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Renormalisation and anomalous dimensions 
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Chapter 2

Dilatation operator and spin chains

2.1 Spin chains and anomalous dimensions

Renormalization, anomalous dimensions and mixing

In the dimensional regularization the 4 ! 4 � 2✏ a bare two-point function has structure

hOOi =
G(g2µ2✏x2✏, ✏)

(x2)2�0

(1�✏)
(2.1)

Here �
0

is a conformal dimension in free theory (number of elementary fields in the operator)
and [�] = 1 � ✏. Also ĝ = gµ✏ is the dimensionful coupling, while g is dimensionless, µ is
a mass parameter. In perturbation theory divergencies manifests themselves as poles in 1

✏
appearing in the function G(g2µ2✏x2✏, ✏). What is important is that dependence on x is
already fixed by the known µ-dependence and by the requirement that the function as the
whole must keep the engineering dimension.

We have renormalized two-point function

hOOi = Z2(g2, ✏)
G(g2µ2✏x2✏, ✏)

(x2)2�0

(1�✏)
(2.2)

obtained by multiplying the operators with a constant (x-independent) function Z2(g2, ✏).

Renormalization of the composite operators:

Oren

I = Z J
I OJ , D =

dZ

d ln⇤
Z�1

Eigenvalues of D are anomalous dimensions.

Consider a scalar operator made of L elementary scalars

Tr
⇣
�i1�i2 . . .�iL

⌘

View it as the spin chain of length L where spin at every site can have 6 polarizations.
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Spin chain interpretation  

A) B) C)

k l k l k

One-loop graphs

Z
...jkjk+1...

A...ikik+1...
= I � �

16⇡2

ln ⇤ �jk
ik

�
jk+1

ik+1

Z
...jkjk+1...

B...ikik+1...
= I � �

16⇡2

ln ⇤
⇣

2�
jk+1

ik
�jk
ik+1

� �jk
ik

�
jk+1

ik+1
� �

ikik+1�
jkjk+1

⌘

Z
...jkjk+1...

C...ikik+1...
= I +

�

8⇡2

ln ⇤ �jk
ik

�
jk+1

ik+1

Valid only in the large N limit!

Example:

O(x) = Tr
⇣

�J
1

1

�J
2

2

�J
3

3

⌘

+ ..., �
1

= �1 + i�2, etc

realize irrep of SU(4) with labels [J
2

� J
3

, J
1

� J
2

, J
2

+ J
3

]

Anomalous dimension: O(x) are composite

�classical =) �classical + �(�, N)

Anomalous dimension: O(x) are composite

�classical =) �classical + �(�, N)
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Sample calculation: Quartic Scalar Interaction

fabef cde�a
i �

b
j�

c
i�

d
j

Tr
⇣

.... Ts�s
jk

| {z }

k

..... Tp�p
jl

| {z }

l

....
⌘

Using Jacobi identity:

fabef cde = �f cbefdae � fdbeface

We get

�
jkjlTr

⇣

....(feda�d

j

Ta).....(febc�b

j

Tc)....
⌘

=

= ��
jkjlTr

⇣

.... [Te, �
j

]
| {z }

k

..... [Te, �
j

]
| {z }

l

....
⌘

In the large N limit the leading contribution is only due to the term with l = k + 1!

We thus obtain the nearest-neighbor structure

N�
jkjk+1Tr

⇣

.... �
j

|{z}

k

�
j

|{z}

k+1

....
⌘

=

= N�
jkjk+1�

ikik+1Tr
⇣

....�
ik�

ik+1 ....
⌘

Complete Z is

Z
...jkjk+1

...
...ikik+1

... = I +
�

16⇡2

ln ⇤
⇣

2�
jk+1

ik
�jkik+1

� 2�jkik �
jk+1

ik+1

+ �ikik+1

�jkjk+1

⌘

Introducing the trace operator K and the permutation operator P :

K = �ikik+1�
jkjk+1 , P = �

jk+1
ik

�
jk
ik+1

the matrix of anomalous dimensions becomes

D
1�loop

= g2
LX

i=1

⇣
I � Pi,i+1

+
1
2
Ki,i+1

⌘

where

g2 =
�

8⇡2

=
g2
YM

N

8⇡2

Let us define the dilatation operator as

D = L + g2H
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Alternatively one can find the dilatation operator by renormalizing the operators
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The Heisenberg spin chain. The Hamiltonian H acts as 2L ⇥ 2L matrix, where L is the

length of the chain. M is a number of magnons.
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Spin chains and anomalous dimensions
Simplest operators: Tr(WMZL�M ) + . . .

Z = �1 + i�2

W = �3 + i�4

The planar one-loop mixing matrix D is identical to the Heisenberg Hamiltonian H.
It acts as 2L ⇥ 2L matrix on states of the spin chain of length L. M is the number
of magnons.

The mixing matrix is H =
P

L
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⇣
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k,k+1

⌘
, P ("#) = (#")

[Minahan and Zarembo, 2003]
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Closed sectors 

dim = 3/2

• Sector su(2). Operators with [M,J �M,M ] and �
0

= J +M . Classically they are

1

4

-BPS states.
Operators:

Tr(ZJ
1

ZM
2

) + . . . .

• Sector sl(2). The Dynkin content [0, J, 0;M,M ] and �
0

= J +M , Lorentz spin S = M . Operators

Tr(DMZJ) + . . .

where D = D
1

+ iD
2

• Sector su(1|1). The Dynkin content [0, J � 1

2

M,M ; 0, 1

2

M ] and �
0

= J +M . Operators:

Tr(ZJ�M
2  M ) + . . . .

• Sector su(2|3). Three complex scalars, two complex fermions. Classically they are

1

8

-BPS states.

Operators:

Tr(Zn1
1

Zn2
2

Zn3
3

 n4
1

 n5
2

) + . . . .

The dilatation operator on the su(2) subsector (up to three loops)

D
1`

= I � P
i,i+1

D
2`

= �3

2
I + 2P

i,i+1

� 1

2
P
i,i+2

D
3`

= 5I � 7P
i,i+1

+ 2P
i,i+2

� 1

2
(P

i,i+3

P
i+1,i+2

� P
i,i+2

P
i+1,i+3

)

This was obtained by careful analysis of the Feynman graphs + susy input

Extremely important feature: the anomalous dimensions and the higher charges obey the “BMN
scaling”:

� = �
⇣

ø2, L
⌘

is finite when L ! 1

where

ø2 =
g2

2L
=

�

16⇡2L2

� �the BMN coupling
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Spin chain interpretation  
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Dilatation operator at higher loopsInput from Gauge Theory: Bethe Ansatz

4−body interaction (3d order of pert. theory)

 

2−body interaction (1st order of pert. theory)

3−body interaction (2nd order of pert. theory)

A composite operator in N = 4 SYM is a chain of spins: tr
�
D

µ

�iF
�⇢

 ↵�j · · ·
�
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Input from Gauge Theory: Bethe Ansatz
Dilatation operator acts as the Hamiltonian H of an integrable long-range spin chain

On a chain of length L made of two complex scalars the dilop acts as

H1` =

LX

i=1

⇣
I � P

i,i+1

⌘
( Heisenberg Hamiltonian

H2` =

LX

i=1

⇣
�

3

2
I + 2P

i,i+1 �
1

2
P

i,i+2

⌘

H3` =
LX

i=1

⇣
5I � 7P

i,i+1 + 2P
i,i+2

�
1

2
(P

i,i+3P

i+1,i+2 � P

i,i+2P

i+1,i+3)
⌘

Integrability: Factorized Scattering Theory

• Elementary excitations are magnons (quasi-particles with momenta p
k

)

• Existence of family of commuting charges: elastic scattering

• Factorization of the many-body S-matrix and additivity of the spectrum

• In the limit L ! 1 the Hamiltonian can be diagonalized by the Bethe Ansatz
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One inevitably runs into the wrapping problem! At this point the interpretation in terms
of long-range spin chains does not work anymore and one has to resort to a sigma-model
description coming from string on AdS

5

⇥ S5

9



Part II

Integrable structure of string
theory

27
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Chapter 3

String sigma model on AdS5 ⇥ S5

We define type IIB Green-Schwarz superstring in the AdS5 ⇥ S5 background as a non-linear sigma-
model with target space being the following coset

PSU(2, 2|4)

SO(4, 1) ⇥ SO(5)
. (3.1)

The supergroup PSU(2, 2|4) contains the bosonic subgroup SU(2, 2) ⇥ SU(4) which is locally iso-
morphic to SO(4, 2) ⇥ SO(6); the quotient of the latter over SO(4, 1) ⇥ SO(5) provides a model of
the AdS5 ⇥ S5 manifold with SO(4, 1) ⇥ SO(5) being the group of local Lorentz transformations.
Correspondingly, the coset (3.1) can be regarded as a model of the AdS5 ⇥S5 superspace. The group
PSU(2, 2|4) which acts on the coset by left multiplications plays the role of the isometry group of
the AdS5 ⇥ S5 superspace.

