

i
2

i
3((123)) = h0|Ai

3(p3)A
i
2(p2)A

i
1(p1)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3 = Ai

1

i
2

i
3 ,

Ai
1

i
2

i
3((213)) = h0|Ai

3(p3)A
i
2(p1)A

i
1(p2)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3

= Si
2

i
1

j
1

j
2

(p1, p2)�
i
3

j
3

Aj
1

j
2

j
3 ,

Ai
1

i
2

i
3((231)) = h0|Ai

3(p1)A
i
2(p3)A

i
1(p2)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3 (4.76)

= Smi
1

j
1

j
2

(p1, p2)S
i
3

i
2

mj
3

(p1, p3) Aj
1

j
2

j
3

Ai
1

i
2

i
3((321)) = h0|Ai

3(p1)A
i
2(p2)A

i
1(p3)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3

= Si
3

i
2

kl (p1, p2)S
ki

1

j
1

m(p1, p3)S
lm
j
2

j
3

(p2, p3) Aj
1

j
2

j
3

Ai
1

i
2

i
3((312)) = h0|Ai

3(p2)A
i
2(p1)A

i
1(p3)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3

= Si
2

i
1

j
1

k (p1, p3)S
i
3

k
j
2

j
3

(p2, p3) Aj
1

j
2

j
3

Ai
1

i
2

i
3((132)) = h0|Ai

3(p2)A
i
2(p3)A

i
1(p1)A

†
j
1

(p1)A
†
j
2

(p2)A
†
j
3

(p3)|0iAj
1

j
2

j
3

= �i1j
1

Si
3

i
2

j
2

j
3

(p2, p3) Aj
1

j
2

j
3 .

The full wave-function is, therefore,

 i
1

i
2

i
3(x1, x2, x3) = Ai

1

i
2

i
3 eip1x1

+ip
2

x
2

+ip
3

x
3

+ Si
2

i
1

j
1

j
2

(p1, p2)�
i
3

j
3

Aj
1

j
2

j
3 eip2x1

+ip
1

x
2

+ip
3

x
3

+ Smi
1

j
1

j
2

(p1, p2)S
i
3

i
2

mj
3

(p1, p3) Aj
1

j
2

j
3 eip2x1

+ip
3

x
2

+ip
1

x
3

+ Si
3

i
2

kl (p1, p2)S
ki

1

j
1

m(p1, p3)S
lm
j
2

j
3

(p2, p3) Aj
1

j
2

j
3 eip3x1

+ip
2

x
2

+ip
1

x
3

+ Si
2

i
1

j
1

k (p1, p3)S
i
3

k
j
2

j
3

(p2, p3) Aj
1

j
2

j
3 eip3x1

+ip
1

x
2

+ip
2

x
3

+ �i1j
1

Si
3

i
2

j
2

j
3

(p2, p3) Aj
1

j
2

j
3 eip1x1

+ip
3

x
2

+ip
2

x
3

The periodicity condition is

 i
1

i
2

i
3(0, x2, x3) =  i

1

i
2

i
3(L, x2, x3) = (�1)✏i1✏i2 (�1)✏i1✏i3 i

2

i
1

i
3(x2, x3, L)

81

(123)

(213)

(231)

(321)

(312)

(132)

Three-body case

Let us write down all partial amplitudes
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We deduce the following set of equations
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This can be written as
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This is equivalent to
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This equation is equivalent to
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This yields the matrix Bethe-Yang equations
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where we used the fact that ✏i
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+ ✏i
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+ ✏a + ✏b = 0, 2, 4. Hence,
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Replace b = i2 and a = i3, we obtain precisely the first equation in (4.80).

Equations (4.80) are equivalent to the following matrix Bethe-Yang equations
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General case

These formulas can be used to derive the Bethe-Yang equations by imposing the periodicity
condition on the wave function

 i
1

... ik(x1, . . . , xk = 0, . . . , xN ) =  i
1

... ik(x1, . . . , xk = L, . . . , xN ) . (4.83)

L is the size of the box (length of a circle)

We can assume without loss of generality that the coordinates xi are ordered as 0 <
x1 < x2 < · · · < xk�1 < xk+1 < · · · < xN < L. The symmetry condition then relates the
wave functions in (4.83) to the ones with properly ordered coordinates

 (x1, . . . , xk = 0, . . . , xN ) =  (0, x1, . . . , xk�1, xk+1, . . . , xN ) ,

 (x1, . . . , xk = L, . . . , xN ) =  (x1, . . . , xk�1, xk+1, . . . , xN , L) .
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In this way we find the matrix equation
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If we keep track of the flow of indices, we write
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By using the concise notation, the same formula can be written as

1 = eipkL Sk,k�1 · · · Sk1SkN · · · Sk,k+1 . (4.91)

Stopped here.

The correlators can now be easily computed, and we get

S1kS2k · · · Sk�1,k = eipkL SkNSk,N�1 · · · Sk,k+1 , Sij ⌘ S(pi, pj) . (4.92)

By using the unitarity condition, this equation can be rewritten in the following form

1 = eipkL Sk,k�1 · · · Sk1SkN · · · Sk,k+1 = eipkL
Y

j 6=k

Skj . (4.93)

It is possible to show that the terms in the wave function with the plane wave ei p⌧ ·x lead
to the same equation. These equations are the Bethe-Yang equations, and the requirement
that they have nontrivial solutions leads to quantization of particles momenta.

Generalisation to the twist boundary conditions

Generalizing these equations to the general case, one gets

⇣

1 � eipkL Sk,k�1 · · · Sk1I
g
k,k�1 · · · Igk1WkI

g
kN · · · Igk,k+1SkN · · · Sk,k+1

⌘

A = 0 , (4.94)

where the diagonal matrix W is equal to the identity matrix if the fermions are periodic,
and it is W = (�1)✏iEi

i if the fermions are anti-periodic.
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to the same equation. These equations are the Bethe-Yang equations, and the requirement
that they have nontrivial solutions leads to quantization of particles momenta.

Generalisation to the twist boundary conditions
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where the diagonal matrix W is equal to the identity matrix if the fermions are periodic,
and it is W = (�1)✏iEi

i if the fermions are anti-periodic.
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It is possible to show that the terms in the wave function with the plane wave ei p⌧ ·x lead
to the same equation. These equations are the Bethe-Yang equations, and the requirement
that they have nontrivial solutions leads to quantization of particles momenta.
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Replace b = i2 and a = i3, we obtain precisely the first equation in (4.80).

Equations (4.80) are equivalent to the following matrix Bethe-Yang equations
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General case

These formulas can be used to derive the Bethe-Yang equations by imposing the periodicity
condition on the wave function

 i
1

... ik(x1, . . . , xk = 0, . . . , xN ) =  i
1

... ik(x1, . . . , xk = L, . . . , xN ) . (4.83)

L is the size of the box (length of a circle)

We can assume without loss of generality that the coordinates xi are ordered as 0 <
x1 < x2 < · · · < xk�1 < xk+1 < · · · < xN < L. The symmetry condition then relates the
wave functions in (4.83) to the ones with properly ordered coordinates

 (x1, . . . , xk = 0, . . . , xN ) =  (0, x1, . . . , xk�1, xk+1, . . . , xN ) ,

 (x1, . . . , xk = L, . . . , xN ) =  (x1, . . . , xk�1, xk+1, . . . , xN , L) .

Then in eq.(4.59) we pick the term with the plane wave eipixi with xk = 0 for the wave func-
tion (0, x1, . . . , xk�1, xk+1, . . . , xN ), and with xk = L for the wave function (x1, . . . , xk�1, xk+1, . . . , xN , L).
The periodicity and symmetry conditions then lead to the following equation
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The amplitude here is computed by using the contraction rule and we find
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Why the operators

commute?

The consistency condition for the system of equations (4.95) requires that the matrices

Tk ⌘ Sk,k�1 · · · Sk1I
g
k,k�1 · · · Igk1WkI

g
kN · · · Igk,k+1SkN · · · Sk,k+1

mutually commute. The matrices Tk in fact are related to the monodromy matrix

T (pA) = �strA WASf
AN (pA, pN )Sf

A,N�1(pA, pN�1) · · · Sf
A1(pA, p1) , (4.96)

where A = N + 1, and Sf
jk is the so-called fermionic R-operator defined as follows

Sf
jk(pj , pk) =

(

Igj···NIgk···N IgjkSjk(pj , pk) Igj···NIgk···N if j < k ;

Igj···NIgk···N Sjk(pj , pk)I
g
jk Igj···NIgk···N if j > k .

(4.97)

Here Igjk is the graded identity and

Igj···N ⌘ Igj,j+1I
g
j,j+2 · · · IgjN .

One can show that

T (pA) = �strA WA SAN · · · SA1 IgAN · · · IgA1 .

Now we choose pA = pk and use the fact that SAk(pk, pk) = �PAk. Then, one shows that

T (pk) = Tk .

Since T (u)T (v) = T (v)T (u) for any u and v, we have shown that the periodicity equations
(4.95) are consistent.

Denoting the eigenvalues of the monodromy matrix T (pA) by ⇤(pA, {pi}), the set of
Bethe-Yang equations can be written as

e�ipKL = ⇤(pk, {pi}) . (4.98)

Finding the eigenvalues of T (pA) is a complicated problem which can be solved by using
either the algebraic Bethe ansatz or the nested Bethe ansatz technique.

