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Chapter 1

Liouville Integrability

“When, however, one attempts to

formulate a precise definition of in-

tegrability, many possibilities ap-

pear, each with a certain intrinsic

theoretic interest.”

George D. Birkho↵

Dynamical systems, AMS, 1927

“In fact, the theorem of Liouville

. . . covers all the problems of dy-

namics which have been integrated

to the present day.”

Vladimir I. Arnold

Mathematical methods of classical

mechanics

The Liouville theorem in classical mechanics states the conditions under which the equa-
tions of motion of a dynamical system can always be solved by means of a well-established
mathematical procedure. As such, this theorem naturally provides a definition of an inte-
grable system. After a brief reminder on classical mechanics, we present a modern formu-
lation of the Liouville theorem due to Arnold, discuss the symmetry origin of conservation
laws and give a number of representative examples of integrable models. Also, we introduce
the main tools for exhibiting and studying classical integrability such as the Lax pair and
classical r-matrix.

1.1 Liouville integrable models

To create the necessary background for the discussion of the Liouville theorem and Liou-
ville integrable models, we need some general facts from classical mechanics, Poisson and
symplectic geometry [1, 2].

11



Integrability

Consider a dynamical system which has an (infinite) number of
constants of motion. A theory which exhibits non-stochastic
behaviour of this sort is said to be exactly integrable

• Classical finite-dimensional systems solved by the Liouville theorem

• Classical infinite-dimensional integrable systems (integrable PDE’s) solved by
the Classical Inverse Scattering Method or by the Finite-Gap Integration
Technique

• Quantum integrable many-body systems solved by means of “Bethe Ansatz"
It exists in a variety of forms: Coordinate, Algebraic, Functional, Nested,
Asymptotic, Thermodynamic. . .
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Liouville integrable systems

Let the dimension of the phase space be 2n. The system is Liouville integrable if it
has n independent globally defined conserved quantities I

i

which mutually Poisson
commute

{I
i

, I
j

} = 0

and H is a function of I
i

A Liouville integrable system can be solved by “quadrature"

• Find canonical transformation (p
i

, q
i

) ! (I
i

, 
i

). Equations of motion in new
coordinates

İ
i

= {H, I
i

} = 0

 ̇
i

= {H, 
i

} =
@H

@I
i

⌘ !
i

(I
j

)
| {z }

time independent

• Solution
I
i

(t) = I
i

(0) ,  
i

(t) =  
i

(0) + t!
i
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Liouville integrable systems (1853)
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✓i(t) = ✓i(0) + t!i

✓i

For the fluctuation density one has

0 = 2⇡�̃(u) � 4

Z +1

�1
dv

�̃(v)
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+
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Z S/2

�S/2
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d

du
log

 

1 � 1
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!

The equation can be solved perturbatively in g2 by the Fourier transform

Energy in the large spin limit

E = S + f(g) log S + O(S0)

We have

x+(p) =
i

g

eip

eip � 1

"

1 +

r

1 + 4g2 sin2 p

2

#

(4.150)

x�(p) =
i

g

1

eip � 1

"

1 +

r

1 + 4g2 sin2 p

2

#

(4.151)

or

x±(p) =
e±ip/2

2g sin p
2

"

1 +

r

1 + 4g2 sin2 p

2

#

(4.152)

{f, h} =
N
X

j=1

⇣ @f

@pj

@h

@qj
� @h

@pj

@f

@qj

⌘

(4.153)

Miscellenia

A general solution of the singular integral equation

�
Z b

a

⇢(t)dt

t � v
= f(v) , a < v < b (4.154)

is given by

⇢(v) =
1

⇡2
p

(v � a)(b � v)

"

�
Z b

a
dt

p

(t � a)(b � t)

v � t
f(t) + ⇡c

#

, c =

Z b

a
dt ⇢(v) . (4.155)

By

t =
t0 � a

b � a
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Arnold-Liouville theorem

Let P be a 2N -dimensional symplectic manifold. Suppose there exist N functions Ii 2 F(P)
that are pairwise in involution with respect to the corresponding Poisson bracket

{fi, fj} = 0 , 8i, j = 1, . . . , N .