3.1 Action

We start with sl(4|4). This is spanned by 8 ⇥ 8 matrices M , which we write in terms of 4 ⇥ 4 blocks
as

M =

✓

m ✓
⌘ n

◆

. (3.2)

These matrices are required to have vanishing supertrace strM ⌘ tr m � tr n = 0. The superalgebra
sl(4|4) carries the structure of a Z2-graded algebra: the matrices m and n are regarded as even,
and ✓, ⌘ as odd, respectively. The entries of ✓ and ⌘ can be thought of as grassmann (fermionic)
anti-commuting variables.

The superalgebra su(2, 2|4) is a non-compact real form of sl(4|4).

A matrix M from su(2, 2|4) is subject to the following reality condition

M†H + HM = 0 . (3.3)

Here the adjoint of the supermatrix M is defined as M† = (M t)⇤ and the hermitian matrix H is
taken to be

H =

✓

⌃ 0
0 4

◆

, (3.4)
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⇥S5 superspace. The group
PSU(2, 2|4) which acts on the coset by left multiplications plays the role of the isometry group of
the AdS

5

⇥ S5 superspace.

3.1 Sigma model

We start with the sigma model action, then discuss its symmetries and, finally, explain the classical
integrability model by formulating the string sigma model equations of motion in the form of the
Lax pair.
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We start with sl(4|4). This is spanned by 8 ⇥ 8 matrices M , which we write in terms of 4 ⇥ 4 blocks
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Here the adjoint of the supermatrix M is defined as M† = (M t)⇤ and the hermitian matrix H is
taken to be

H =

✓

⌃ 0
0

4

◆

, (3.4)

where ⌃ is the following 4 ⇥ 4 matrix

⌃ =

✓

2

0
0 �

2

◆

(3.5)

and
n

denotes the n ⇥ n identity matrix.

Condition (3.3) implies that

m† = �⌃ m ⌃ , n† = �n , ⌘† = �⌃ ✓ . (3.6)

Thus, m and n span the unitary subalgebras u(2, 2) and u(4) respectively. The algebra su(2, 2|4)
also contains the u(1)-generator i , as the latter obeys eq.(3.3) and has vanishing supertrace. Thus,
the bosonic subalgebra of su(2, 2|4) is

su(2, 2) � su(4) � u(1) . (3.7)

The superalgebra psu(2, 2|4) is defined as a quotient algebra of su(2, 2|4) over this u(1)-factor. It
is important to note that psu(2, 2|4), as the quotient algebra, has no realization in terms of 8 ⇥ 8
supermatrices.

An external automorphism – supertransposition.

M ! �Mst , (3.8)

where the supertranspose Mst is defined as

Mst =

✓

mt �⌘t

✓t nt

◆

. (3.9)

(Mst)st =

✓

m �✓
�⌘ n

◆

, (3.10)

The fourth order automorphism M ! �Mst allows one to endow sl(4|4) with the structure
of a Z

4

-graded Lie superalgebra. For our further purposes it is important, however, to choose an
equivalent automorphism

M ! ⌦(M) = �KMstK�1 , (3.11)

where K is the 8 ⇥ 8-matrix, K = diag(K, K), and the 4 ⇥ 4 matrix K is given by

K =

0

@

0 �1 0 0

1 0 0 0

0 0 0 �1

0 0 1 0

1

A , (3.12)

Introducing the notation G = sl(4|4), let us define

G (k) =
n

M 2 G , ⌦(M) = ikM
o

. (3.13)
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Sigma model action  

Then, as a vector space, G can be decomposed into a direct sum of graded subspaces

G = G (0) � G (1) � G (2) � G (3) (3.15)

where [G (k), G (m)] ⇢ G (k+m) modulo Z
4

. For any matrix M 2 G its projection M (k) 2 G (k) is given
by

M (k) =
1

4

⇣

M + i3k⌦(M) + i2k⌦2(M) + ik⌦3(M)
⌘

. (3.16)

It is easy to see that the projections M (0) and M (2) are even, while M (1) and M (3) are odd.

Any matrix M 2 su(2, 2|4) can be uniquely decomposed into the sum (3.15), where each com-
ponent M (k) takes values in su(2, 2|4).

Introduce an e↵ective dimensionless string tension

g =
R2

2⇡↵0 .

The string action is then

S =

Z

d⌧d� L , (3.17)

where L is the Lagrangian density and the integration range is �r  �  r.

Let g be an element of the supergroup SU(2, 2|4). Introduce the following one-form with values
in su(2, 2|4)

A = �g

�1dg = A(0) + A(2) + A(1) + A(3) . (3.18)

Here on the right hand side of the last formula we exhibited the Z
4

-decomposition of A, c.f. eq.(3.15).
By construction, A has vanishing curvature F = dA � A ^ A = 0 or, in components,

@
↵

A
�

� @
�

A
↵

� [A
↵

, A
�

] = 0 . (3.19)

Now we postulate the following Lagrangian density describing a superstring in the AdS
5

⇥ S5

background

L = �g

2

h

�↵�str
�

A(2)

↵

A(2)

�

�

+  ✏↵�str
�

A(1)

↵

A(3)

�

�

i

, (3.20)

which is the sum of the kinetic and the Wess-Zumino term. Here we use the convention ✏⌧� = 1 and
�↵� = h↵�

p
�h is the Weyl-invariant combination.

3.1.2 Symmetries

Local SO(4, 1) ⇥ SO(5) symmetry. Consider a transformation

g ! gh , (3.21)

where h belongs to SO(4, 1) ⇥ SO(5). Under this transformation the one-form transforms as

A ! h

�1Ah � h

�1dh . (3.22)

It is easy to see that for the Z
4

-components of A this transformation implies

A(1,2,3) ! h

�1A(1,2,3)

h , A(0) ! h

�1A(0)

h � h

�1dh . (3.23)
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Z4 � grading

Then, as a vector space, G can be decomposed into a direct sum of graded subspaces
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where h belongs to SO(4, 1) ⇥ SO(5). Under this transformation the one-form transforms as

A ! h

�1Ah � h

�1dh . (3.22)

It is easy to see that for the Z
4

-components of A this transformation implies

A(1,2,3) ! h

�1A(1,2,3)

h , A(0) ! h

�1A(0)

h � h

�1dh . (3.23)
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Then, as a vector space, G can be decomposed into a direct sum of graded subspaces

G = G (0) � G (1) � G (2) � G (3) (3.15)

where [G (k), G (m)] ⇢ G (k+m) modulo Z
4

. For any matrix M 2 G its projection M (k) 2 G (k) is given
by

M (k) =
1

4

⇣

M + i3k⌦(M) + i2k⌦2(M) + ik⌦3(M)
⌘

. (3.16)

It is easy to see that the projections M (0) and M (2) are even, while M (1) and M (3) are odd.

Any matrix M 2 su(2, 2|4) can be uniquely decomposed into the sum (3.15), where each com-
ponent M (k) takes values in su(2, 2|4).

Introduce an e↵ective dimensionless string tension

g =
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2⇡↵0 .

The string action is then

S =

Z

d⌧d� L , (3.17)

where L is the Lagrangian density and the integration range is �r  �  r.

Let g be an element of the supergroup SU(2, 2|4).
Introduce the following one-form with values in su(2, 2|4)

A = �g

�1dg = A(0) + A(2) + A(1) + A(3) . (3.18)

Here on the right hand side of the last formula we exhibited the Z
4

-decomposition of A, c.f. eq.(3.15).
By construction, A has vanishing curvature F = dA � A ^ A = 0 or, in components,
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Thus, the component A(0) undergoes a gauge transformation, while all the other homogeneous
components transform by the adjoint action.

By construction, the Lagrangian (3.20) depends on the group element g. However, as was shown
above, under the right multiplication of g with a local, i.e. �- and ⌧ -dependent element h 2 SO(4, 1)⇥
SO(5), the homogeneous components A(1), A(2) and A(3) undergo a similarity transformation leaving
the Lagrangian (3.20) invariant. Thus, the Lagrangian actually depends on a coset element from
SU(2, 2|4)/SO(4, 1) ⇥ SO(5), rather than on g 2 SU(2, 2|4).

Local U(1) symmetry. Recall that in the Z
4

-decomposition of A 2 su(2, 2|4) the central element
i occurs in the projection A(2). As a result, under the right multiplication of g with a group element
from U(1) corresponding to i , the component A(2) undergoes a shift

A(2) ! A(2) + c · i .

Since the supertrace of both the identity matrix and A(2) vanishes, this transformation leaves the
Lagrangian (3.20) invariant. Thus, in addition to so(4, 1) ⇥ so(5), we have an extra local u(1)-
symmetry induced by the central element i . Clearly, this symmetry can be used to gauge away the
trace part of A(2). Thus, in what follows we will assume that A(2) is chosen to be traceless, which
can be viewed as the gauge fixing condition for these u(1)-transformations.