4.6 Bethe-Yang equations

4.6.1 Asymptotic Bethe Ansatz

We start with the asymptotic Bethe Ansatz equations in the sl(2) grading. The main Bethe
equations have the form

1 = eiJpk
KI

Y

l 6=k

S
sl(2)(uk, ul)

KII

�
Y

l=1

x�
k � y(�)

l

x+
k � y(�)

l

s

x+
k

x�
k

KII

+

Y

l=1

x�
k � y(+)

l

x+
k � y(+)

l

s

x+
k

x�
k

. (4.99)

86

Why the operators

commute?

The consistency condition for the system of equations (4.95) requires that the matrices

Tk ⌘ Sk,k�1 · · · Sk1I
g
k,k�1 · · · Igk1WkI

g
kN · · · Igk,k+1SkN · · · Sk,k+1

mutually commute. The matrices Tk in fact are related to the monodromy matrix

T (pA) = �strA WASf
AN (pA, pN )Sf

A,N�1(pA, pN�1) · · · Sf
A1(pA, p1) , (4.96)

where A = N + 1, and Sf
jk is the so-called fermionic R-operator defined as follows

Sf
jk(pj , pk) =

(

Igj···NIgk···N IgjkSjk(pj , pk) Igj···NIgk···N if j < k ;

Igj···NIgk···N Sjk(pj , pk)I
g
jk Igj···NIgk···N if j > k .

(4.97)

Here Igjk is the graded identity and

Igj···N ⌘ Igj,j+1I
g
j,j+2 · · · IgjN .

One can show that

T (pA) = �strA WA SAN · · · SA1 IgAN · · · IgA1 .

Now we choose pA = pk and use the fact that SAk(pk, pk) = �PAk. Then, one shows that

T (pk) = Tk .

Since T (u)T (v) = T (v)T (u) for any u and v, we have shown that the periodicity equations
(4.95) are consistent.

Denoting the eigenvalues of the monodromy matrix T (pA) by ⇤(pA, {pi}), the set of
Bethe-Yang equations can be written as

e�ipKL = ⇤(pk, {pi}) . (4.98)

Finding the eigenvalues of T (pA) is a complicated problem which can be solved by using
either the algebraic Bethe ansatz or the nested Bethe ansatz technique.

4.6 Bethe-Yang equations

4.6.1 Asymptotic Bethe Ansatz

We start with the asymptotic Bethe Ansatz equations in the sl(2) grading. The main Bethe
equations have the form

1 = eiJpk
KI

Y

l 6=k

S
sl(2)(uk, ul)

KII

�
Y

l=1

x�
k � y(�)

l

x+
k � y(�)

l

s

x+
k

x�
k

KII

+

Y

l=1

x�
k � y(+)

l

x+
k � y(+)

l

s

x+
k

x�
k

. (4.99)

86

Why the operators

mutually commute?

The consistency condition for the system of equations (4.95) requires that the matrices

Tk ⌘ Sk,k�1 · · · Sk1I
g
k,k�1 · · · Igk1WkI

g
kN · · · Igk,k+1SkN · · · Sk,k+1

mutually commute. The matrices Tk in fact are related to the monodromy matrix

T (pA) = �strA WASf
AN (pA, pN )Sf

A,N�1(pA, pN�1) · · · Sf
A1(pA, p1) , (4.96)

where A = N + 1, and Sf
jk is the so-called fermionic R-operator defined as follows

Sf
jk(pj , pk) =

(

Igj···NIgk···N IgjkSjk(pj , pk) Igj···NIgk···N if j < k ;

Igj···NIgk···N Sjk(pj , pk)I
g
jk Igj···NIgk···N if j > k .

(4.97)

Here Igjk is the graded identity and

Igj···N ⌘ Igj,j+1I
g
j,j+2 · · · IgjN .

One can show that

T (pA) = �strA WA SAN · · · SA1 IgAN · · · IgA1 .

Now we choose pA = pk and use the fact that SAk(pk, pk) = �PAk. Then, one shows that

T (pk) = Tk .

Since T (u)T (v) = T (v)T (u) for any u and v, we have shown that the periodicity equations
(4.95) are consistent.

Denoting the eigenvalues of the monodromy matrix T (pA) by ⇤(pA, {pi}), the set of
Bethe-Yang equations can be written as

e�ipKL = ⇤(pk, {pi}) . (4.98)

Finding the eigenvalues of T (pA) is a complicated problem which can be solved by using
either the algebraic Bethe ansatz or the nested Bethe ansatz technique.

4.6 Bethe-Yang equations

4.6.1 Asymptotic Bethe Ansatz

We start with the asymptotic Bethe Ansatz equations in the sl(2) grading. The main Bethe
equations have the form

1 = eiJpk
KI

Y

l 6=k

S
sl(2)(uk, ul)

KII

�
Y

l=1

x�
k � y(�)

l

x+
k � y(�)

l

s

x+
k

x�
k

KII

+

Y

l=1

x�
k � y(+)

l

x+
k � y(+)

l

s

x+
k

x�
k

. (4.99)

86



Periodicity condition for the Bethe wave function
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Bethe -Yang equations for                   superstring

These equations are supplied with auxiliary Bethe equations for the roots y(↵) and w(↵),
↵ = ±,
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Here we introduced a concise notation ⌫(↵)
k = y(↵)k + 1

y
(↵)

k

. Solutions are therefore character-

ized by the following five excitation numbers

(KIII
� , KII

� , KI, KII
+ , KIII

+ ) .

The number KI is a number of momentum-carrying particles, while KII
↵ and KIII

↵ give the
weights of four SU(2) subgroups which represent a manifest symmetry of the string sigma
model in the light-cone gauge. The SU(4) weights [q1, p, q2] and the spins [s1, s2] of the
corresponding excited state are

q1 = KII� � 2KIII� s1 = KI � KII�
p = J � 1

2(K
II� + KII

+) + KIII� + KIII
+ s2 = KI � KII

+

q2 = KII
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+

(4.74)

Instead of weights of su(4) one can use the weights (J1, J2, J3) of SO(6) and the relation
between the two is

J ⌘ J1 =
1

2
(q1 + 2p + q2) , J2 =

1

2
(q1 + q2) , J3 =

1

2
(q2 � q1) . (4.75)

The S-matrix can be found by using the fusion procedure and the following (2) S-matrix
of the fundamental particles
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where �12 is the dressing factor [?] that depends on x± and g.

Since S11
sl(2)(xk, xl) can be also written as
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the Q-particle bound state equations (??) can be cast in the form

uj � uj+1 � 2i

g
= 0 () x�

j = x+
j+1 , j = 1, 2, . . . , Q � 1 . (4.78)

Then, the solution to (4.78) is simply given by the Bethe string

uj = u + (Q + 1 � 2j)
i

g
, j = 1, . . . , Q , u 2 R , (4.79)

where the real rapidity u determines the momentum of the bound state through eq.(??)
from appendix ??.
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The number KI is a number of momentum-carrying particles, while KII
↵ and KIII

↵ give the
weights of four SU(2) subgroups which represent a manifest symmetry of the string sigma
model in the light-cone gauge. The SU(4) weights [q1, p, q2] and the spins [s1, s2] of the
corresponding excited state are
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Instead of weights of su(4) one can use the weights (J1, J2, J3) of SO(6) and the relation
between the two is

J ⌘ J1 =
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2
(q1 + 2p + q2) , J2 =
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2
(q1 + q2) , J3 =
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2
(q2 � q1) . (4.75)

The S-matrix can be found by using the fusion procedure and the following (2) S-matrix
of the fundamental particles
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where �12 is the dressing factor [?] that depends on x± and g.

Since S11
sl(2)(xk, xl) can be also written as

S11
sl(2)(x1, x2) =

u1 � u2 + 2i
g

u1 � u2 � 2i
g

⇥

0

@

1 � 1
x+

1

x�
2

1 � 1
x�
1

x+

2

�12

1

A

�2

, (4.77)

the Q-particle bound state equations (??) can be cast in the form

uj � uj+1 � 2i

g
= 0 () x�

j = x+
j+1 , j = 1, 2, . . . , Q � 1 . (4.78)

Then, the solution to (4.78) is simply given by the Bethe string

uj = u + (Q + 1 � 2j)
i

g
, j = 1, . . . , Q , u 2 R , (4.79)

where the real rapidity u determines the momentum of the bound state through eq.(??)
from appendix ??.
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These equations are supplied with auxiliary Bethe equations for the roots y(↵) and w(↵),
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Then, the solution to (4.78) is simply given by the Bethe string
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where the real rapidity u determines the momentum of the bound state through eq.(??)
from appendix ??.
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where the real rapidity u determines the momentum of the bound state through eq.(??)
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the Q-particle bound state equations (??) can be cast in the form
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= 0 () x�

j = x+
j+1 , j = 1, 2, . . . , Q � 1 . (4.78)

Then, the solution to (4.78) is simply given by the Bethe string
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, j = 1, . . . , Q , u 2 R , (4.79)

where the real rapidity u determines the momentum of the bound state through eq.(??)
from appendix ??.
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4.6 Bethe-Yang equations

4.6.1 Asymptotic Bethe Ansatz

We start with the asymptotic Bethe Ansatz equations in the sl(2) grading. The main Bethe
equations have the form
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These equations are supplied with auxiliary Bethe equations for the roots y(↵) and w(↵),
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Here we introduced a concise notation ⌫(↵)
k = y(↵)k + 1

y
(↵)

k

. Solutions are therefore character-

ized by the following five excitation numbers
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+ ) .