Consider a common level set Pc of these functions,

Pc = {x 2 P : fi(x) = ci, i = 1, . . . , N} ,

where ci are constants. Assume that functions fi are independent on Pc, which means that
the 1-forms dfi are linearly independent at each point of Pc. Then

1. Pc is a smooth manifold invariant under the hamiltonian flow with H = H(fi).

2. If Pc is compact and connected then it is di↵eomorphic to the N -dimensional torus

TN = {('1, . . . , 'N ) mod 2⇡} .

3. The motion on Pc under H is conditionally periodic, that is,

d'i

dt
= !i(c) .

4. The equations of motion can be integrated by quadratures.

Show that (pj , qj) ! (Ij , ✓j) is a canonical transformation

One inevitably runs into the wrapping problem! At this point the interpretation in terms
of long-range spin chains does not work anymore and one has to resort to a sigma-model
description coming from string on AdS5 ⇥ S5
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Levels of fj(x)

Figure 1.2: Foliation of a phase space by invariant tori. Each torus coincides with a level
set Pc. All trajectories on a given torus have the same frequencies !ipcq, so one may speak
of the “frequency set of a torus”.

For simplicity we consider a Liouville integrable system with the phase space R2N .
According to the Liouville theorem, the motion occurs on a N -dimensional torus TN being
a common level of N commuting integrals. Let �j , 1 § j § N , be the fundamental cycles of
this torus depending continuously on the level tcju. Consider a set of equations fjpp, qq “ cj

and solve it for pj : pj “ pjpc, qq. Introduce the so-called action variables7

Ijpcq “

1

2⇡

¿

�
j

pipq, cqdqi “

1

2⇡

¿

�
j

↵ , (1.25)

where ↵ “ pidqi is the canonical 1-form. Since cj are time-independent as they are values
of the integrals of motion, the variables Ij “ Ijpcq are also time-independent. Moreover,
assuming that Ii are independent functions of cj , the map cj Ñ Ijpcq given by (1.25) has
an inverse. The angle variables ✓j are constructed by requiring that the transformation

ppj , qjq Ñ pIj , ✓jq (1.26)

is canonical. To construct this canonical transformation, we will use the following generating
function depending on the “old” coordinates q and the “new” momenta I

SpI, qq “

ª q

q
0

pipq̃, Iqdq̃i ,

where an integration path lies on Pc. We have

pj “

BS

Bqj
Ñ pj “ pjpI, qq. (1.27)

7The physical dimension of I
j

coincide with the dimension of the action that is the same as the dimension
of angular momentum.

22
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For simplicity we consider a Liouville integrable system with the phase space R2N .
According to the Liouville theorem, the motion occurs on a N -dimensional torus TN being
a common level of N commuting integrals. Let �j , 1 § j § N , be the fundamental cycles of
this torus depending continuously on the level tcju. Consider a set of equations fjpp, qq “ cj

and solve it for pj : pj “ pjpc, qq. Introduce the so-called action variables7

Ijpcq “

1
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↵ , (1.25)

where ↵ “ pidqi is the canonical 1-form. Since cj are time-independent as they are values
of the integrals of motion, the variables Ij “ Ijpcq are also time-independent. Moreover,
assuming that Ii are independent functions of cj , the map cj Ñ Ijpcq given by (1.25) has
an inverse. The angle variables ✓j are constructed by requiring that the transformation

ppj , qjq Ñ pIj , ✓jq (1.26)

is canonical. To construct this canonical transformation, we will use the following generating
function depending on the “old” coordinates q and the “new” momenta I

SpI, qq “

ª q

q
0

pipq̃, Iqdq̃i ,

where an integration path lies on Pc. We have

pj “

BS

Bqj
Ñ pj “ pjpI, qq. (1.27)

7The physical dimension of I
j

coincide with the dimension of the action that is the same as the dimension
of angular momentum.
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Let P be a 2N -dimensional symplectic manifold. Suppose there exist N functions fi 2 F(P)
that are pairwise in involution with respect to the corresponding Poisson bracket

{fi, fj} = 0 , 8i, j = 1, . . . , N .

Consider a common level set Pc of these functions,

Pc = {x 2 P : fi(x) = ci, i = 1, . . . , N} ,

where ci are constants. Assume that functions fi are independent on Pc, which means that
the 1-forms dfi are linearly independent at each point of Pc. Then

1. Pc is a smooth manifold invariant under the hamiltonian flow with H = H(fi).

2. If Pc is compact and connected then it is di↵eomorphic to the N -dimensional torus

TN = {('1, . . . , 'N ) mod 2⇡} .