Global PSU(2, 2|4) symmetry. The group of global symmetry transformations of the Lagrangian
(3.20) coincides with PSU(2, 2|4). Indeed, PSU(2, 2|4) acts on the coset space (3.1) by multiplication
from the left. If g 2 PSU(2, 2|4) is a coset space representative and G is an arbitrary group element
from PSU(2, 2|4), then the action of G on g is as follows

G : g ! g

0 , (3.24)

where g

0 is determined from the following equation

G · g = g

0
h . (3.25)

Here g

0 is a new coset representative and h is a ”compensating” local element from SO(4, 1)⇥SO(5).
Because of the local invariance under SO(4, 1)⇥SO(5) the Lagrangian (3.20) is also invariant under
global PSU(2, 2|4)-transformations.

Equations of motion. Introduce

⇤↵ = g
h

�↵�A(2)

�

� 1

2
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� A(3)
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Noether’s current

J↵ = g⇤↵

g

�1 . (3.28)

Due to eq.(3.27), this current is conserved:

@
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J↵ = 0 . (3.29)

In fact, J↵ is nothing else but the Noether current corresponding to global PSU(2,2|4)-symmetry
transformations. The corresponding conserved charge Q is given by the following integral of the J⌧

component
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Thus, the component A(0) undergoes a gauge transformation, while all the other homogeneous
components transform by the adjoint action.
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Thus, the component A(0) undergoes a gauge transformation, while all the other homogeneous
components transform by the adjoint action.

By construction, the Lagrangian (3.20) depends on the group element g. However, as was shown
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Virasoro. Equations of motion for the world-sheet metric which are equivalent to vanishing the
world-sheet stress-tensor
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2

�
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�⇢�str(A(2)

⇢

A(2)

�

) = 0 . (3.31)

These equations are known as the Virasoro constraints and they reflect the two-dimensional reparametriza-
tion invariance of the string action.

-symmetry.

g · G = g

0
h , G = exp ✏(⌧, �) (3.32)

✏(1) = A(2)
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↵,+

.
(3.33)

Here (i),↵

± are new independent parameters of -symmetry transformation which are homogeneous
elements of degree i = 1, 3 with respect to ⌦. Here

P↵�

± = 1

2

(�↵� ± ✏↵�) , (3.34)

For any vector V ↵ we introduce the projections V ↵
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-symmetry su�ce to bring a generic odd element of su(2, 2|4) to the following form
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where bullets stand for odd elements which cannot be gauged away by -symmetry transformations.

3.1.3 Lax representation
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(3.36)

which is sometimes referred to as the fundamental linear problem. Here  ⌘  (�, ⌧, z) is a vector
of rank r and L
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(�, ⌧, z) are properly chosen r ⇥ r matrices. Both  and
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depend on an additional spectral parameter z taking values in the complex plane.

Di↵erentiating the first equation in (3.36) with respect to ⌧ and the second one with respect to
�, we obtain
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Virasoro. Equations of motion for the world-sheet metric which are equivalent to vanishing the
world-sheet stress-tensor
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These equations are known as the Virasoro constraints and they reflect the two-dimensional reparametriza-
tion invariance of the string action.
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Virasoro. Equations of motion for the world-sheet metric which are equivalent to vanishing the
world-sheet stress-tensor
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These equations are known as the Virasoro constraints and they reflect the two-dimensional reparametriza-
tion invariance of the string action.
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Here (i),↵

± are new independent parameters of -symmetry transformation which are homogeneous
elements of degree i = 1, 3 with respect to ⌦. Here
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where bullets stand for odd elements which cannot be gauged away by -symmetry transformations.
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which is sometimes referred to as the fundamental linear problem. Here  ⌘  (�, ⌧, z) is a vector
of rank r and L
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These equations are known as the Virasoro constraints and they reflect the two-dimensional reparametriza-
tion invariance of the string action.
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where bullets stand for odd elements which cannot be gauged away by -symmetry transformations.
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These equations are known as the Virasoro constraints and they reflect the two-dimensional reparametriza-
tion invariance of the string action.
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where bullets stand for odd elements which cannot be gauged away by -symmetry transformations.
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These equations are known as the Virasoro constraints and they reflect the two-dimensional reparametriza-
tion invariance of the string action.
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where bullets stand for odd elements which cannot be gauged away by -symmetry transformations.
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Virasoro. Equations of motion for the world-sheet metric which are equivalent to vanishing the
world-sheet stress-tensor

str(A(2)

↵

A(2)

�

) � 1

2

�
↵�

�⇢�str(A(2)

⇢

A(2)

�

) = 0 . (3.31)
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where bullets stand for odd elements which cannot be gauged away by -symmetry transformations.
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Equations of motion

Thus, the component A(0) undergoes a gauge transformation, while all the other homogeneous
components transform by the adjoint action.

By construction, the Lagrangian (3.20) depends on the group element g. However, as was shown
above, under the right multiplication of g with a local, i.e. �- and ⌧ -dependent element h 2 SO(4, 1)⇥
SO(5), the homogeneous components A(1), A(2) and A(3) undergo a similarity transformation leaving
the Lagrangian (3.20) invariant. Thus, the Lagrangian actually depends on a coset element from
SU(2, 2|4)/SO(4, 1) ⇥ SO(5), rather than on g 2 SU(2, 2|4).

Local U(1) symmetry. Recall that in the Z
4

-decomposition of A 2 su(2, 2|4) the central element
i occurs in the projection A(2). As a result, under the right multiplication of g with a group element
from U(1) corresponding to i , the component A(2) undergoes a shift

A(2) ! A(2) + c · i .

Since the supertrace of both the identity matrix and A(2) vanishes, this transformation leaves the
Lagrangian (3.20) invariant. Thus, in addition to so(4, 1) ⇥ so(5), we have an extra local u(1)-
symmetry induced by the central element i . Clearly, this symmetry can be used to gauge away the
trace part of A(2). Thus, in what follows we will assume that A(2) is chosen to be traceless, which
can be viewed as the gauge fixing condition for these u(1)-transformations.

Global PSU(2, 2|4) symmetry. The group of global symmetry transformations of the Lagrangian
(3.20) coincides with PSU(2, 2|4). Indeed, PSU(2, 2|4) acts on the coset space (3.1) by multiplication
from the left. If g 2 PSU(2, 2|4) is a coset space representative and G is an arbitrary group element
from PSU(2, 2|4), then the action of G on g is as follows

G : g ! g

0 , (3.24)

where g

0 is determined from the following equation

G · g = g

0
h . (3.25)

Here g

0 is a new coset representative and h is a ”compensating” local element from SO(4, 1)⇥SO(5).
Because of the local invariance under SO(4, 1)⇥SO(5) the Lagrangian (3.20) is also invariant under
global PSU(2, 2|4)-transformations.

Equations of motion. Introduce
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Due to eq.(3.27), this current is conserved:
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Thus, the component A(0) undergoes a gauge transformation, while all the other homogeneous
components transform by the adjoint action.

By construction, the Lagrangian (3.20) depends on the group element g. However, as was shown
above, under the right multiplication of g with a local, i.e. �- and ⌧ -dependent element h 2 SO(4, 1)⇥
SO(5), the homogeneous components A(1), A(2) and A(3) undergo a similarity transformation leaving
the Lagrangian (3.20) invariant. Thus, the Lagrangian actually depends on a coset element from
SU(2, 2|4)/SO(4, 1) ⇥ SO(5), rather than on g 2 SU(2, 2|4).

Local U(1) symmetry. Recall that in the Z
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-decomposition of A 2 su(2, 2|4) the central element
i occurs in the projection A(2). As a result, under the right multiplication of g with a group element
from U(1) corresponding to i , the component A(2) undergoes a shift

A(2) ! A(2) + c · i .

Since the supertrace of both the identity matrix and A(2) vanishes, this transformation leaves the
Lagrangian (3.20) invariant. Thus, in addition to so(4, 1) ⇥ so(5), we have an extra local u(1)-
symmetry induced by the central element i . Clearly, this symmetry can be used to gauge away the
trace part of A(2). Thus, in what follows we will assume that A(2) is chosen to be traceless, which
can be viewed as the gauge fixing condition for these u(1)-transformations.

Global PSU(2, 2|4) symmetry. The group of global symmetry transformations of the Lagrangian
(3.20) coincides with PSU(2, 2|4). Indeed, PSU(2, 2|4) acts on the coset space (3.1) by multiplication
from the left. If g 2 PSU(2, 2|4) is a coset space representative and G is an arbitrary group element
from PSU(2, 2|4), then the action of G on g is as follows

G : g ! g

0 , (3.24)

where g

0 is determined from the following equation
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0
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Here g

0 is a new coset representative and h is a ”compensating” local element from SO(4, 1)⇥SO(5).
Because of the local invariance under SO(4, 1)⇥SO(5) the Lagrangian (3.20) is also invariant under
global PSU(2, 2|4)-transformations.
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Thus, the component A(0) undergoes a gauge transformation, while all the other homogeneous
components transform by the adjoint action.