The number KI is a number of momentum-carrying particles, while KII
↵ and KIII

↵ give the
weights of four SU(2) subgroups which represent a manifest symmetry of the string sigma
model in the light-cone gauge. The SU(4) weights [q1, p, q2] and the spins [s1, s2] of the
corresponding excited state are
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Instead of weights of su(4) one can use the weights (J1, J2, J3) of SO(6) and the relation
between the two is

J ⌘ J1 =
1

2
(q1 + 2p + q2) , J2 =

1

2
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1

2
(q2 � q1) . (4.102)

The S-matrix can be found by using the fusion procedure and the following (2) S-matrix
of the fundamental particles
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where �12 is the dressing factor [?] that depends on x± and g.
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the Q-particle bound state equations (??) can be cast in the form

uj � uj+1 � 2i

g
= 0 () x�

j = x+
j+1 , j = 1, 2, . . . , Q � 1 . (4.104)

Then, the solution to (4.104) is simply given by the Bethe string

uj = u + (Q + 1 � 2j)
i

g
, j = 1, . . . , Q , u 2 R , (4.105)

where the real rapidity u determines the momentum of the bound state through eq.(??)
from appendix ??.

4.6.2 Bound states

4.7 BES equation

The Bethe ansatz in the sl(2)-sector
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eiJpk =
S
Y

l 6=k

x�
k � x+

l

x+
k � x�

l

1 � 1
x+

k x�
l

1 � 1
x�
k x+

l

�2
kl , (4.108)

Excitations correspond to gauge-theory operators

Tr(DSZJ) + . . .

88



Large spin anomalous dimensions
of operators from the sl(2)-sector 



Bethe-Yang equations for sl(2)-sector
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where �12 is the dressing factor [?] that depends on x± and g.
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the Q-particle bound state equations (??) can be cast in the form

uj � uj+1 � 2i

g
= 0 () x�

j = x+
j+1 , j = 1, 2, . . . , Q � 1 . (4.79)

Then, the solution to (4.78) is simply given by the Bethe string

uj = u + (Q + 1 � 2j)
i

g
, j = 1, . . . , Q , u 2 R , (4.80)

where the real rapidity u determines the momentum of the bound state through eq.(??)
from appendix ??.
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Technicalities

uk � i

g
= x�

k +
1

x�
k

, uk +
i

g
= x+

k +
1

x+
k

,

uk +
i

g
= x+

l +
1

x+
l

, ul � i

g
= x�

l +
1

x�
l

(4.109)

uk � ul � 2i

g
= x�

k +
1

x�
k

� x+
l � 1

x+
l

= (x�
k � x+

l )
⇣

1 � 1

x�
k x+

l

⌘

(4.110)

86

There are di↵erent ways to choose a solution of this equation. One way corresponds to
putting the cut on the interval [�2, 2]:
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The solution with + is characterised by the property that |x(u)| > 1 for any u outside the
cut. In other words, x(u) maps the complex u-plane with the cut [�2, 2] onto exterior of
the unit circle. The solution with � is characterised by the property |x(u)| < 1, that is
x(u) maps the complex u-plane with the cut [�2, 2] into exterior of the unit circle. The
other two solutions correspond to choosing the cut to lie ] � 1, �2] [ [2, +1[ and they are
relevant for the mirror theory.

For the string theory we pick the solution
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First one needs to find a distribution of roots at one loop. To obtain the one-loop Bethe
equations, one has to Rescale u ! u/g and send g ! 0. In this limit
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• For all J and S the roots are always real

• The case J = 2 can be solved exactly

• The roots are real and symmetrically distributed around zero

• The root distribution density has a peak at the origin, no gap around zero

• The outermost roots grow linearly with the spin {|uk|} ! S/2
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Bethe-Yang equations for sl(2)-sector at one loop
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equations, one has to rescale u ! u/g and send g ! 0. In this limit
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There are di↵erent ways to choose a solution of this equation. One way corresponds to
putting the cut on the interval [�2, 2]:
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(4.85)

The solution with + is characterised by the property that |x(u)| > 1 for any u outside the
cut. In other words, x(u) maps the complex u-plane with the cut [�2, 2] onto exterior of
the unit circle. The solution with � is characterised by the property |x(u)| < 1, that is
x(u) maps the complex u-plane with the cut [�2, 2] into exterior of the unit circle. The
other two solutions correspond to choosing the cut to lie ] � 1, �2] [ [2, +1[ and they are
relevant for the mirror theory.

For the string theory we pick the solution
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, |x(u)| > 1 . (4.86)
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and the level matching condition is
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• For all J and S the roots are always real

• The case J = 2 can be solved exactly

• The roots are real and symmetrically distributed around zero

• The root distribution density has a peak at the origin, no gap around zero

• The outermost roots grow linearly with the spin {|uk|} ! S/2

84

There are di↵erent ways to choose a solution of this equation. One way corresponds to
putting the cut on the interval [�2, 2]:

x(u) =
u

2

⇣

1 ±
r

1 � 4

u2

⌘

(4.85)

The solution with + is characterised by the property that |x(u)| > 1 for any u outside the
cut. In other words, x(u) maps the complex u-plane with the cut [�2, 2] onto exterior of
the unit circle. The solution with � is characterised by the property |x(u)| < 1, that is
x(u) maps the complex u-plane with the cut [�2, 2] into exterior of the unit circle. The
other two solutions correspond to choosing the cut to lie ] � 1, �2] [ [2, +1[ and they are
relevant for the mirror theory.

For the string theory we pick the solution

x(u) =
u

2

 

1 +

r

1 � 4

u2

!

, |x(u)| > 1 . (4.86)

First one needs to find a distribution of roots at one loop. To obtain the one-loop Bethe
equations, one has to Rescale u ! u/g and send g ! 0. In the limit g ! 0 one has

x± ! u ± i

g
(4.87)

x±(u/g) ! u ± i

g
, eip =

x+

x� ! u + i

u � i
(4.88)

and The Bethe-Yang equations turn into

⇣uk + i

uk � i

⌘J
=

S
Y

l 6=k

uk � ul � 2i

uk � ul + 2i
, (4.89)

The anomalous one-loop energy is

�(1) = g2
S
X

k=1

2

u2
k + 1

. (4.90)

and the level matching condition is

S
Y

k=1

uk + i

uk � i
= 1 . (4.91)

• For all J and S the roots are always real

• The case J = 2 can be solved exactly

• The roots are real and symmetrically distributed around zero

84



Bethe-Yang equations for sl(2)-sector at one loop and S 1

Take the logarithm of the Bethe equations

�iJ log
uk + i

uk � i
= 2⇡nk � i

S
X

l 6=k

log
uk � ul � 2i

uk � ul + 2i
(4.91)

Introduced the rescaled roots and their density

uk

S
! (4.92)

85

Take the logarithm of the Bethe equations

�iJ log
uk + i

uk � i
= 2⇡nk � i

S
X

l 6=k

log
uk � ul � 2i

uk � ul + 2i
(4.91)

Introduced the rescaled roots and their density

uk

S
! (4.92)

85

nk 2 Z� quantum mode numbers

There are di↵erent ways to choose a solution of this equation. One way corresponds to
putting the cut on the interval [�2, 2]:

x(u) =
u

2

⇣

1 ±
r

1 � 4

u2

⌘

(4.85)

The solution with + is characterised by the property that |x(u)| > 1 for any u outside the
cut. In other words, x(u) maps the complex u-plane with the cut [�2, 2] onto exterior of
the unit circle. The solution with � is characterised by the property |x(u)| < 1, that is
x(u) maps the complex u-plane with the cut [�2, 2] into exterior of the unit circle. The
other two solutions correspond to choosing the cut to lie ] � 1, �2] [ [2, +1[ and they are
relevant for the mirror theory.

For the string theory we pick the solution

x(u) =
u

2

 

1 +

r

1 � 4

u2

!

