Dilatation operator and spin chains



Henormalisation and anomalous dimensions

Typical local gauge-invariant operator
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product of fields at the same space—time point

Renormalized operators and mixing matrix (dilatation operator)
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Eigenvalues of D are anomalous dimensions.



Spin chain interpretation

Consider a scalar operator made of L elementary scalars
i1 199 ir
Tr(¢¢™ ... ¢'L)

View it as the spin chain of length L where spin at every site can have 6 polarizations
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Spin chain interpretation
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One-loop graphs
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Spin chain interpretation

Total Z is
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Introducing the trace operator K and the permutation operator P:

K=35 5jkjk—{—1 P = 5~7k+1 5jk
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the mixing matrix is

9° 1
Di—100p = 3 Z ([ — B o - 5 i,i—l—l)
=1

the Hamiltonian of the SO(6) integrable spin chain!

Minahan and Zarembo, '03]
[ Previously observed integrable structures in QCD: Lipatov, '94; Faddeev and Korchemsky '95]



Spin chain interpretation

Reduction to the su(2) C su(4) ~ s0(6) : K =

The Hamiltonian of the su(2) spin chain is

L
H = Z I Fi z+1) P(HY) = (11)
1=1
Te(WMZL-My 4 . \
XXX spin chain
Z = ¢1 +i¢p2
W = ¢3 + ida | | [

The planar one-loop mixing matrix is identical to the Heisenberg Hamiltonian H. It
acts as 2% x 2 matrix on states of the spin chain of length L. M is the number of
magnons.
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Closed sectors

e Sector 5u(2). Operators with [M,J — M, M] and Ao = J + M. Classically they are %-BPS states.
Operators:

Te(Z{ Z3") + . ...

e Sector 5[(2). The Dynkin content [0, J,0; M, M| and Ay = J + M, Lorentz spin S = M. Operators

Tr(PYZ7) + ...
where D = Dy + 1D

e Sector 5u(1|1). The Dynkin content [0,J — 2 M, M;0, 2 M| and Ag = J + M. Operators:

1
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M
J—5

Tr(Z/ 2 0M) + .. ..

\ dim¥ = 3/2

e Sector 5u(2\3). Three complex scalars, two complex fermions. Classically they are %-BPS states.
Operators:

Te(ZM ZD2 Z03 g awns) + ..



Spin chain interpretation

psu(2,2|4) integrable spin chain

can be solved by the Bethe Ansatz



Dilatation operator at higher loops

\ 2—body interaction (1st order of pert. theory)

\ 3—body interaction (2nd order of pert. theory)

\ 4-body interaction (3d order of pert. theory)

Dilatation operator acts as the Hamiltonian H of an integrable long-range spin chain




Dilatation operator at higher loops

On a chain of length L made of two complex scalars the dilop acts as

L
Hqp = Z (I — Pz’,i—l—l) < Heisenberg Hamiltonian
=1
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One inevitably runs into the wrapping problem! At this point the interpretation in terms
of long-range spin chains does not work anymore and one has to resort to a sigma-model
description coming from string on AdSs x S°



Part 11

Integrable structure of string
theory



Sigma model



Type IIB Green-Schwarz superstring in AdSs x S°

PSU(2,2/4)
SO(4,1) x SO(5)

non — linear sigma model with target

S0(4,2) x SO(6) N
/80(4,1) x SO(5) — AdS; x 87

SO(4,1) x SO(5) € SU(2,2) x SO(6)
Sk

Local Lorentz group



s((4]4):

su(2,2[4):

Sigma model action

/4 x 4
m 60 B
M = ( ) strM =trm—trn=0
"l n 8 X 8
0,n — grassmann (fermionic)
MYH + HM =0
2 0 1, 0
H = _ 2
(O ]14)8><8 > (0 _12)4><4
m=-Ym¥, n''=—n, n'=-%6 u(1)-generator i1
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su(2,2) dsu(4) du(l) C su(2,24)

psu(2,2|4) = su(2,2(4)/u(1)



Sigma model action

An external automorphism — supertransposition.
M — —M*t

where the supertranspose M*t is defined as

) t ot e 0
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Z4 — grading g =40 §g) 5@ gagd) 9 *),g(m)] c F+m) modulo Zy

Let g be an element of the supergroup SU(2,24).

Introduce the following one-form with values in su(2,2|4)

A= —g_ldg — A0 + A2) + A 4 AB)

F=dA—ANA=0 — 0,45 — 0340 — [Aa, Ag] =0

ZL = —% [fyo‘ﬁstr (Ag)A(;)) + K €*Pstr (A&”Ags))}

kinetic Wess — Zumino

2
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Local SO(4, SO(5) symmetry g — gh b belongs to SO(4,1) x SO(5)

A—=bhtAp—ptdy  — AUV 7 tA2Ih A0 5 7140y — T dp

Global PSU(2,2|4) symmetry

G:g—¢ G-g=gb

Diffeorhis

Equations of motion for the world-sheet metric h,g are equivalent to vanishing the world-sheet

t -t
stress-tensor str( Aﬁf) Ag)) _ %fyaﬁyp‘sstr(AgQ)A?)) =0  <— Virasoro constraints

k-symimetry
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bullets stand for odd elements which cannot be gauged away by k-symmetry transformations



Equations of motion

A _g|: O‘BA(/l/{e A(l) A(BS))]

EomS 8@/\04 — [Aa, AO(] — O
Define J*=gA% " —  DaJ" =0

[

Noether current corresponding to global PSU(2,2|4)-symmetry



Integrability through Lax representation

Fundamental linear problem
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0 LoV + L,0:V = (0; Ly + Ly L)V,
—
Oy LV + L0,V = (0,L + L;L,)¥,

vector of rank t
U = Y(o,rT,2)

t X t matrices

L.=L,(0,7,2)

k L, =Ly(0,7,2)
spectral parameter

8;Ly — 8yLr + [Ly, L] =0

Zero-curvature (Lax) representation of an integrable PDE

OaLg — O3La — [La, Lg] =0



Example: Sine-Gordon model

Sine-Gordon equation
2

¢7‘7‘ _Qbaa + %Slnﬁ¢: 0

Introduce the following 2 x 2 matrices

k k
L, = £¢T03 + —.O sin @01 + —1 COS — 09
49 ) 2 )
k k
L: = E.QbJO'S + —sin @01 + = cos @02,
49 1 2 ) 2

where o; are the Pauli matrices and

k():%(z—l—%), klz%(z—l)

0Ly, —O0sL,+ |Ls,L;] =0 for any z is due to Sine — Gordon



Integrability through Lax representation

Monodromy

OaLs — 03La — [La, Ls] =0

27T
T(z) =exp | doL,(z)
0

8, T(z) = [L,(0,7,2),T(2)]

['(z, 1) =det(T(z) —ul) =0

k_, algebraic curve in C?

spectral curve



Integrability through Lax representation

Ansatz L, = KOA&O) 4 5114&2) 4 62%4565’)14}(02) 4 5314&1) 4 5414&3)

must have zero curvature as a consequence of equations of motion and the flatness of A,

lo=1, 61:%(z2+z—12), 52:——(,22——), bo=2, fy=-

For a given k = =1, there is a unique Lax connection which is a meromorphic matrix-valued function
on the Riemann sphere.