3. The motion on Pc under H is conditionally periodic, that is,

d'i

dt
= !i(c) .

4. The equations of motion can be integrated by quadratures.

Action variables

One inevitably runs into the wrapping problem! At this point the interpretation in terms
of long-range spin chains does not work anymore and one has to resort to a sigma-model
description coming from string on AdS5 ⇥ S5

11
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11

Levels of fj(x)

Figure 1.2: Foliation of a phase space by invariant tori. Each torus coincides with a level
set Pc. All trajectories on a given torus have the same frequencies !ipcq, so one may speak
of the “frequency set of a torus”.

For simplicity we consider a Liouville integrable system with the phase space R2N .
According to the Liouville theorem, the motion occurs on a N -dimensional torus TN being
a common level of N commuting integrals. Let �j , 1 § j § N , be the fundamental cycles of
this torus depending continuously on the level tcju. Consider a set of equations fjpp, qq “ cj

and solve it for pj : pj “ pjpc, qq. Introduce the so-called action variables7

Ijpcq “

1

2⇡

¿

�
j

pipq, cqdqi “

1

2⇡

¿

�
j

↵ , (1.25)

where ↵ “ pidqi is the canonical 1-form. Since cj are time-independent as they are values
of the integrals of motion, the variables Ij “ Ijpcq are also time-independent. Moreover,
assuming that Ii are independent functions of cj , the map cj Ñ Ijpcq given by (1.25) has
an inverse. The angle variables ✓j are constructed by requiring that the transformation

ppj , qjq Ñ pIj , ✓jq (1.26)

is canonical. To construct this canonical transformation, we will use the following generating
function depending on the “old” coordinates q and the “new” momenta I

SpI, qq “

ª q

q
0

pipq̃, Iqdq̃i ,

where an integration path lies on Pc. We have

pj “

BS

Bqj
Ñ pj “ pjpI, qq. (1.27)

7The physical dimension of I
j

coincide with the dimension of the action that is the same as the dimension
of angular momentum.

22

old coordinates

new momenta

Levels of fj(x)

Figure 1.2: Foliation of a phase space by invariant tori. Each torus coincides with a level
set Pc. All trajectories on a given torus have the same frequencies !ipcq, so one may speak
of the “frequency set of a torus”.

For simplicity we consider a Liouville integrable system with the phase space R2N .
According to the Liouville theorem, the motion occurs on a N -dimensional torus TN being
a common level of N commuting integrals. Let �j , 1 § j § N , be the fundamental cycles of
this torus depending continuously on the level tcju. Consider a set of equations fjpp, qq “ cj

and solve it for pj : pj “ pjpc, qq. Introduce the so-called action variables7

Ijpcq “

1

2⇡

¿

�
j

pipq, cqdqi “

1

2⇡

¿

�
j

↵ , (1.25)

where ↵ “ pidqi is the canonical 1-form. Since cj are time-independent as they are values
of the integrals of motion, the variables Ij “ Ijpcq are also time-independent. Moreover,
assuming that Ii are independent functions of cj , the map cj Ñ Ijpcq given by (1.25) has
an inverse. The angle variables ✓j are constructed by requiring that the transformation

ppj , qjq Ñ pIj , ✓jq (1.26)

is canonical. To construct this canonical transformation, we will use the following generating
function depending on the “old” coordinates q and the “new” momenta I

SpI, qq “

ª q

q
0

pipq̃, Iqdq̃i ,

where an integration path lies on Pc. We have

pj “

BS

Bqj
Ñ pj “ pjpI, qq. (1.27)

7The physical dimension of I
j

coincide with the dimension of the action that is the same as the dimension
of angular momentum.

22

The angle variables are introduced as

✓j “

BS

BIj
Ñ ✓j “ ✓jpI, qq . (1.28)

Thus, for the di↵erential of S we then have

dS “

BS

Bqj
dqj `

BS

BIj
dIj “ pjdqj ` ✓jdIj .

Acting on this relation with d and taking into account that d2S “ 0, we get

! “ dpj ^ dqj “ dIj ^ d✓j ,

which shows that Ii, ✓j are canonical variables.

A subtle point here concerns a dependence of S on the integration path. Consider a
closed path: from q

0

to q and further from q to q
0

. If this path is contractable, then by
Stokes’ theorem

�S “

q
0

¿

q
0

↵ “

ª

d↵ “

ª

! “ 0 .