, |x(u)| > 1 . (4.86)

First one needs to find a distribution of roots at one loop. To obtain the one-loop Bethe
equations, one has to rescale u ! u/g and send g ! 0. In this limit

x±(u/g) ! u ± i

g
, eip =

x+

x� ! u + i

u � i
(4.87)

and The Bethe-Yang equations turn into

⇣uk + i

uk � i

⌘J
=

S
Y

l 6=k

uk � ul � 2i

uk � ul + 2i
, (4.88)

The anomalous one-loop energy is

�(1) = g2
S
X

k=1

2

u2
k + 1

. (4.89)

and the level matching condition is

S
Y

k=1

uk + i

uk � i
= 1 . (4.90)

• For all J and S the roots are always real

• The case J = 2 can be solved exactly

• The roots are real and symmetrically distributed around zero

• The root distribution density has a peak at the origin, no gap around zero

• The outermost roots grow linearly with the spin {|uk|} ! S/2

84

Take the logarithm of the Bethe equations

�iJ log
uk + i

uk � i
= 2⇡nk � i

S
X

l 6=k

log
uk � ul � 2i

uk � ul + 2i
(4.91)

Rescale the roots

uk

S
! vk with ⇢(v) =

1

S

S
X

k=1

�
⇣

v � uk

S

⌘

(4.92)

�iJ log
vk + i/S

vk � i/S
= 2⇡nk � i

S
X

l 6=k

log
vk � vl � 2i/S

vk � vl + 2i/S
(4.93)

Expanding we get at leading order

2J

vkS
= 2⇡nk �

S
X

l 6=k

1

S

1

vk � vl
+ O(1/S2) (4.94)

nk ! ✏(v) ,
S
X

l 6=k

1

S
!a

�a ⇢(v0) (4.95)

85

Take the logarithm of the Bethe equations

�iJ log
uk + i

uk � i
= 2⇡nk � i

S
X

l 6=k

log
uk � ul � 2i

uk � ul + 2i
(4.91)

Rescale the roots

uk

S
! vk with ⇢(v) =

1

S

S
X

k=1

�
⇣

v � uk

S

⌘

(4.92)

�iJ log
vk + i/S

vk � i/S
= 2⇡nk � i

S
X

l 6=k

log
vk � vl � 2i/S

vk � vl + 2i/S
(4.93)

Expanding we get at leading order

2J

vkS
= 2⇡nk �

S
X

l 6=k

1

S

1

vk � vl
+ O(1/S2) (4.94)

nk ! ✏(v) ,
S
X

l 6=k

1

S
!a

�a ⇢(v0) (4.95)

85

Take the logarithm of the Bethe equations

�iJ log
uk + i

uk � i
= 2⇡nk � i

S
X

l 6=k

log
uk � ul � 2i

uk � ul + 2i
(4.91)

Rescale the roots

uk

S
! vk with ⇢(v) =

1

S

S
X

k=1

�
⇣

v � uk

S

⌘

(4.92)

�iJ log
vk + i/S

vk � i/S
= 2⇡nk � i

S
X

l 6=k

log
vk � vl � 2i/S

vk � vl + 2i/S
(4.93)

and expand the Bethe equations in the limit S ! 1

2J

vkS
= 2⇡nk �

S
X

l 6=k

1

S

1

vk � vl
+ O(1/S2) (4.94)

nk ! ✏(v) ,
S
X

l 6=k

1

S
!a

�a ⇢(v0) (4.95)

85

Take the logarithm of the Bethe equations

�iJ log
uk + i

uk � i
= 2⇡nk � i

S
X

l 6=k

log
uk � ul � 2i

uk � ul + 2i
(4.91)

Rescale the roots

uk

S
! vk with ⇢(v) =

1

S

S
X

k=1

�
⇣

v � uk

S

⌘

(4.92)

�iJ log
vk + i/S

vk � i/S
= 2⇡nk � i

S
X

l 6=k

log
vk � vl � 2i/S

vk � vl + 2i/S
(4.93)

and expand the Bethe equations in the limit S ! 1

2J

vkS
= 2⇡nk �

S
X

l 6=k

1

S

1

vk � vl
+ O(1/S2) (4.94)

nk ! ✏(v) ,
S
X

l 6=k

1

S
!a

�a ⇢(v0) (4.95)

85

for the lowest state all roots have nk = ±1 for any J

Take the logarithm of the Bethe equations

�iJ log
uk + i

uk � i
= 2⇡nk � i

S
X

l 6=k

log
uk � ul � 2i

uk � ul + 2i
(4.91)

Rescale the roots

uk

S
! vk with ⇢(v) =

1

S

S
X

k=1

�
⇣

v � uk

S

⌘

(4.92)

�iJ log
vk + i/S

vk � i/S
= 2⇡nk � i

S
X

l 6=k

log
vk � vl � 2i/S

vk � vl + 2i/S
(4.93)

and expand the Bethe equations in the limit S ! 1

2J

vkS
= 2⇡nk �

S
X

l 6=k

1

S

1

vk � vl
+ O(1/S2) (4.94)

nk ! ✏(v) ,
S
X

l 6=k

1

S
!a

�a ⇢(v0) (4.95)

Introduce the normalised root density

⇢(v) =
1

S

S
X

k=1

�(v � vk) ,

Z a

�a
dv⇢(v) = 1 . (4.96)

85

Take the logarithm of the Bethe equations

�iJ log
uk + i

uk � i
= 2⇡nk � i

S
X

l 6=k

log
uk � ul � 2i

uk � ul + 2i
(4.91)

Rescale the roots

uk

S
! vk with ⇢(v) =

1

S

S
X

k=1

�
⇣

v � uk

S

⌘

(4.92)

�iJ log
vk + i/S

vk � i/S
= 2⇡nk � i

S
X

l 6=k

log
vk � vl � 2i/S

vk � vl + 2i/S
(4.93)

and expand the Bethe equations in the limit S ! 1

2J

vkS
= 2⇡nk �

S
X

l 6=k

1

S

1

vk � vl
+ O(1/S2) (4.94)

nk ! ✏(v) ,
S
X

l 6=k

1

S
!a

�a ⇢(v0) (4.95)

Introduce the normalised root density

⇢(v) =
1

S

S
X

k=1

�(v � vk) ,

Z a

�a
dv⇢(v) = 1 . (4.96)

85



Bethe-Yang equations for sl(2)-sector at one loop

Take the logarithm of the Bethe equations

�iJ log
uk + i

uk � i
= 2⇡nk � i

S
X

l 6=k

log
uk � ul � 2i

uk � ul + 2i
(4.91)

Rescale the roots

uk

S
! vk with ⇢(v) =

1

S

S
X

k=1

�
⇣

v � uk

S

⌘

(4.92)

�iJ log
vk + i/S

vk � i/S
= 2⇡nk � i

S
X

l 6=k

log
vk � vl � 2i/S

vk � vl + 2i/S
(4.93)

and expand the Bethe equations in the limit S ! 1

2J

vkS
= 2⇡nk �

S
X

l 6=k

1

S

1

vk � vl
+ O(1/S2) (4.94)

nk ! ✏(v) ,
S
X

l 6=k

1

S
!a

�a ⇢(v0) (4.95)

85

Take the logarithm of the Bethe equations

�iJ log
uk + i

uk � i
= 2⇡nk � i

S
X

l 6=k

log
uk � ul � 2i

uk � ul + 2i
(4.91)

Rescale the roots

uk

S
! vk with ⇢(v) =

1

S

S
X

k=1

�
⇣

v � uk

S

⌘

(4.92)

�iJ log
vk + i/S

vk � i/S
= 2⇡nk � i

S
X

l 6=k

log
vk � vl � 2i/S

vk � vl + 2i/S
(4.93)

and expand the Bethe equations in the limit S ! 1

2J

vkS
= 2⇡nk �

S
X

l 6=k

1

S

1

vk � vl
+ O(1/S2) (4.94)

nk ! ✏(v) ,
S
X

l 6=k

1

S
!a

�a ⇢(v0) (4.95)

Introduce the normalised root density

⇢(v) =
1

S

S
X

k=1

�(v � vk) ,

Z a

�a
dv⇢(v) = 1 . (4.96)

85

Take the logarithm of the Bethe equations

�iJ log
uk + i

uk � i
= 2⇡nk � i

S
X

l 6=k

log
uk � ul � 2i

uk � ul + 2i
(4.91)

Rescale the roots

uk

S
! vk with ⇢(v) =

1

S

S
X

k=1

�
⇣

v � uk

S

⌘

(4.92)

�iJ log
vk + i/S

vk � i/S
= 2⇡nk � i

S
X

l 6=k

log
vk � vl � 2i/S

vk � vl + 2i/S
(4.93)

and expand the Bethe equations in the limit S ! 1

2J

vkS
= 2⇡nk �

S
X

l 6=k

1

S

1

vk � vl
+ O(1/S2) (4.94)

nk ! ✏(v) ,
S
X

l 6=k

1

S
. . . ! �

Z a

�a
⇢(v0) . . . (4.95)

Introduce the normalised root density

⇢(v) =
1

S

S
X

k=1

�(v � vk) ,

Z a

�a
dv⇢(v) = 1 . (4.96)

85

Take the logarithm of the Bethe equations

�iJ log
uk + i

uk � i
= 2⇡nk � i

S
X

l 6=k

log
uk � ul � 2i

uk � ul + 2i
(4.91)

Rescale the roots

uk

S
! vk with ⇢(v) =

1

S

S
X

k=1

�
⇣

v � uk

S

⌘

(4.92)

�iJ log
vk + i/S

vk � i/S
= 2⇡nk � i

S
X

l 6=k

log
vk � vl � 2i/S

vk � vl + 2i/S
(4.93)

and expand the Bethe equations in the limit S ! 1

2J

vkS
= 2⇡nk � 4

S
X

l 6=k

1

S

1

vk � vl
+ O(1/S2) (4.94)

nk ! ✏(v) ,
S
X

l 6=k

1

S
. . . ! �

Z a

�a
⇢(v0) . . . (4.95)

Introduce the normalised root density

⇢(v) =
1

S

S
X

k=1

�(v � vk) ,

Z a

�a
dv⇢(v) = 1 . (4.96)

We have

0 = 2⇡✏(v) � 4 �
Z a

�a
dv0

⇢(v0)
v � v0

(4.97)

85

J drops out!