By construction, the Lagrangian (3.20) depends on the group element g. However, as was shown
above, under the right multiplication of g with a local, i.e. �- and ⌧ -dependent element h 2 SO(4, 1)⇥
SO(5), the homogeneous components A(1), A(2) and A(3) undergo a similarity transformation leaving
the Lagrangian (3.20) invariant. Thus, the Lagrangian actually depends on a coset element from
SU(2, 2|4)/SO(4, 1) ⇥ SO(5), rather than on g 2 SU(2, 2|4).

Local U(1) symmetry. Recall that in the Z
4

-decomposition of A 2 su(2, 2|4) the central element
i occurs in the projection A(2). As a result, under the right multiplication of g with a group element
from U(1) corresponding to i , the component A(2) undergoes a shift

A(2) ! A(2) + c · i .

Since the supertrace of both the identity matrix and A(2) vanishes, this transformation leaves the
Lagrangian (3.20) invariant. Thus, in addition to so(4, 1) ⇥ so(5), we have an extra local u(1)-
symmetry induced by the central element i . Clearly, this symmetry can be used to gauge away the
trace part of A(2). Thus, in what follows we will assume that A(2) is chosen to be traceless, which
can be viewed as the gauge fixing condition for these u(1)-transformations.

Global PSU(2, 2|4) symmetry. The group of global symmetry transformations of the Lagrangian
(3.20) coincides with PSU(2, 2|4). Indeed, PSU(2, 2|4) acts on the coset space (3.1) by multiplication
from the left. If g 2 PSU(2, 2|4) is a coset space representative and G is an arbitrary group element
from PSU(2, 2|4), then the action of G on g is as follows

G : g ! g

0 , (3.24)

where g

0 is determined from the following equation

G · g = g
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Here g

0 is a new coset representative and h is a ”compensating” local element from SO(4, 1)⇥SO(5).
Because of the local invariance under SO(4, 1)⇥SO(5) the Lagrangian (3.20) is also invariant under
global PSU(2, 2|4)-transformations.
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⇤↵ = g
h

�↵�A(2)

�

� 1

2

 ✏↵�(A(1)

�

� A(3)

�

)
i

. (3.26)

Eoms

@
↵

⇤↵ � [A
↵

, ⇤↵] = 0 . (3.27)

Noether’s current

J↵ = g⇤↵

g

�1 . (3.28)

Due to eq.(3.27), this current is conserved:
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Thus, the component A(0) undergoes a gauge transformation, while all the other homogeneous
components transform by the adjoint action.

By construction, the Lagrangian (3.20) depends on the group element g. However, as was shown
above, under the right multiplication of g with a local, i.e. �- and ⌧ -dependent element h 2 SO(4, 1)⇥
SO(5), the homogeneous components A(1), A(2) and A(3) undergo a similarity transformation leaving
the Lagrangian (3.20) invariant. Thus, the Lagrangian actually depends on a coset element from
SU(2, 2|4)/SO(4, 1) ⇥ SO(5), rather than on g 2 SU(2, 2|4).

Local U(1) symmetry. Recall that in the Z
4

-decomposition of A 2 su(2, 2|4) the central element
i occurs in the projection A(2). As a result, under the right multiplication of g with a group element
from U(1) corresponding to i , the component A(2) undergoes a shift

A(2) ! A(2) + c · i .

Since the supertrace of both the identity matrix and A(2) vanishes, this transformation leaves the
Lagrangian (3.20) invariant. Thus, in addition to so(4, 1) ⇥ so(5), we have an extra local u(1)-
symmetry induced by the central element i . Clearly, this symmetry can be used to gauge away the
trace part of A(2). Thus, in what follows we will assume that A(2) is chosen to be traceless, which
can be viewed as the gauge fixing condition for these u(1)-transformations.
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(3.20) coincides with PSU(2, 2|4). Indeed, PSU(2, 2|4) acts on the coset space (3.1) by multiplication
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where g
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Here g

0 is a new coset representative and h is a ”compensating” local element from SO(4, 1)⇥SO(5).
Because of the local invariance under SO(4, 1)⇥SO(5) the Lagrangian (3.20) is also invariant under
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Thus, the component A(0) undergoes a gauge transformation, while all the other homogeneous
components transform by the adjoint action.
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Integrability through Lax representation

Virasoro. Equations of motion for the world-sheet metric which are equivalent to vanishing the
world-sheet stress-tensor
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These equations are known as the Virasoro constraints and they reflect the two-dimensional reparametriza-
tion invariance of the string action.
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Here (i),↵

± are new independent parameters of -symmetry transformation which are homogeneous
elements of degree i = 1, 3 with respect to ⌦. Here
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where bullets stand for odd elements which cannot be gauged away by -symmetry transformations.

Di↵eomorphisms.

Equations of motion for the world-sheet metric h
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are equivalent to vanishing the world-sheet
stress-tensor
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which is sometimes referred to as the fundamental linear problem. Here  ⌘  (�, ⌧, z) is a vector
of rank r and L
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(�, ⌧, z) and L
⌧
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(�, ⌧, z) are properly chosen r ⇥ r matrices. Both  and
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depend on an additional spectral parameter z taking values in the complex plane.
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These equations are known as the Virasoro constraints and they reflect the two-dimensional reparametriza-
tion invariance of the string action.
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These equations are known as the Virasoro constraints and they reflect the two-dimensional reparametriza-
tion invariance of the string action.
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↵�

�⇢�str(A(2)

⇢

A(2)

�

) = 0 . (3.31)

These equations are known as the Virasoro constraints and they reflect the two-dimensional reparametriza-
tion invariance of the string action.

-symmetry.

g · G = g

0
h , G = exp ✏(⌧, �) (3.32)

✏(1) = A(2)

↵,�(1),↵

+

+ (1),↵

+

A(2)

↵,� ,

✏(3) = A(2)

↵,+

(3),↵

� + (3),↵

� A(2)

↵,+

.
(3.33)

Here (i),↵

± are new independent parameters of -symmetry transformation which are homogeneous
elements of degree i = 1, 3 with respect to ⌦. Here

P↵�

± = 1

2

(�↵� ± ✏↵�) , (3.34)

For any vector V ↵ we introduce the projections V ↵

± :

V ↵

± = P↵�

± V
�

-symmetry su�ce to bring a generic odd element of su(2, 2|4) to the following form
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0 0 • • 0 0 0 0
• • 0 0 0 0 0 0
• • 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

A

, (3.35)

where bullets stand for odd elements which cannot be gauged away by -symmetry transformations.

Di↵eomorphisms.

Equations of motion for the world-sheet metric h
↵�

are equivalent to vanishing the world-sheet
stress-tensor

Virasoro constraints

3.1.3 Lax representation

@ 

@�
= L

�

(�, ⌧, z) ,

@ 

@⌧
= L

⌧

(�, ⌧, z) ,
(3.36)

which is sometimes referred to as the fundamental linear problem. Here  ⌘  (�, ⌧, z) is a vector
of rank r and L

�

⌘ L
�

(�, ⌧, z) and L
⌧

⌘ L
⌧

(�, ⌧, z) are properly chosen r ⇥ r matrices. Both  and
L
�

, L
⌧

depend on an additional spectral parameter z taking values in the complex plane.

33

Di↵erentiating the first equation in (3.36) with respect to ⌧ and the second one with respect to
�, we obtain
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L
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 = (@
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L
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L
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@�@⌧
= @

�

L
⌧

 + L
⌧

@
�

 = (@
�

L
⌧

+ L
⌧

L
�

) ,

which implies the fulfilment of the following consistency condition

@
⌧

L
�

� @
�

L
⌧

+ [L
�

, L
⌧

] = 0

for all values of the spectral parameter. If we introduce a two-dimensional non-abelian connection
L
↵

with components L
⌧

and L
�

, then the consistency condition derived above can be reinstated as
vanishing of the curvature of L

↵

:

@
↵

L
�

� @
�

L
↵

� [L
↵

, L
�

] = 0 . (3.37)

The matrices L
⌧

and L
�

must be chosen in such a way that the zero curvature condition above should
imply the fulfilment of the original di↵erential equation for all values of the spectral parameter. A
connection L

↵

with these properties is known as the Lax connection (or the Lax pair), while equation
(3.37) as the zero-curvature (Lax) representation of an integrable partial di↵erential equation.

The monodromy matrix T(z) which is the path-ordered exponential of the Lax component L
�

(z)

T(z) =
 �
exp

Z

2⇡

0

d� L
�

(z) . (3.38)

For definiteness, we assume that a model is defined on a circle 0  � < 2⇡ and all dynamical
variables are periodic functions of �.