Here the vanishing of the integral of ! is due to the fact that ! vanishes on Pc

!p⇠i, ⇠jq “ tfi, fju “ 0 .

If an integration path encloses a non-trivial cycle �, the generation function undergoes a
shift by an integral of ↵ over this cycle

��S “

ª

�
↵

that depends on Ij only. As a result, going over the cycle the variables ✓j undergo a jump

��✓j “

B

BIj

ª

�
pipq, Iqdqi ,

i.e. ✓j are multi-valued functions on Pc. In particular, ��
i

✓j “ 2⇡�ij . This shows that ✓j

are independent angle coordinates on the cycles. The same conclusion can be also drawn
from the following consideration

¿

�
j

d✓i “

¿

�
j

d
BS

BIi
“

B

BIi

´

¿

�
j

dS
¯

“

B

BIi

´

¿

�
j

BS

Bqk
dqk

¯

“

B

BIi

´

¿

�
j

pkdqk

¯

“ 2⇡�ij ,

as on �j P TN the variables Ij are constants and the function SpI, qq depends on q only.

In the variables I, ✓ the Hamiltonian is a function of I. Then equations of motion become

9Ij “ ´

BH

B✓j
“ 0 , 9✓j “

BH

BIj
” !jpIq
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angle coordinates

Exercise

Let P be a 2N -dimensional symplectic manifold. Suppose there exist N functions fi 2 F(P)
that are pairwise in involution with respect to the corresponding Poisson bracket

{fi, fj} = 0 , 8i, j = 1, . . . , N .

Consider a common level set Pc of these functions,

Pc = {x 2 P : fi(x) = ci, i = 1, . . . , N} ,

where ci are constants. Assume that functions fi are independent on Pc, which means that
the 1-forms dfi are linearly independent at each point of Pc. Then

1. Pc is a smooth manifold invariant under the hamiltonian flow with H = H(fi).

2. If Pc is compact and connected then it is di↵eomorphic to the N -dimensional torus

TN = {('1, . . . , 'N ) mod 2⇡} .

3. The motion on Pc under H is conditionally periodic, that is,

d'i

dt
= !i(c) .

4. The equations of motion can be integrated by quadratures.

Show that (pj , qj) ! (Ij , ✓j) is a canonical transformation

One inevitably runs into the wrapping problem! At this point the interpretation in terms
of long-range spin chains does not work anymore and one has to resort to a sigma-model
description coming from string on AdS5 ⇥ S5

11

Arnold-Liouville theorem

=)

Let P be a 2N -dimensional symplectic manifold. Suppose there exist N functions Ii 2 F(P)
that are pairwise in involution with respect to the corresponding Poisson bracket

{fi, fj} = 0 , 8i, j = 1, . . . , N .

Consider a common level set Pc of these functions,

Pc = {x 2 P : fi(x) = ci, i = 1, . . . , N} ,

where ci are constants. Assume that functions fi are independent on Pc, which means that
the 1-forms dfi are linearly independent at each point of Pc. Then

1. Pc is a smooth manifold invariant under the hamiltonian flow with H = H(fi).

2. If Pc is compact and connected then it is di↵eomorphic to the N -dimensional torus

TN = {('1, . . . , 'N ) mod 2⇡} .

3. The motion on Pc under H is conditionally periodic, that is,

d'i

dt
= !i(c) .

4. The equations of motion can be integrated by quadratures.

cj = cj(I)

One inevitably runs into the wrapping problem! At this point the interpretation in terms
of long-range spin chains does not work anymore and one has to resort to a sigma-model
description coming from string on AdS5 ⇥ S5

11



Arnold-Liouville theorem

Exercise

Let P be a 2N -dimensional symplectic manifold. Suppose there exist N functions Ii 2 F(P)
that are pairwise in involution with respect to the corresponding Poisson bracket

{fi, fj} = 0 , 8i, j = 1, . . . , N .

Consider a common level set Pc of these functions,

Pc = {x 2 P : fi(x) = ci, i = 1, . . . , N} ,

where ci are constants. Assume that functions fi are independent on Pc, which means that
the 1-forms dfi are linearly independent at each point of Pc. Then

1. Pc is a smooth manifold invariant under the hamiltonian flow with H = H(fi).

2. If Pc is compact and connected then it is di↵eomorphic to the N -dimensional torus

TN = {('1, . . . , 'N ) mod 2⇡} .