Take the logarithm of the Bethe equations

�iJ log
uk + i

uk � i
= 2⇡nk � i

S
X

l 6=k

log
uk � ul � 2i

uk � ul + 2i
(4.91)

Rescale the roots

uk

S
! vk with ⇢(v) =

1

S

S
X

k=1

�
⇣

v � uk

S

⌘

(4.92)

�iJ log
vk + i/S

vk � i/S
= 2⇡nk � i

S
X

l 6=k

log
vk � vl � 2i/S

vk � vl + 2i/S
(4.93)

and expand the Bethe equations in the limit S ! 1

2J

vkS
= 2⇡nk � 4

S
X

l 6=k

1

S

1

vk � vl
+ O(1/S2) (4.94)

nk ! ✏(v) ,
S
X

l 6=k

1

S
. . . ! �

Z a

�a
⇢(v0) . . . (4.95)

Introduce the normalised root density

⇢(v) =
1

S

S
X

k=1

�(v � vk) ,

Z a

�a
dv⇢(v) = 1 . (4.96)

We have

0 = 2⇡✏(v) � 4 �
Z a

�a
dv0

⇢(v0)
v � v0

(4.97)

Solution

a = 1 , ⇢(v) =
1

⇡
arctanh

p

1 � v2 (4.98)

85

Take the logarithm of the Bethe equations

�iJ log
uk + i

uk � i
= 2⇡nk � i

S
X

l 6=k

log
uk � ul � 2i

uk � ul + 2i
(4.91)

Rescale the roots

uk

S
! vk with ⇢(v) =

1

S

S
X

k=1

�
⇣

v � uk

S

⌘

(4.92)

�iJ log
vk + i/S

vk � i/S
= 2⇡nk � i

S
X

l 6=k

log
vk � vl � 2i/S

vk � vl + 2i/S
(4.93)

and expand the Bethe equations in the limit S ! 1

2J

vkS
= 2⇡nk � 4

S
X

l 6=k

1

S

1

vk � vl
+ O(1/S2) (4.94)

nk ! ✏(v) ,
S
X

l 6=k

1

S
. . . ! �

Z a

�a
⇢(v0) . . . (4.95)

Introduce the normalised root density

⇢(v) =
1

S

S
X

k=1

�(v � vk) ,

Z a

�a
dv⇢(v) = 1 . (4.96)

We have

0 = 2⇡✏(v) � 4 �
Z a

�a
dv0

⇢(v0)
v � v0

(4.97)

Solution

a = 1 , ⇢(v) =
1

⇡
arctanh

p

1 � v2 (4.98)

85

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

2.0

2.5

3.0

Take the logarithm of the Bethe equations

�iJ log
uk + i

uk � i
= 2⇡nk � i

S
X

l 6=k

log
uk � ul � 2i

uk � ul + 2i
(4.91)

Rescale the roots

uk

S
! vk with ⇢(v) =

1

S

S
X

k=1

�
⇣

v � uk

S

⌘

(4.92)

�iJ log
vk + i/S

vk � i/S
= 2⇡nk � i

S
X

l 6=k

log
vk � vl � 2i/S

vk � vl + 2i/S
(4.93)

and expand the Bethe equations in the limit S ! 1

2J

vkS
= 2⇡nk � 4

S
X

l 6=k

1

S

1

vk � vl
+ O(1/S2) (4.94)

nk ! ✏(v) ,
S
X

l 6=k

1

S
. . . ! �

Z a

�a
⇢(v0) . . . (4.95)

Introduce the normalised root density

⇢(v) =
1

S

S
X

k=1

�(v � vk) ,

Z a

�a
dv⇢(v) = 1 . (4.96)

We have

0 = 2⇡✏(v) � 4 �
Z a

�a
dv0

⇢(v0)
v � v0

(4.97)

Solution

a = 1 , ⇢(v) =
1

⇡
arctanh

p

1 � v2 (4.98)

85

⇢(v)

v

Take the logarithm of the Bethe equations

�iJ log
uk + i

uk � i
= 2⇡nk � i

S
X

l 6=k

log
uk � ul � 2i

uk � ul + 2i
(4.91)

Rescale the roots

uk

S
! vk with ⇢(v) =

1

S

S
X

k=1

�
⇣

v � uk

S

⌘

(4.92)

�iJ log
vk + i/S

vk � i/S
= 2⇡nk � i

S
X

l 6=k

log
vk � vl � 2i/S

vk � vl + 2i/S
(4.93)

and expand the Bethe equations in the limit S ! 1

2J

vkS
= 2⇡nk � 4

S
X

l 6=k

1

S

1

vk � vl
+ O(1/S2) (4.94)

nk ! ✏(v) ,
S
X

l 6=k

1

S
. . . ! �

Z a

�a
⇢(v0) . . . (4.95)

Introduce the normalised root density

⇢(v) =
1

S

S
X

k=1

�(v � vk) ,

Z a

�a
dv⇢(v) = 1 . (4.96)

We have

0 = 2⇡✏(v) � 4 �
Z a

�a
dv0

⇢(v0)
v � v0

(4.97)

Solution

a = 1 , ⇢(v) =
1

⇡
arctanh

p

1 � v2 (4.98)

The anomalous one-loop energy is

�(1) = g2
S
X

k=1

2

u2
k + 1

S!1�! 2

S

Z 1

�1
dv

⇢(v)

v2 + 1/S2

S!1�! 2g2 log S . (4.99)

85

Take the logarithm of the Bethe equations

�iJ log
uk + i

uk � i
= 2⇡nk � i

S
X

l 6=k

log
uk � ul � 2i

uk � ul + 2i
(4.91)

Rescale the roots

uk

S
! vk with ⇢(v) =

1

S

S
X

k=1

�
⇣

v � uk

S

⌘

(4.92)

�iJ log
vk + i/S

vk � i/S
= 2⇡nk � i

S
X

l 6=k

log
vk � vl � 2i/S

vk � vl + 2i/S
(4.93)

and expand the Bethe equations in the limit S ! 1

2J

vkS
= 2⇡nk � 4

S
X

l 6=k

1

S

1

vk � vl
+ O(1/S2) (4.94)

nk ! ✏(v) ,
S
X

l 6=k

1

S
. . . ! �

Z a

�a
⇢(v0) . . . (4.95)

Introduce the normalised root density

⇢(v) =
1

S

S
X

k=1

�(v � vk) ,

Z a

�a
dv⇢(v) = 1 . (4.96)

We have

0 = 2⇡✏(v) � 4 �
Z a

�a
dv0

⇢(v0)
v � v0

(4.97)

Solution

a = 1 , ⇢(v) =
1

⇡
arctanh

p

1 � v2 (4.98)

The anomalous one-loop energy is

�(1) = g2
S
X

k=1

2

u2
k + 1

S!1�! 2

S

Z 1

�1
dv

⇢(v)

v2 + 1/S2

S!1�! 2g2 log S . (4.99)

85

regularization

[Korchemsky 1995] 
[Eden & Staudacher   2006]



Bethe-Yang equations for sl(2)-sector at one loop

Exercise

For the fluctuation density one has
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d

du
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1 � 1
x+(u)x�(v)
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x�(u)x+(v)

�(u, v)
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The equation can be solved perturbatively in g2 by the Fourier transform

Energy in the large spin limit

E = S + f(g) log S + O(S0)
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x+(p) =
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eip
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r

1 + 4g2 sin2 p

2

#
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2

#

(4.151)

or

x±(p) =
e±ip/2

2g sin p
2

"
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r

1 + 4g2 sin2 p

2

#

(4.152)

Miscellenia

A general solution of the singular integral equation

�
Z b
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⇢(t)dt

t � v
= f(v) , a < s < b (4.153)

is given by
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�
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a
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dt ⇢(v) . (4.154)

By

t =
t0 � a

b � a

the equation reduces to

�
Z 1

0

⇢(t)dt

t � v
= f(v) , a < s < b (4.155)
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Multiply by v and get

�
Z 1

0

t⇢(t)dt

t � v
= vf(v) + c . (4.156)

Multiply by dv/
p

v(u � v) and integrate from 0 to u < b

Z u

0

dv
p

v(u � v)
�
Z 1

0

t⇢(t)dt

t � v
=

Z u

0

dv
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vf(v)p
u � v

+ c

Z u

0

dv
p

v(u � v)
.