Given that the Lax connection is a periodic function of �, for the monodromy we find the
following evolution equation

@
⌧

T(z) = [L
⌧

(0, ⌧, z), T(z)] . (3.39)

This important formula implies that the eigenvalues of T(z) defined by the characteristic equation

�(z, µ) ⌘ det(T(z) � µ ) = 0 (3.40)

do not depend on ⌧ , in other words they are integrals of motion. Thus, the spectral properties of
the model are encoded into the monodromy matrix. Equation (3.40) defines an algebraic curve in
C2 called the spectral curve.

To build up the zero curvature representation of the string equations of motion, we start with
the following ansatz for the Lax connection L

↵

L
↵

= `
0

A(0)

↵

+ `
1

A(2)

↵

+ `
2

�
↵�

✏�⇢A(2)

⇢

+ `
3

A(1)

↵

+ `
4

A(3)

↵

, (3.41)

where `
i

are undetermined constants and A(k) are the Z
4

-components of the flat connection (3.18).
The connection L

↵

is required to have zero curvature (3.37) as a consequence of the dynamical
equations (3.27) and the flatness of A

↵

.

Proceeding, we uniformize the parameters `
i

in terms of a single variable z taking values on the
Riemann sphere:

`
0

= 1 , `
1

=
1

2

⇣

z2 +
1

z2

⌘
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2

= � 1

2

⇣

z2 � 1

z2

⌘

, `
3

= z , `
4

=
1

z
. (3.42)
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Di↵erentiating the first equation in (3.36) with respect to ⌧ and the second one with respect to
�, we obtain
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which implies the fulfilment of the following consistency condition

@
⌧

L
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L
⌧

+ [L
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, L
⌧

] = 0

for all values of the spectral parameter. If we introduce a two-dimensional non-abelian connection
L
↵

with components L
⌧

and L
�

, then the consistency condition derived above can be reinstated as
vanishing of the curvature of L

↵

:

@
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L
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�

L
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� [L
↵

, L
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] = 0 . (3.37)

The matrices L
⌧

and L
�

must be chosen in such a way that the zero curvature condition above should
imply the fulfilment of the original di↵erential equation for all values of the spectral parameter. A
connection L

↵

with these properties is known as the Lax connection (or the Lax pair), while equation
(3.37) as the zero-curvature (Lax) representation of an integrable partial di↵erential equation.

The monodromy matrix T(z) which is the path-ordered exponential of the Lax component L
�

(z)

T(z) =
 �
exp

Z

2⇡

0

d� L
�

(z) . (3.38)

For definiteness, we assume that a model is defined on a circle 0  � < 2⇡ and all dynamical
variables are periodic functions of �.

Given that the Lax connection is a periodic function of �, for the monodromy we find the
following evolution equation

@
⌧

T(z) = [L
⌧

(0, ⌧, z), T(z)] . (3.39)

This important formula implies that the eigenvalues of T(z) defined by the characteristic equation

�(z, µ) ⌘ det(T(z) � µ ) = 0 (3.40)

do not depend on ⌧ , in other words they are integrals of motion. Thus, the spectral properties of
the model are encoded into the monodromy matrix. Equation (3.40) defines an algebraic curve in
C2 called the spectral curve.

To build up the zero curvature representation of the string equations of motion, we start with
the following ansatz for the Lax connection L

↵

L
↵

= `
0

A(0)

↵

+ `
1

A(2)
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+ `
2
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⇢

+ `
3
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4
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, (3.41)

where `
i

are undetermined constants and A(k) are the Z
4

-components of the flat connection (3.18).
The connection L

↵

is required to have zero curvature (3.37) as a consequence of the dynamical
equations (3.27) and the flatness of A

↵

.

Proceeding, we uniformize the parameters `
i

in terms of a single variable z taking values on the
Riemann sphere:

`
0

= 1 , `
1

=
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⇣
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Di↵erentiating the first equation in (3.36) with respect to ⌧ and the second one with respect to
�, we obtain
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which implies the fulfilment of the following consistency condition
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L
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+ [L
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, L
⌧

] = 0

for all values of the spectral parameter. If we introduce a two-dimensional non-abelian connection
L
↵

with components L
⌧

and L
�

, then the consistency condition derived above can be reinstated as
vanishing of the curvature of L

↵

:

@
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L
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L
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] = 0 . (3.37)

The matrices L
⌧

and L
�

must be chosen in such a way that the zero curvature condition above should
imply the fulfilment of the original di↵erential equation for all values of the spectral parameter. A
connection L

↵

with these properties is known as the Lax connection (or the Lax pair), while equation
(3.37) as the zero-curvature (Lax) representation of an integrable partial di↵erential equation.

The monodromy matrix T(z) which is the path-ordered exponential of the Lax component L
�

(z)

T(z) =
 �
exp

Z

2⇡

0

d� L
�

(z) . (3.38)

For definiteness, we assume that a model is defined on a circle 0  � < 2⇡ and all dynamical
variables are periodic functions of �.

Given that the Lax connection is a periodic function of �, for the monodromy we find the
following evolution equation

@
⌧

T(z) = [L
⌧

(0, ⌧, z), T(z)] . (3.39)

This important formula implies that the eigenvalues of T(z) defined by the characteristic equation

�(z, µ) ⌘ det(T(z) � µ ) = 0 (3.40)

do not depend on ⌧ , in other words they are integrals of motion. Thus, the spectral properties of
the model are encoded into the monodromy matrix. Equation (3.40) defines an algebraic curve in
C2 called the spectral curve.

To build up the zero curvature representation of the string equations of motion, we start with
the following ansatz for the Lax connection L

↵

L
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= `
0

A(0)
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+ `
1
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4
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, (3.41)

where `
i

are undetermined constants and A(k) are the Z
4

-components of the flat connection (3.18).
The connection L

↵

is required to have zero curvature (3.37) as a consequence of the dynamical
equations (3.27) and the flatness of A

↵

.

Proceeding, we uniformize the parameters `
i

in terms of a single variable z taking values on the
Riemann sphere:

`
0

= 1 , `
1
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Di↵erentiating the first equation in (3.36) with respect to ⌧ and the second one with respect to
�, we obtain
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which implies the fulfilment of the following consistency condition
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L
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, L
⌧

] = 0

for all values of the spectral parameter. If we introduce a two-dimensional non-abelian connection
L
↵

with components L
⌧

and L
�

, then the consistency condition derived above can be reinstated as
vanishing of the curvature of L

↵

:

@
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] = 0 . (3.37)

The matrices L
⌧

and L
�

must be chosen in such a way that the zero curvature condition above should
imply the fulfilment of the original di↵erential equation for all values of the spectral parameter. A
connection L

↵

with these properties is known as the Lax connection (or the Lax pair), while equation
(3.37) as the zero-curvature (Lax) representation of an integrable partial di↵erential equation.

Zero-curvature (Lax) representation of an integrable PDE

The monodromy matrix T(z) which is the path-ordered exponential of the Lax component L
�

(z)

T(z) =
 �
exp

Z

2⇡

0

d� L
�

(z) . (3.38)

For definiteness, we assume that a model is defined on a circle 0  � < 2⇡ and all dynamical
variables are periodic functions of �.

Given that the Lax connection is a periodic function of �, for the monodromy we find the
following evolution equation

@
⌧

T(z) = [L
⌧

(0, ⌧, z), T(z)] . (3.39)

This important formula implies that the eigenvalues of T(z) defined by the characteristic equation

�(z, µ) ⌘ det(T(z) � µ ) = 0 (3.40)

do not depend on ⌧ , in other words they are integrals of motion. Thus, the spectral properties of
the model are encoded into the monodromy matrix. Equation (3.40) defines an algebraic curve in
C2 called the spectral curve.

To build up the zero curvature representation of the string equations of motion, we start with
the following ansatz for the Lax connection L
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L
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= `
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A(0)
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where `
i

are undetermined constants and A(k) are the Z
4

-components of the flat connection (3.18).
The connection L

↵

is required to have zero curvature (3.37) as a consequence of the dynamical
equations (3.27) and the flatness of A

↵

.

Proceeding, we uniformize the parameters `
i

in terms of a single variable z taking values on the
Riemann sphere:

`
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Di↵erentiating the first equation in (3.36) with respect to ⌧ and the second one with respect to
�, we obtain
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which implies the fulfilment of the following consistency condition
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] = 0

for all values of the spectral parameter. If we introduce a two-dimensional non-abelian connection
L
↵

with components L
⌧

and L
�

, then the consistency condition derived above can be reinstated as
vanishing of the curvature of L

↵

:
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The matrices L
⌧

and L
�

must be chosen in such a way that the zero curvature condition above should
imply the fulfilment of the original di↵erential equation for all values of the spectral parameter. A
connection L

↵

with these properties is known as the Lax connection (or the Lax pair), while equation
(3.37) as the zero-curvature (Lax) representation of an integrable partial di↵erential equation.

Zero-curvature (Lax) representation of an integrable PDE

The monodromy matrix T(z) which is the path-ordered exponential of the Lax component L
�

(z)

T(z) =
 �
exp

Z

2⇡

0

d� L
�

(z) . (3.38)

For definiteness, we assume that a model is defined on a circle 0  � < 2⇡ and all dynamical
variables are periodic functions of �.