3. The motion on Pc under H is conditionally periodic, that is,

d'i

dt
= !i(c) .

4. The equations of motion can be integrated by quadratures.

Find the action-angle variables for the harmonic oscillator

One inevitably runs into the wrapping problem! At this point the interpretation in terms
of long-range spin chains does not work anymore and one has to resort to a sigma-model
description coming from string on AdS5 ⇥ S5
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The action is given by:

S =
1

g2YM

Z

d4x

⇢

1

4
(F a

µ⌫)
2 +

1

2
(Dµ�

a
i )

2 +
1

4
fabcfade�bi�

c
j�

d
i �

e
j

+
1

2
 
a
�µDµ 

a +
1

2
fabc 

a
�i�bi 

c

�

where, as usual, the curvature is given by

F a
µ⌫ = @µAa

⌫ � @µAa
⌫ + fabcAb

µAc
⌫

and the covariant derivative is

Dµ�
a
i = @µ�

a
i + fabcAb

µ�
c
i .

(�µ, �i) denote the ten dimensional gamma matrices in the Majorana-Weyl representation.

1.2 Conformal symmetry

Here we give a short introduction into representation theory of the superconformal group.
This will include definition of the conformal and superconformal algebras as well as discus-
sion of the unitary irreducible representations.

Consider d-dimensional Minkowski space with the metric

⌘ab = (�1, 1, ..., 1) , a, b = 0, ..., d� 1 .

The conformal group is generated by a set of generators

M
ab

� Lorentz rotations ,

P
a

� translations ,

K
a

� conformal boosts ,

D � dilatation

subject to the following non-trivial commutation relations

[Mab, Mcd] = i(⌘acMbd � ⌘bcMad � ⌘adMbc + ⌘bdMac) ,

[Mab, Pc] = i(⌘acPb � ⌘bcPa) , [Mab, Kc] = i(⌘acKb � ⌘bcKa) ,

[D , Pa] = iPa , [D , Ka] = �iKa ,

[Ka, Pb] = �2iMab � 2i⌘abD .

The Lorentz generators form a Lie algebra so(d � 1, 1). In unitary representations of the
conformal algebra the generators are realized by hermitian operators

NM†
ab

= M
ab

, P†
a

= P
a

, K†
a

= K
a

, D† = D . (1.5)

Isomorphism of the d = 4 conformal algebra to su(2, 2). Let us now consider the case d = 4 and split
the index a = 1, . . . , 4 as a = (0, i), where i = 1, 2, 3. Introduce the following linear combinations of the
generators of the conformal algebra

� i
2

✏kijMij ⌥M
0k , P

0

+K
0

, i(P
0

�K
0

) , i(Pi +Ki) , Pi �Ki , D .
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µAc
⌫

and the covariant derivative is

Dµ�
a
i = @µ�

a
i + fabcAb

µ�
c
i .

(�µ, �i) denote the ten dimensional gamma matrices in the Majorana-Weyl representation.

1.2 Conformal symmetry

Here we give a short introduction into representation theory of the superconformal group.
This will include definition of the conformal and superconformal algebras as well as discus-
sion of the unitary irreducible representations.

Consider d-dimensional Minkowski space with the metric

⌘ab = (�1, 1, ..., 1) , a, b = 0, ..., d� 1 .

The conformal group is generated by a set of generators

M
ab

� Lorentz rotations

P
a

� translations

K
a

� conformal boosts

D � dilatation

subject to the following non-trivial commutation relations

[Mab, Mcd] = i(⌘acMbd � ⌘bcMad � ⌘adMbc + ⌘bdMac) ,

[Mab, Pc] = i(⌘acPb � ⌘bcPa) , [Mab, Kc] = i(⌘acKb � ⌘bcKa) ,

[D, Pa] = iPa , [D, Ka] = �iKa ,

[Ka, Pb] = �2iMab � 2i⌘abD .

The Lorentz generators form a Lie algebra so(d � 1, 1). In unitary representations of the
conformal algebra the generators are realized by hermitian operators

M†
ab

= M
ab

, P†
a

= P
a

, K†
a

= K
a

, D† = D .