By using this general formula reconstruct the solution of the one-loop Bethe equation
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nk ! ✏(v) ,
S
X

l 6=k

1

S
. . . ! �

Z a

�a
⇢(v0) . . . (4.148)

Introduce the normalised root density

⇢(v) =
1

S

S
X

k=1

�(v � vk) ,

Z a

�a
dv⇢(v) = 1 . (4.149)
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dv0
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This integral equation is

�
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�a
dv0
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2
✏(v) ⌘ f(v) (4.151)

The solution for any f(v) is
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We know that a = 1. Let for definiteness v > 0, then
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p
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h

log(t � v) � log
�

1 � tv +
p

1 � t2
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�

i
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Bethe-Yang equations for sl(2)-sector at all loops

where

f(g) = 2g2 � 1
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g10 + . . . (4.101)

Now we go to the all-loop analysis. Recall
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Some technical preparations

u +
i

g
= x+ +

1

x+
(4.103)

u � i

g
= x� +

1

x� (4.104)

Dividing one equation by the other one gets

u + i
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u � i
g

=
x+ + 1

x+

x� + 1
x�

=
x+

x�
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1 + 1
x�2

(4.105)

Thus,

eip =
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x� =
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The all-loop Bethe ansatz takes the form
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dressing factor
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Upon rescaling
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We change the choice of the branches of the logarithm by means of the formulae

log
u + i

u � i
= i⇡ � 2i arctan u , u > 0 , (4.115)
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= �i⇡ � 2i arctan u , u < 0 , (4.116)
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ñk = k +
J � 3

2
✏(k) (4.117)

87

for the lowest state

More detailed analysis. Let uk > 0. We have
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the quantum number of this solution
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�(ū) =

2⇡

S
⇢̄0(ū) +
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Exercise

• imaginary period (like hyperbolic functions)

K(t) =

Z 1

0

dx
p

(1 � x2)(1 � tx2)

E(t) =

Z 1

0
dx

r

1 � tx2

1 � x2

Di↵erential equations

⇣d snu

du

⌘2
= (1 � sn2u)(1 � t sn2u)

⇣d cnu

du

⌘2
= (1 � cn2u)(t0 + t cn2u)

⇣d dnu

du

⌘2
= (1 � dn2u)(dn2u � t0)

t0 = 1 � t

c̃(2)2,3 = 4⇣(3)

Kotikov-Lipatov principle of maximal transcendentality: arguments of products of ⇣-functions
add up to 2` � 2 at `-th loop order!

check that this is the case
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Bethe-Yang equations for sl(2)-sector at all loops
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4⇡�(ū) + 4�
Z 1

�1
dv̄

⇢̄0(v̄)
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BES dressing phase

[Beisert, Eden & Staudacher 2006]
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⇢̄0(ū) +

4⇡

S2
(J � 2)�(ū) � 8
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The equation can be solved perturbatively in g2 by the Fourier transform

90

Take the logarithm of the Bethe equations
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S
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The one-loop contribution splits o↵
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The equation can be solved perturbatively in g2 by the Fourier transform

Energy in the large spin limit

E = S + f(g) log S + O(S0)
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⇢̄0(ū) +

4⇡

S2
(J � 2)�(ū) � 8
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so that

4⇡J

S2
�(ū) =
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This is equivalent to
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In the limit S ! 1 this equation turns into the derivative of the one-loop equation
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The equation can be solved perturbatively in g2 by the Fourier transform

Energy in the large spin limit

E = S + f(g) log S + O(S0)
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In the large S-limit only the first term from the infinite sum survives so that in this limit
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By numerical integration we can check the validity of the following formulae
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that gives
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The equation can be solved perturbatively in g2 by the Fourier transform

Energy in the large spin limit

E = S + f(g) log S + O(S0)
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sets up logarithmic scale
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The mirror TBA - a tool to solve the spectral problem of AdS/CFT 

Gauge Theory String Sigma
Model

Mirror Theory TBA

Gauge-String
Correspondence

Interchange of 2dim
Space and Time

Thermodynamic
Limit

Spectrum

The main idea



Introduction Gauge theories – integrable spins Gauge theories – integrable strings Towards the solution

TBA and mirror theory
(inspired by Yang+Yang ’69, Zamolodchikov ’90)

Frolov and G.A. ’07

 "mirror string"
   of length

string of
length =JL

R

One Euclidean theory – two Minkowski theories. One is related to the other by
the double Wick rotation:

�̃ = �i⇥ , ⇥̃ = i�

The Hamiltonian H̃ w.r.t. ⇥̃ defines the mirror theory .
[Frolov & G.A. 2007]
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Introduction Gauge theories – integrable spins Gauge theories – integrable strings Towards the solution

TBA and mirror theory

string part . func. Z (R, L) ⇥
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X
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e�EnR

mirror part . func. eZ (L, R) ⇥
X

n
⌥ e�n|e�

eHL| e�n�

Z (R, L) = eZ (L, R)

When R ⌅⇧ one gets log Z (R, L) ⇤ �RE(L), where E(L) is the ground state
energy

log eZ (R, L) = �LF (L), where F (L) is the free energy of the mirror theory at the
temperature T = 1/L

Ground state energy is related to the free energy of its mirror

E(L) = lim
R⇥⇤

L
R

F (L) = LF

Free energy per unit length F is found from the Bethe ansatz for the mirror model
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Example: 2dim relativistic QFT

where i✏ was discarded as unnecessary. Here we have implemented the change of the external
variable t = �i⌧ . Note that p0t = p0⌧ . Note that in the integral above we can make a
change p0 ! �p0, so that the Euclidean propagator has the final form

4(⌧) =

Z +1

�1
dp0

Z

dd�1p

(2⇡)d
e�ipx

p2
0 + ~p2 + m2

=

Z

ddp

(2⇡)d
e�ipx

p2 + m2
, (5.29)

where kp = p0⌧ + ~k~x is the Euclidean scalar product.

The net result of passing from the Minkowski to Euclidean propagator consists in rotat-
ing (counterclockwise) the original integration contour, which runs over the real line, by 90
degree together with the substitution t ! �i⌧ . This procedure is called Wick’s rotation.

Consider now the special case d = 2. If we denote the Minkowski p0 as p0 = !, and
p1 = p, then the Minkowski dispersion relation is

!2 � p2 = m2 ,

The Wick rotation to the Euclidean theory is then

! = i!E , p = pE .

The dispersion relation of the Euclidean theory would be

!2
E + p2E + m2 = 0 .

The passage to the mirror theory is performed by declaring that

!E = ep , pE = ie! (5.30)

We have

ep2 � e!2 + m2 = 0 =) e!2 � ep2 = m2 . (5.31)

We see that the dispersion relation of a relativistic two-dimensional theory and of its mirror
has the one and the same form. Moreover, the passage to the mirror theory can be considered
as the analytic continuation

p ! i
p

ep2 + m2 , ! ! iep .

The dispersion relation of the original theory is uniformised on the sphere by means of
a rapidity variable ✓

! = m cosh ✓ , p = m sinh ✓

where for real !, p the range of ✓ is �1 < ✓ < +1.

For the mirror theory we will have

eH =
1

i
m sinh ✓ , ep =

1

i
m cosh ✓
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inverse Wick rotation

where i✏ was discarded as unnecessary. Here we have implemented the change of the external
variable t = �i⌧ . Note that p0t = p0⌧ . Note that in the integral above we can make a
change p0 ! �p0, so that the Euclidean propagator has the final form
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=
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, (5.29)

where kp = p0⌧ + ~k~x is the Euclidean scalar product.

The net result of passing from the Minkowski to Euclidean propagator consists in rotat-
ing (counterclockwise) the original integration contour, which runs over the real line, by 90
degree together with the substitution t ! �i⌧ . This procedure is called Wick’s rotation.

Consider now the special case d = 2. If we denote the Minkowski p0 as p0 = !, and
p1 = p, then the Minkowski dispersion relation is

!2 � p2 = m2 ,

The Wick rotation to the Euclidean theory is then

! = i!E , p = pE .

The dispersion relation of the Euclidean theory would be

!2
E + p2E + m2 = 0 .

The passage to the mirror theory is performed by declaring that

!E = ep , pE = ie! (5.30)

We have

ep2 � e!2 + m2 = 0 =) e!2 � ep2 = m2 . (5.31)

We see that

The dispersion relation of a relativistic two-dimensional theory and of its mirror has the
one and the same form. The passage to the mirror theory can be considered as the analytic
continuation

p ! i
p

ep2 + m2 , ! ! iep .

The dispersion relation of the original theory is uniformised on the sphere by means of
a rapidity variable ✓

! = m cosh ✓ , p = m sinh ✓

where for real !, p the range of ✓ is �1 < ✓ < +1.

For the mirror theory we will have
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where i✏ was discarded as unnecessary. Here we have implemented the change of the external
variable t = �i⌧ . Note that p0t = p0⌧ . Note that in the integral above we can make a
change p0 ! �p0, so that the Euclidean propagator has the final form
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=
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, (5.29)

where kp = p0⌧ + ~k~x is the Euclidean scalar product.

The net result of passing from the Minkowski to Euclidean propagator consists in rotat-
ing (counterclockwise) the original integration contour, which runs over the real line, by 90
degree together with the substitution t ! �i⌧ . This procedure is called Wick’s rotation.

Consider now the special case d = 2. If we denote the Minkowski p0 as p0 = H, and
p1 = p, then the Minkowski dispersion relation is

H2 � p2 = m2 ,

The Wick rotation to the Euclidean theory is then

H = iHE , p = pE .

The dispersion relation of the Euclidean theory would be

H2
E + p2E + m2 = 0 .

The passage to the mirror theory is performed by declaring that

HE = ep , pE = i eH (5.30)

We have

ep2 � eH2 + m2 = 0 =) eH2 � ep2 = m2 . (5.31)

We see that the dispersion relation of a relativistic two-dimensional theory and of its mirror
has the one and the same form. Moreover, the passage to the mirror theory can be considered
as the analytic continuation

p ! i
p

ep2 + m2 , H ! iep .