Given that the Lax connection is a periodic function of �, for the monodromy we find the
following evolution equation

@
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(0, ⌧, z), T(z)] . (3.39)

This important formula implies that the eigenvalues of T(z) defined by the characteristic equation

�(z, µ) ⌘ det(T(z) � µ ) = 0 (3.40)

do not depend on ⌧ , in other words they are integrals of motion. Thus, the spectral properties of
the model are encoded into the monodromy matrix. Equation (3.40) defines an algebraic curve in
C2 called the spectral curve.

To build up the zero curvature representation of the string equations of motion, we start with
the following ansatz for the Lax connection L
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L
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where `
i

are undetermined constants and A(k) are the Z
4

-components of the flat connection (3.18).
The connection L

↵

is required to have zero curvature (3.37) as a consequence of the dynamical
equations (3.27) and the flatness of A

↵

.

Proceeding, we uniformize the parameters `
i

in terms of a single variable z taking values on the
Riemann sphere:
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Example: Sine-Gordon model
Example: Sine-Gordon Model

Sine-Gordon equation

�
⌧⌧

� �
��

+
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�
sin�� = 0

Introduce the following 2⇥ 2 matrices
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�
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,

where �
i

are the Pauli matrices and

k
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=
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4

⇣
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x

⌘
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4

⇣
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⌘

16

Di↵erentiating the first equation in (3.36) with respect to ⌧ and the second one with respect to
�, we obtain
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which implies the fulfilment of the following consistency condition
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for all values of the spectral parameter. If we introduce a two-dimensional non-abelian connection
L
↵

with components L
⌧

and L
�

, then the consistency condition derived above can be reinstated as
vanishing of the curvature of L

↵

:
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The matrices L
⌧

and L
�

must be chosen in such a way that the zero curvature condition above should
imply the fulfilment of the original di↵erential equation for all values of the spectral parameter. A
connection L

↵

with these properties is known as the Lax connection (or the Lax pair), while equation
(3.37) as the zero-curvature (Lax) representation of an integrable partial di↵erential equation.

The monodromy matrix T(z) which is the path-ordered exponential of the Lax component L
�

(z)

T(z) =
 �
exp

Z

2⇡

0

d� L
�

(z) . (3.38)

For definiteness, we assume that a model is defined on a circle 0  � < 2⇡ and all dynamical
variables are periodic functions of �.

Given that the Lax connection is a periodic function of �, for the monodromy we find the
following evolution equation

@
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(0, ⌧, z), T(z)] . (3.39)

This important formula implies that the eigenvalues of T(z) defined by the characteristic equation

�(z, µ) ⌘ det(T(z) � µ ) = 0 (3.40)

do not depend on ⌧ , in other words they are integrals of motion. Thus, the spectral properties of
the model are encoded into the monodromy matrix. Equation (3.40) defines an algebraic curve in
C2 called the spectral curve.

To build up the zero curvature representation of the string equations of motion, we start with
the following ansatz for the Lax connection L
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where `
i

are undetermined constants and A(k) are the Z
4

-components of the flat connection (3.18).
The connection L

↵

is required to have zero curvature (3.37) as a consequence of the dynamical
equations (3.27) and the flatness of A

↵

.

Proceeding, we uniformize the parameters `
i

in terms of a single variable z taking values on the
Riemann sphere:
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for any z
is due to Sine�Gordon

Example: Sine-Gordon Model
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+
k
0

i
cos

��

2
�
2

,

where �
i

are the Pauli matrices and

k
0

=
m

4

⇣
z +

1

z

⌘
, k

1

=
m

4

⇣
z � 1

z

⌘
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Integrability through Lax representation

Di↵erentiating the first equation in (3.36) with respect to ⌧ and the second one with respect to
�, we obtain

@2 

@⌧@�
= @

⌧

L
�

 + L
�

@
⌧

 = (@
⌧

L
�

+ L
�

L
⌧

) ,

@2 

@�@⌧
= @

�

L
⌧

 + L
⌧

@
�

 = (@
�

L
⌧

+ L
⌧

L
�

) ,

which implies the fulfilment of the following consistency condition

@
⌧

L
�

� @
�

L
⌧

+ [L
�

, L
⌧

] = 0

for all values of the spectral parameter. If we introduce a two-dimensional non-abelian connection
L
↵

with components L
⌧

and L
�

, then the consistency condition derived above can be reinstated as
vanishing of the curvature of L

↵

:

@
↵

L
�

� @
�

L
↵

� [L
↵

, L
�

] = 0 . (3.37)

The matrices L
⌧

and L
�

must be chosen in such a way that the zero curvature condition above should
imply the fulfilment of the original di↵erential equation for all values of the spectral parameter. A
connection L

↵

with these properties is known as the Lax connection (or the Lax pair), while equation
(3.37) as the zero-curvature (Lax) representation of an integrable partial di↵erential equation.

Zero-curvature (Lax) representation of an integrable PDE

The monodromy matrix T(z) which is the path-ordered exponential of the Lax component L
�

(z)

T(z) =
 �
exp

Z

2⇡

0

d� L
�

(z) . (3.38)

For definiteness, we assume that a model is defined on a circle 0  � < 2⇡ and all dynamical
variables are periodic functions of �.

Given that the Lax connection is a periodic function of �, for the monodromy we find the
following evolution equation

@
⌧

T(z) = [L
⌧

(0, ⌧, z), T(z)] . (3.39)

This important formula implies that the eigenvalues of T(z) defined by the characteristic equation

�(z, µ) ⌘ det(T(z) � µ ) = 0 (3.40)

do not depend on ⌧ , in other words they are integrals of motion. Thus, the spectral properties of
the model are encoded into the monodromy matrix. Equation (3.40) defines an algebraic curve in
C2 called the spectral curve.

To build up the zero curvature representation of the string equations of motion, we start with
the following ansatz for the Lax connection L

↵

L
↵

= `
0

A(0)

↵

+ `
1

A(2)

↵

+ `
2

�
↵�

✏�⇢A(2)

⇢

+ `
3

A(1)

↵

+ `
4

A(3)

↵

, (3.41)

where `
i

are undetermined constants and A(k) are the Z
4

-components of the flat connection (3.18).
The connection L

↵

is required to have zero curvature (3.37) as a consequence of the dynamical
equations (3.27) and the flatness of A

↵

.

Proceeding, we uniformize the parameters `
i

in terms of a single variable z taking values on the
Riemann sphere:

`
0

= 1 , `
1

=
1

2

⇣

z2 +
1

z2

⌘

, `
2

= � 1

2

⇣

z2 � 1

z2

⌘

, `
3

= z , `
4

=
1

z
. (3.42)
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Di↵erentiating the first equation in (3.36) with respect to ⌧ and the second one with respect to
�, we obtain

@2 

@⌧@�
= @

⌧

L
�

 + L
�

@
⌧

 = (@
⌧

L
�

+ L
�

L
⌧

) ,

@2 

@�@⌧
= @

�

L
⌧

 + L
⌧

@
�

 = (@
�

L
⌧

+ L
⌧

L
�

) ,

which implies the fulfilment of the following consistency condition

@
⌧

L
�

� @
�

L
⌧

+ [L
�

, L
⌧

] = 0

for all values of the spectral parameter. If we introduce a two-dimensional non-abelian connection
L
↵

with components L
⌧

and L
�

, then the consistency condition derived above can be reinstated as
vanishing of the curvature of L

↵

:

@
↵

L
�

� @
�

L
↵

� [L
↵

, L
�

] = 0 . (3.37)

The matrices L
⌧

and L
�

must be chosen in such a way that the zero curvature condition above should
imply the fulfilment of the original di↵erential equation for all values of the spectral parameter. A
connection L

↵

with these properties is known as the Lax connection (or the Lax pair), while equation
(3.37) as the zero-curvature (Lax) representation of an integrable partial di↵erential equation.

The monodromy matrix T(z) which is the path-ordered exponential of the Lax component L
�

(z)

T(z) =
 �
exp

Z

2⇡

0

d� L
�

(z) . (3.38)

For definiteness, we assume that a model is defined on a circle 0  � < 2⇡ and all dynamical
variables are periodic functions of �.

Given that the Lax connection is a periodic function of �, for the monodromy we find the
following evolution equation

@
⌧

T(z) = [L
⌧

(0, ⌧, z), T(z)] . (3.39)

This important formula implies that the eigenvalues of T(z) defined by the characteristic equation

�(z, µ) ⌘ det(T(z) � µ ) = 0 (3.40)

do not depend on ⌧ , in other words they are integrals of motion. Thus, the spectral properties of
the model are encoded into the monodromy matrix. Equation (3.40) defines an algebraic curve in
C2 called the spectral curve.

To build up the zero curvature representation of the string equations of motion, we start with
the following ansatz for the Lax connection L

↵

L
↵

= `
0

A(0)

↵

+ `
1

A(2)

↵

+ `
2

�
↵�

✏�⇢A(2)

⇢

+ `
3

A(1)

↵

+ `
4

A(3)

↵

, (3.41)

where `
i

are undetermined constants and A(k) are the Z
4

-components of the flat connection (3.18).
The connection L

↵

is required to have zero curvature (3.37) as a consequence of the dynamical
equations (3.27) and the flatness of A

↵

.

Proceeding, we uniformize the parameters `
i

in terms of a single variable z taking values on the
Riemann sphere:

`
0

= 1 , `
1

=
1

2

⇣

z2 +
1

z2

⌘

, `
2

= � 1

2

⇣

z2 � 1

z2

⌘

, `
3

= z , `
4

=
1

z
. (3.42)
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Monodromy

Di↵erentiating the first equation in (3.36) with respect to ⌧ and the second one with respect to
�, we obtain

@2 

@⌧@�
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⌧

L
�

 + L
�

@
⌧

 = (@
⌧

L
�

+ L
�

L
⌧

) ,

@2 

@�@⌧
= @

�

L
⌧

 + L
⌧

@
�

 = (@
�

L
⌧

+ L
⌧

L
�

) ,

which implies the fulfilment of the following consistency condition

@
⌧

L
�

� @
�

L
⌧

+ [L
�

, L
⌧

] = 0

for all values of the spectral parameter. If we introduce a two-dimensional non-abelian connection
L
↵

with components L
⌧

and L
�

, then the consistency condition derived above can be reinstated as
vanishing of the curvature of L

↵

:

@
↵

L
�

� @
�

L
↵

� [L
↵

, L
�

] = 0 . (3.37)

The matrices L
⌧

and L
�

must be chosen in such a way that the zero curvature condition above should
imply the fulfilment of the original di↵erential equation for all values of the spectral parameter. A
connection L

↵

with these properties is known as the Lax connection (or the Lax pair), while equation
(3.37) as the zero-curvature (Lax) representation of an integrable partial di↵erential equation.

The monodromy matrix T(z) which is the path-ordered exponential of the Lax component L
�

(z)

T(z) =
 �
exp

Z

2⇡

0

d� L
�

(z) . (3.38)

For definiteness, we assume that a model is defined on a circle 0  � < 2⇡ and all dynamical
variables are periodic functions of �.

Given that the Lax connection is a periodic function of �, for the monodromy we find the
following evolution equation

@
⌧

T(z) = [L
⌧

(0, ⌧, z), T(z)] . (3.39)

This important formula implies that the eigenvalues of T(z) defined by the characteristic equation

�(z, µ) ⌘ det(T(z) � µ ) = 0 (3.40)

do not depend on ⌧ , in other words they are integrals of motion. Thus, the spectral properties of
the model are encoded into the monodromy matrix. Equation (3.40) defines an algebraic curve in
C2 called the spectral curve.

To build up the zero curvature representation of the string equations of motion, we start with
the following ansatz for the Lax connection L

↵

L
↵

= `
0

A(0)

↵

+ `
1

A(2)

↵

+ `
2

�
↵�

✏�⇢A(2)

⇢

+ `
3

A(1)

↵

+ `
4

A(3)

↵

, (3.41)

where `
i

are undetermined constants and A(k) are the Z
4

-components of the flat connection (3.18).
The connection L

↵

is required to have zero curvature (3.37) as a consequence of the dynamical
equations (3.27) and the flatness of A

↵

.

Proceeding, we uniformize the parameters `
i

in terms of a single variable z taking values on the
Riemann sphere:

`
0

= 1 , `
1

=
1

2

⇣

z2 +
1

z2

⌘

, `
2

= � 1

2

⇣

z2 � 1

z2

⌘

, `
3

= z , `
4

=
1

z
. (3.42)
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Di↵erentiating the first equation in (3.36) with respect to ⌧ and the second one with respect to
�, we obtain

@2 

@⌧@�
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⌧

L
�

 + L
�

@
⌧

 = (@
⌧

L
�

+ L
�

L
⌧

) ,
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@�@⌧
= @

�

L
⌧

 + L
⌧

@
�

 = (@
�

L
⌧

+ L
⌧

L
�

) ,

which implies the fulfilment of the following consistency condition

@
⌧

L
�

� @
�

L
⌧

+ [L
�

, L
⌧

] = 0

for all values of the spectral parameter. If we introduce a two-dimensional non-abelian connection
L
↵

with components L
⌧

and L
�

, then the consistency condition derived above can be reinstated as
vanishing of the curvature of L

↵

:

@
↵

L
�

� @
�

L
↵

� [L
↵

, L
�

] = 0 . (3.37)

The matrices L
⌧

and L
�

must be chosen in such a way that the zero curvature condition above should
imply the fulfilment of the original di↵erential equation for all values of the spectral parameter. A
connection L

↵

with these properties is known as the Lax connection (or the Lax pair), while equation
(3.37) as the zero-curvature (Lax) representation of an integrable partial di↵erential equation.

The monodromy matrix T(z) which is the path-ordered exponential of the Lax component L
�

(z)

T(z) =
 �
exp

Z

2⇡

0

d� L
�

(z) . (3.38)

For definiteness, we assume that a model is defined on a circle 0  � < 2⇡ and all dynamical
variables are periodic functions of �.

Given that the Lax connection is a periodic function of �, for the monodromy we find the
following evolution equation

@
⌧

T(z) = [L
⌧

(0, ⌧, z), T(z)] . (3.39)

This important formula implies that the eigenvalues of T(z) defined by the characteristic equation

�(z, µ) ⌘ det(T(z) � µ ) = 0 (3.40)

do not depend on ⌧ , in other words they are integrals of motion. Thus, the spectral properties of
the model are encoded into the monodromy matrix. Equation (3.40) defines an algebraic curve in
C2 called the spectral curve.

To build up the zero curvature representation of the string equations of motion, we start with
the following ansatz for the Lax connection L

↵

L
↵

= `
0

A(0)

↵

+ `
1

A(2)

↵

+ `
2

�
↵�

✏�⇢A(2)

⇢

+ `
3

A(1)

↵

+ `
4

A(3)

↵

, (3.41)

where `
i

are undetermined constants and A(k) are the Z
4

-components of the flat connection (3.18).
The connection L

↵

is required to have zero curvature (3.37) as a consequence of the dynamical
equations (3.27) and the flatness of A

↵

.

Proceeding, we uniformize the parameters `
i

in terms of a single variable z taking values on the
Riemann sphere:

`
0

= 1 , `
1

=
1

2

⇣

z2 +
1

z2

⌘

, `
2

= � 1

2

⇣

z2 � 1

z2

⌘

, `
3

= z , `
4

=
1

z
. (3.42)
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Integrability through Lax representation

Di↵erentiating the first equation in (3.36) with respect to ⌧ and the second one with respect to
�, we obtain
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L
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�

@
⌧
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) ,
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L
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 = (@
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L
⌧

+ L
⌧

L
�

) ,

which implies the fulfilment of the following consistency condition

@
⌧

L
�

� @
�

L
⌧

+ [L
�

, L
⌧

] = 0

for all values of the spectral parameter. If we introduce a two-dimensional non-abelian connection
L
↵

with components L
⌧

and L
�

, then the consistency condition derived above can be reinstated as
vanishing of the curvature of L

↵

:

@
↵

L
�

� @
�

L
↵

� [L
↵

, L
�

] = 0 . (3.37)

The matrices L
⌧

and L
�

must be chosen in such a way that the zero curvature condition above should
imply the fulfilment of the original di↵erential equation for all values of the spectral parameter. A
connection L

↵

with these properties is known as the Lax connection (or the Lax pair), while equation
(3.37) as the zero-curvature (Lax) representation of an integrable partial di↵erential equation.

The monodromy matrix T(z) which is the path-ordered exponential of the Lax component L
�

(z)

T(z) =
 �
exp

Z

2⇡

0

d� L
�

(z) . (3.38)

For definiteness, we assume that a model is defined on a circle 0  � < 2⇡ and all dynamical
variables are periodic functions of �.

Given that the Lax connection is a periodic function of �, for the monodromy we find the
following evolution equation

@
⌧

T(z) = [L
⌧

(0, ⌧, z), T(z)] . (3.39)

This important formula implies that the eigenvalues of T(z) defined by the characteristic equation

�(z, µ) ⌘ det(T(z) � µ ) = 0 (3.40)

do not depend on ⌧ , in other words they are integrals of motion. Thus, the spectral properties of
the model are encoded into the monodromy matrix. Equation (3.40) defines an algebraic curve in
C2 called the spectral curve.

To build up the zero curvature representation of the string equations of motion, we start with
the following ansatz for the Lax connection L

↵

L
↵

= `
0

A(0)

↵

+ `
1

A(2)

↵

+ `
2

�
↵�

✏�⇢A(2)

⇢

+ `
3

A(1)

↵

+ `
4

A(3)

↵

, (3.41)

where `
i

are undetermined constants and A(k) are the Z
4

-components of the flat connection (3.18).
The connection L

↵

is required to have zero curvature (3.37) as a consequence of the dynamical
equations (3.27) and the flatness of A

↵

.