The dispersion relation of the original theory is uniformised on the sphere by means of a
rapidity variable ✓

! = m cosh ✓ , p = m sinh ✓

where for real !, p the range of ✓ is �1 < ✓ < +1.

For the mirror theory we will have

eH =
1

i
m sinh ✓ , ep =

1

i
m cosh ✓
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where i✏ was discarded as unnecessary. Here we have implemented the change of the external
variable t = �i⌧ . Note that p0t = p0⌧ . Note that in the integral above we can make a
change p0 ! �p0, so that the Euclidean propagator has the final form

4(⌧) =

Z +1
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dp0

Z

dd�1p

(2⇡)d
e�ipx

p2
0 + ~p2 + m2

=

Z

ddp

(2⇡)d
e�ipx

p2 + m2
, (5.29)

where kp = p0⌧ + ~k~x is the Euclidean scalar product.

The net result of passing from the Minkowski to Euclidean propagator consists in rotat-
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Allow for complex ✓ and consider the shift

✓ = ✓ +
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2
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where ✓ on the right hand side is real, then
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Thus, transition to the mirror theory corresponds to the shift of the real rapidity variable of
the original theory by the quarter of imaginary period: i⇡

2 = 2⇡i
4 . Thus, we first expressed

the mirror dynamical variables via the original rapidity and then made the shift (5.29) so
that for real ✓ the mirror Hamiltonian and the mirror momentum are real.

Dispersion of the AdS5 ⇥S5 mirror theory. Consider the dispersion relation for strings
on AdS5 ⇥ S5

H2 = 1 + 4g2 sin2 p

2

Going to the Euclidean theory corresponds to H = iHE , p = pE , so that the dispersion
relation of the corresponding Euclidean theory is

�H2
E = 1 + 4g2 sin2 pE

2
(5.28)

The passage to the mirror theory is performed by declaring that

HE = ep , pE = i eH (5.29)

This gives

�ep2 = 1 � 4g2 sinh2
eH
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from where we deduce

eH = 2arcsinh
1

2g

p

1 + ep2

Thus, the passage from the original (Minkowski) theory to the mirror (Minkowski) theory
can be considered as the following analytic continuation of momentum

p ! 2i arcsinh
1

2g

p

1 + ep2

Uniformization on the elliptic curve. Equation

H2 = 1 + 4g2 sin2 p

2

can be naturally uniformized in terms of Jacobi elliptic functions

p = 2am z , sin
p

2
= sn(z, k) , H = dn(z, k) , (5.26)

where we introduced the elliptic modulus10 k = �4g2 = � �
⇡2

< 0. The corresponding
elliptic curve (the torus) has two periods 2!1 and 2!2, the first one is real and the second
one is imaginary

2!1 = 4K(k) , 2!2 = 4iK(1 � k) � 4K(k) ,

where K(k) stands for the complete elliptic integral of the first kind. The dispersion relation
is obviously invariant under shifts of z by 2!1 and 2!2. The torus parametrized by the
complex variable z is the analog of the rapidity plane in two-dimensional relativistic models.

We further note that the representation parameters x± are expressed in terms of Jacobi
elliptic functions as

x± =
1

2g

⇣cn z

sn z
± i

⌘

(1 + dn z) . (5.26)

This form of x± follows from the requirement that for real values of z the absolute values
of x± are greater than unity |x±| > 1, and the imaginary parts satisfy Im(x+) > 0 and
Im(x�) < 0.

As to the mirror theory, we first express the mirror Hamiltonian and momentum via the
original rapidity variable

eH =
1

i
p =

2

i
amz , ep =

1

i
H =

1

i
dn(z)

Now we make a shift of the rapidity variable z by quarter of imaginary period

eH =
2

i
am(z + !

2

2 ) , ep =
1

i
dn(z + !

2

2 ) =
p

k0 sn z

cn z
.

One can see that if we shift the variable z by !2/2, z ! z + !2/2, that is if we write

ep = �i dn
⇣

z +
!2

2
, k
⌘

⌘
p

k0 sn z

cn z
, (5.26)

10Our convention for the elliptic modulus is the same as accepted in the Mathematica program, e.g.,
sn(z, k) = JacobiSN[z, k]. Throughout the paper we will often indicate only the z-dependence of Jacobi
elliptic functions if it cannot lead to any confusion.
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Mirror TBA Bound states

Basic ingredients

J – momentum carried by string along the equator of S5,
L – “length” (will be related to J)

p – momentum of a string particle

E – energy of a string particle: E =
⌅

1 + 4g2 sin2 p
2

p̃ – momentum of a mirror particle

Ẽ – energy of a mirror particle: Ẽ = 2 arcsinh
�

1
2g

⇤
1 + p̃2

⇥

String S-matrix S(p1, p2)

Mirror S-matrix S̃(p̃1, p̃2)

Some notations 



S-matrix on z-torus
which is equivalent to

S(z1, z2) =
⇣

E1
1 ⌦ E1

1 + E2
1 ⌦ E1

2 + E1
2 ⌦ E2

1 + E2
2 ⌦ E2

2

⌘

+
(x�

1 � x�
2 )(x+

1 x�
2 � 1)x+

2

(x�
1 � x+

2 )(x+
1 x+

2 � 1)x�
2

⇣

E1
1 ⌦ E2

2 � E2
1 ⌦ E1

2 � E1
2 ⌦ E2

1 + E2
2 ⌦ E1

1

⌘

� x+
1 � x�

2

x�
1 � x+

2

⌘̃1⌘̃2
⌘1⌘2

⇣

E3
3 ⌦ E3

3 + E4
3 ⌦ E3

4 + E3
4 ⌦ E4

3 + E4
4 ⌦ E4

4

⌘

� (x�
1 � x�

2 )(x�
1 x+

2 � 1)x+
1

(x�
1 � x+

2 )(x+
1 x+

2 � 1)x�
1

⌘̃1⌘̃2
⌘1⌘2

⇣

E3
3 ⌦ E4

4 � E4
3 ⌦ E3

4 � E3
4 ⌦ E4

3 + E4
4 ⌦ E3

3

⌘

+
x+
1 � x+

2

x�
1 � x+

2

⌘̃2
⌘2

⇣

E1
1 ⌦ E3

3 + E1
1 ⌦ E4

4 + E2
2 ⌦ E3

3 + E2
2 ⌦ E4

4

⌘

+
x�
1 � x�

2

x�
1 � x+

2

⌘̃1
⌘1

⇣

E3
3 ⌦ E1

1 + E3
3 ⌦ E2

2 + E4
4 ⌦ E1

1 + E4
4 ⌦ E2

2

⌘

� i(x�
1 � x+

1 )(x�
2 � x+

2 )(x�
1 � x�

2 )

(x�
1 � x+

2 )(x+
1 x+

2 � 1)⌘1⌘2

x+
1 x+

2

x�
1 x�

2

⇣

E3
1 ⌦ E4

2 � E4
1 ⌦ E3

2 � E3
2 ⌦ E4

1 + E4
2 ⌦ E3

1

⌘

� i(x�
1 � x�

2 )⌘̃1⌘̃2
(x�

1 � x+
2 )(x+

1 x+
2 � 1)

⇣

E1
3 ⌦ E2

4 � E2
3 ⌦ E1

4 � E1
4 ⌦ E2

3 + E2
4 ⌦ E1

3

⌘

+
x�
1 � x+

1

x�
1 � x+

2

⌘̃2
⌘1

⇣

E3
1 ⌦ E1

3 + E4
1 ⌦ E1

4 + E3
2 ⌦ E2

3 + E4
2 ⌦ E2

4

⌘

+
x�
2 � x+

2

x�
1 � x+

2

⌘̃1
⌘2

⇣

E1
3 ⌦ E3

1 + E2
3 ⌦ E3

2 + E1
4 ⌦ E4

1 + E2
4 ⌦ E4

2

⌘

where

⌘ = e
i
4p
p

ix� � ix+ (4.36)

⌘1 = ⌘(p1) , ⌘2 = e
i
2p1⌘(p2) , ⌘̃1 = e

i
2p2⌘(p1) , ⌘̃2 = ⌘(p2) (4.37)

On the z-torus

⌘(z) =

p
2

p
g

dn z
2

�

cn z
2 + i sn z

2dn z
2

�

1 + 4g2 sn4 z
2

(4.38)

⌘1 = ⌘(z1) , ⌘2 = (cnz1 + i snz1)⌘(z2) , ⌘̃1 = (cnz2 + i snz2)⌘(z1) , ⌘̃2 = ⌘(z2) (4.39)

S(p1, p2) ! S(z1, z2)

[S, ⌃ ⌦ ⌃] = 0
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String hypothesis and mirror TBA Excited states TBA: CDT Critical values of g Konishi at five loops Summary

z-torus
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Spectral problem Gauge-string duality conjecture Towards the solution – the mirror TBA Some explicit results Conclusions

Derivation of the TBA equations

Step 1: Construct the mirror Bethe equations for fundamental particles.
Apply the Wick rotation to the world-sheet S-matrix:

S(p1, p2) � S̃(p̃1, p̃2)

1 = eip̃k R
Y

j �=k

S̃(p̃k , p̃j)

Step 2: Identify configurations of Bethe roots which contribute in the
thermodynamic limit R � ⇥

This is known as “the string hypothesis”, but a priory it has nothing to
do with string theory!