Proceeding, we uniformize the parameters `
i

in terms of a single variable z taking values on the
Riemann sphere:

`
0

= 1 , `
1

=
1

2

⇣

z2 +
1

z2

⌘

, `
2

= � 1

2

⇣

z2 � 1

z2

⌘

, `
3

= z , `
4

=
1

z
. (3.42)
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Ansatz

Di↵erentiating the first equation in (3.36) with respect to ⌧ and the second one with respect to
�, we obtain
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) ,

which implies the fulfilment of the following consistency condition

@
⌧

L
�

� @
�

L
⌧

+ [L
�

, L
⌧

] = 0

for all values of the spectral parameter. If we introduce a two-dimensional non-abelian connection
L
↵

with components L
⌧

and L
�

, then the consistency condition derived above can be reinstated as
vanishing of the curvature of L

↵

:

@
↵

L
�

� @
�

L
↵

� [L
↵

, L
�

] = 0 . (3.37)

The matrices L
⌧

and L
�

must be chosen in such a way that the zero curvature condition above should
imply the fulfilment of the original di↵erential equation for all values of the spectral parameter. A
connection L

↵

with these properties is known as the Lax connection (or the Lax pair), while equation
(3.37) as the zero-curvature (Lax) representation of an integrable partial di↵erential equation.

The monodromy matrix T(z) which is the path-ordered exponential of the Lax component L
�

(z)

T(z) =
 �
exp

Z

2⇡

0

d� L
�

(z) . (3.38)

For definiteness, we assume that a model is defined on a circle 0  � < 2⇡ and all dynamical
variables are periodic functions of �.

Given that the Lax connection is a periodic function of �, for the monodromy we find the
following evolution equation

@
⌧

T(z) = [L
⌧

(0, ⌧, z), T(z)] . (3.39)

This important formula implies that the eigenvalues of T(z) defined by the characteristic equation

�(z, µ) ⌘ det(T(z) � µ ) = 0 (3.40)

do not depend on ⌧ , in other words they are integrals of motion. Thus, the spectral properties of
the model are encoded into the monodromy matrix. Equation (3.40) defines an algebraic curve in
C2 called the spectral curve.

To build up the zero curvature representation of the string equations of motion, we start with
the following ansatz for the Lax connection L

↵

L
↵

= `
0

A(0)

↵

+ `
1

A(2)

↵

+ `
2

�
↵�

✏�⇢A(2)

⇢

+ `
3

A(1)

↵

+ `
4

A(3)

↵

, (3.41)

where `
i

are undetermined constants and A(k) are the Z
4

-components of the flat connection (3.18).
The connection L

↵

is required to have zero curvature (3.37) as a consequence of the dynamical
equations (3.27) and the flatness of A

↵

.

must have zero curvature as a consequence of equations of motion and the flatness of A
↵

Proceeding, we uniformize the parameters `
i

in terms of a single variable z taking values on the
Riemann sphere:

`
0

= 1 , `
1

=
1

2

⇣

z2 +
1

z2

⌘

, `
2

= � 1

2

⇣

z2 � 1

z2

⌘

, `
3

= z , `
4

=
1

z
. (3.42)
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Di↵erentiating the first equation in (3.36) with respect to ⌧ and the second one with respect to
�, we obtain
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which implies the fulfilment of the following consistency condition

@
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L
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L
⌧

+ [L
�

, L
⌧

] = 0

for all values of the spectral parameter. If we introduce a two-dimensional non-abelian connection
L
↵

with components L
⌧

and L
�

, then the consistency condition derived above can be reinstated as
vanishing of the curvature of L

↵

:

@
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L
�

� @
�

L
↵

� [L
↵

, L
�

] = 0 . (3.37)

The matrices L
⌧

and L
�

must be chosen in such a way that the zero curvature condition above should
imply the fulfilment of the original di↵erential equation for all values of the spectral parameter. A
connection L

↵

with these properties is known as the Lax connection (or the Lax pair), while equation
(3.37) as the zero-curvature (Lax) representation of an integrable partial di↵erential equation.

The monodromy matrix T(z) which is the path-ordered exponential of the Lax component L
�

(z)

T(z) =
 �
exp

Z

2⇡

0

d� L
�

(z) . (3.38)

For definiteness, we assume that a model is defined on a circle 0  � < 2⇡ and all dynamical
variables are periodic functions of �.

Given that the Lax connection is a periodic function of �, for the monodromy we find the
following evolution equation

@
⌧

T(z) = [L
⌧

(0, ⌧, z), T(z)] . (3.39)

This important formula implies that the eigenvalues of T(z) defined by the characteristic equation

�(z, µ) ⌘ det(T(z) � µ ) = 0 (3.40)

do not depend on ⌧ , in other words they are integrals of motion. Thus, the spectral properties of
the model are encoded into the monodromy matrix. Equation (3.40) defines an algebraic curve in
C2 called the spectral curve.

To build up the zero curvature representation of the string equations of motion, we start with
the following ansatz for the Lax connection L

↵

L
↵

= `
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↵

+ `
1
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+ `
2
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⇢

+ `
3
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+ `
4

A(3)

↵

, (3.41)

where `
i

are undetermined constants and A(k) are the Z
4

-components of the flat connection (3.18).
The connection L

↵

is required to have zero curvature (3.37) as a consequence of the dynamical
equations (3.27) and the flatness of A

↵

.

must have zero curvature as a consequence of equations of motion and the flatness of A
↵

Proceeding, we uniformize the parameters `
i

in terms of a single variable z taking values on the
Riemann sphere:

`
0

= 1 , `
1
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2

⇣

z2 +
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z2

⌘

, `
2

= � 1

2

⇣

z2 � 1
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⌘

, `
3

= z , `
4

=
1

z
. (3.42)
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The reader can easily verify that these `
i

solve all the constraints imposed by the zero curvature for
L
↵

.

For a given  = ±1, there is a unique Lax connection which is a meromorphic matrix-valued function
on the Riemann sphere.

Although the Virasoro constraints (3.43) do not apparently follow from the zero curvature con-
dition, we see that upon -symmetry transformations the Lax connection retains its zero curvature
if and only if the Virasoro constraints (and equations of motion for fermions) are satisfied. This
shows that the local symmetries of the model and the existence of the Lax connection are tightly
related to each other.

3.2 String solutions

In this section we consider some notable solutions of the bosonic string sigma model. These solutions
were instrumental in making the correspondence between strings on AdS

5

⇥ S5 and the dual gauge
theory.

The bosonic string sigma model on AdS
5

⇥ S5 is given by the following action

S = �g

2

Z

2⇡

0

d�d⌧
p

�hh↵�@
↵

XM@
�

XNG
MN

, g =
R2

2⇡↵0 =

p
�

2⇡
.

The AdS
5

⇥ S5 metric G
MN

dXMdXN = ds2 + ds02 splits into the AdS part and the sphere part
and in global coordinates reads as

AdS
5

: ds2 = � cosh2⇢ dt2 + d⇢2 + sinh2⇢ (d✓2 + sin2 ✓ d�2 + cos2 ✓ d'2) ,

S5 : ds02 = d�2 + cos2 � d'2

3

+ sin2 �(d 2 + cos2  d'2

1

+ sin2  d'2

2

) .

It is convenient to describe the spaces S5 and AdS
5

as quadratures in the corresponding 6dim
embedding spaces R6 and R4,2. Here the metric on R4,2 is psudo-euclidean with the signature
⌘
mn

= (�1, +1, +1, +1, +1, �1), where m, n = 0, . . . , 5. We choose the following parametrisation of
the embedding coordinates X

m

, m = 1, . . . , 6, of the five-sphere XmXm = 1

X
1

+ iX
2

= sin � cos ei�1 , X
3

+ iX
4

= sin � sin ei�2 , X
5

+ iX
6

= cos � ei�3 ,

then ds02 = dXmdXm. Analogously, for the AdS
5

space singled out by an equation ⌘
mn

Y mY n = �1,
we parametrise

Y
1

+ iY
2

= sinh ⇢ sin ✓ei� , Y
3

+ iY
4

= sinh ⇢ cos ✓ei' , Y
5

+ iY
0

= cosh ⇢eit .

The metric on AdS
5

is then the induced metric ds2 = ⌘
mn

Y mY n.

In addition, we have the Virasoro constraints T
↵�

= 0, where T
↵�

is the two-dimensional stress-
energy tensor

T
↵�

=
1

2
@
↵

XM@
�

XNG
MN

� 1

4
⌘
↵�

@
↵

XM@↵XNG
MN

.

More explicitly,

G
MN

�

@
⌧

XM@
⌧

XN + @
�

XM@
�

XN

�

= 0 ,

G
MN

@
⌧

XM@
�

XN = 0
(3.43)
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