Step 3: Construct TBA equations for excited states

Derivation of the TBA equation



Mirror TBA PSU(2, 2|4)-symmetry Conclusions

BYE of the mirror model

Mirror Bethe-Yang equations for fundamental particles (� = 1, 2)

1 = ei�pk R
K I�

l=1
l ⇥=k

S(p̃k , p̃l )
2�

�=1

K II
(�)�

l=1

x�
k � y (�)

l

x+
k � y (�)

l

⌅⇤⇤⇥ x+
k

x�
k

�1 =
K I�

l=1

y (�)
k � x�

l

y (�)
k � x+

l

⌅⇤⇤⇥ x+
l

x�
l

K III
(�)�

l=1

v (�)
k � w (�)

l � i
g

v (�)
k � w (�)

l + i
g

1 =

K II
(�)�

l=1

w (�)
k � v (�)

l + i
g

w (�)
k � v (�)

l � i
g

K III
(�)�

l=1
l ⇥=k

w (�)
k � w (�)

l � 2i
g

w (�)
k � w (�)

l + 2i
g

follow from S̃(p̃1, p̃2)

Auxiliary roots – w�, y�; v = y + 1/y

Bethe-Yang equations for mirror particles



Spectral problem Gauge-string duality conjecture Towards the solution – the mirror TBA Some explicit results Conclusions

Derivation of the TBA equations

In terms of particle rapidities u1 and u2 the S-matrix involves

S(p̃1, p̃2) ⇥
u1 � u2 + 2i

g

u1 � u2 � 2i
g

which has a pole at u1 � u2 � 2i
g = 0

In general, a multi-particle S-matrix will have poles at

uj � uj+1 �
2i
g

= 0 , i, j = 1, . . . ,Q � 1

which gives a pattern of a “Bethe string”

uj = u + (Q + 1 � 2j)
i
g
, j = 1, . . . ,Q, u ⇤ R

regarded as the Q-particle bound state.

Bound states



Mirror TBA Bound states

Bethe strings

u v u v

u

Q=6 Q=4
"Bethe strings" Quasi-particles with real rapidities

uj = u + (Q + 1 � 2j)
i
g
, j = 1, . . . ,Q, u ⇥ R

Auxiliary roots v = y + 1/y and w participate in building up Bethe strings!

Bethe strings



Mirror TBA Bound states

The spectrum of TBA particles

String hypothesis suggests the existence of
nine types of TBA vacuum particles (� = 1, 2):

Q-particles (Q-particle bound states) carrying momentum p̃Q =� Y (�)
Q (u)

y±(�)-particles corresponding to fermionic Bethe roots =� Y (�)
± (u), |u| < 2

M|vw (�)-strings =� Y (�)
M|vw (u)

M|w (�)-strings =� Y (�)
M|w (u)

String hypothesis



s

a

Figure 1: The AdS5/CFT4 Y-system. Full circles on the a axis correspond to massive nodes with s = 0.

The s axis corresponds to nodes with a = 1.

s

a

Figure 2: The AdS5/CFT4 T-system. The s axis corresponds to nodes with a = 0.

particular choice for the gauge where the exact T-functions are smooth deformations of the

asymptotic ones and due to their simple square-root branch cut structure the right hand

sides of (2.8-2.11) simplify drastically.

3. TBA equations with cuts

In this section we transform the Y-system equations (2.1) into TBA integral equations.

This transformation is not as complete here as for the case of integrable relativistic models

because of the presence of cuts (discontinuities) in the analytic extension of some of the

Y-functions. The Y-system equations are of the universal form

y+y− = R, (3.1)

but the details of the corresponding integral equation depend on the analytic properties of

the “unknown” function y.

– 11 –

AdS4 � CP3

: O{IOJ} :

YQ

3

AdS4 � CP3

: O{IOJ} :

Y
M|vw

3

AdS4 � CP3

: O{IOJ} :

Y
M|w

3

AdS4 � CP3

: O{IOJ} :

Y+

3

AdS4 � CP3

: O{IOJ} :

Y�

3

Y-functions of the mirror TBA
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M|w-strings: log Y (�)
M|w = log(1 + Y (�)

M�1|w )(1 + Y (�)
M+1|w ) ⌅ s + �M1 log

1� 1
Y (�)
�

1� 1
Y (�)
+

⌅̂ s

M|vw-strings:

log Y (�)
M|vw = log(1 + Y (�)

M�1|vw )(1 + Y (�)
M+1|vw ) ⌅ s � log(1 + YM+1) ⌅ s + �M1 log

1 � Y (�)
�

1 � Y (�)
+

⌅̂ s

y -particles log
Y (�)
+

Y (�)
�

= log(1 + YQ) ⌅ KQy ,

log Y (�)
+ Y (�)

� = log
�
1 + YQ

⇥
⌅ (�KQ + 2K Q1

xv ⌅ s) + 2 log
1+Y1|vw
1+Y1|w

⌅ s

Q-particles for Q ⇥ 2 log YQ = log

�
1+ 1

Y (1)
Q�1|vw

⇥�
1+ 1

Y (2)
Q�1|vw

⇥

(1+ 1
YQ�1

)(1+ 1
YQ+1

)
⌅ s

Q = 1-particle log Y1 = log

�
1� 1

Y (1)
�

⇥�
1� 1

Y (2)
�

⇥

1+ 1
Y2

⌅ s � �(L) ⌅̌ s , s(u) = g
4 cosh g⇥u

2

E(L) = J �
1

2⇥

⇥⇤

Q=1

⌅ ⇥

�⇥
du

d⇧pQ

du
log(1 + YQ)

Frolov and G.A. ’09(b)

Mirror TBA for the ground state
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P. Dorey, Tateo ’96; Bazhanov, Lukyanov, Zamolodchikov ’96; NLIE

- %#" - "#$ "#$ %#"

- %

%

!

&

'

Y (z    ) = -11 *k

Integration contour

TBA’s for excited states differ only by a choice of the integration contour

Taking the contour back to the real mirror line produces extra contributions
� log S(z�, z) from log(1 + Y1) � K , where K (w , z) = 1

2�i
d

dw log S(w , z)

Excited states
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How to choose the contour?

Generalized Lüscher formulae give the large J asymptotic solution

Y o
Q(v) = e�J �EQ(v) TQ,1(v |⇤u)2

N�

i=1

SQ1�
sl(2)(v , ui ) ⇥ exp suppressed

Bajnok and Janik ’08

{u1, . . . , uN} is the set of rapidities of string theory particles (solutions of BYE)

The BY equations then follow from the fact that ⇥E1� (uk ) = �ipk and

T1�,1(uk |⇤u) = 1 =⇤ �1 = eiJpk

N�

i=1

S1�1�
sl(2) (uk , ui )

The remaining Y-functions are given in terms of Ta,s-transfer matrices

Y o
� = �

T2,1

T1,2
, Y o

+ = �
T2,3T2,1

T3,2T1,2
, Y o

Q|vw =
TQ+2,1TQ,1

TQ+1,2
, Y o

Q|w =
T1,Q+2T1,Q

T2,Q+1T0,Q+1

Kuniba,Nakanishi,Suzuku ’93; Tsuboi ’97; Gromov, Kazakov and Vieira ’09

Mirror TBA PSU(2, 2|4)-symmetry Conclusions

Large J (asymptotic) solution

L ⇤ ⌅: Bethe-Yang (all 1/L powers) + Lüscher corrections (leading e�mL corrections)

(standing 1-particle states) Lüscher ’86

(general N-particle states) Bajnok, Janik ’08

Y o
Q(v) = �Q(v)TQ,�1(v)TQ,1(v)

Transfer matrix

TQ,1(u) = TrQ

�
SQ,1(u, u1) . . .SQ,N(u, uN)

⇥

The prefactor

�+
Q ��

Q = �Q�1�Q+1 , �Q(v) ⇥ e�J �EQ(v)

Bethe-Yang equations are equivalent to

Y o
1� (uk ) = �1 , k = 1, . . . ,N

Large J (asymptotic) solution
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General strategy

1 Solve the BY equations for a fixed set of integers

J , N = K I , (K III
� , K II

�, K II
+, K III

+ )

Pick up a solution. It is characterized by a definite set of g-dependent momenta.

Auxiliary roots are completely fixed by the momenta pk and play no independent
role in the description of a state

2 Compute asymptotic Y-functions and find zeroes and poles of 1 + Y and Y

3 Choose contours and engineer TBA equations for the state so that they
reproduce the asymp. solution

4 Exact momenta pk are found from the exact Bethe equations (quantization cond.)

Y 0
1� (pk ) = �1 =⇥ Y1� (pk ) = �1

5 Energy spectrum: E = J +
N�

i=1

E(pi )

⌃ ⇧⌅ ⌥
Bethe�Yang

�
1

2�

⇥�

Q=1

⇥ ⇥

�⇥
du

d⇤pQ

du
log(1 + YQ)

⌃ ⇧⌅ ⌥
finite�size corr.

Excited states TBA