Isomorphism of the d = 4 conformal algebra to su(2, 2). Let us now consider the case d = 4 and split
the index a = 1, . . . , 4 as a = (0, i), where i = 1, 2, 3. Introduce the following linear combinations of the
generators of the conformal algebra

� i
2

✏kijMij ⌥M
0k , P

0

+K
0

, i(P
0

�K
0

) , i(Pi +Ki) , Pi �Ki , D .
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Isomorphism of the d = 4 conformal algebra to su(2, 2). Let us now consider the case d = 4 and split
the index a = 1, . . . , 4 as a = (0, i), where i = 1, 2, 3. Introduce the following linear combinations of the
generators of the conformal algebra

� i
2

✏kijMij ⌥M
0k , P

0

+K
0

, i(P
0

�K
0

) , i(Pi +Ki) , Pi �Ki , D .

Obviously, the map between the original generators and the old ones is one-to-one. One can easily verify
that if the original generators satisfy the relations of the conformal algebra then the new generators form
a Lie algebra over the field R with the real structure constants; this algebra is nothing else but su(2, 2). In
particular,

Li = � i
2

✏kijMij �M
0k , Ri = � i

2

✏kijMij +M
0k

generate two commuting su(2) subalgebras.

In the defining representation of su(2, 2), the new generators can be represented by 4 ⇥ 4 matrices M
satisfying the relation

⌃M+ +M⌃ = 0 ,

where ⌃ is the following 4⇥ 4 matrix

⌃ =

✓
I
2

0
0 �I

2

◆

In this representation the original generators Mij and M
0k acquire the form

Mij =
1
2
✏ijk

✓
�k 0
0 �k

◆
, M

0i = � i

2

✓
�i 0
0 ��i

◆
.

This indeed gives a representation of the Lorentz algebra1 so(3, 1). The shift operators, the conformal boosts
and the dilation are realized as

Pa =

✓
0 �a

0 0

◆
, Ka =

✓
0 0
�̄a 0

◆
, D =

i

2

✓
I 0
0 �I

◆
,

where �a = (I,�i) and �̄a = (I,��i). One can verify that these formula provide a matrix representation of

the conformal algebra This finite-dimensional representation of the conformal algebra is non-unitary because

the corresponding matrices are not hermitian.

Field representations of the conformal algebra

Operator-state correspondence.

|�Ii = �I(0)|0i  conformal state

The action of algebra generators on a conformal state

Ka|�Ii = 0, D|�Ii = i�|�Ii, Mab|�Ii = |�Ji(⇤ab)
J

I

Coset = SO(d, 2)/{K
a

, D , M
ab

}
1If we introduce the so(3, 1) �-matrices as

�a =

✓
0 �a

��̄a 0

◆

then the Lorents generators coincide with �ab = � i
4

(�a�b � �b�a).
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Space of the conformal irrep span by Pa (they act like usual creation operators in the
quantum mechanics):

Pa
1

. . . Pan |�Ii
Generating function of conformal states (physical field on space-time)

�
I

(x)|0i =
1
X

n=0

(�i)n

n!
xa1 . . . xanP

a1 . . . P
an |�

I

i

= e�ix

aPa |�
I

i

Remark: xa is a formal (harmonic) variable. The states |�Ii are not normalizable! Operator D is hermitian

but has imaginary eigenvalues.

The standard treatment of unitary irreps is based on another coset:

SO(d, 2)/SO(d) ⇥ SO(2)

Set of generators

Mrs ( generators of SO(d)

E±
r = Md+1,r ± iM

0r , r = 1, . . . , d

H = �1

2

(P
0

+ K
0

) ( conformal Hamiltonian

Algebra

[E�
r , E+

r ] = 2�rsH � 2iMrs ,

[H, E±
r ] = ±E±

r , [E+

r , E+

s ] = 0

Conformal states are related

| Ii = e�
⇡
2

M

0d |�Ii , H| Ii = �| Ii

so that

e
⇡
4

(P

0

�K

0

)(�iD)e�
⇡
4

(P

0

�K

0

) = H

Conformal primary state is defined

H| Ii = �| Ii , E�
r

| Ii = 0

and all its descendants span a basis of positive energy irrep:

E+

r
1

. . . E+

rn | Ii

Conformal states (normalizable) form a positive definite matrix:

h I | Ji

12
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Exercise

Prove!



1.3 Superconformal symmetry

Add new generators

Qi

↵

, Q̄
i↵̇

, S↵

i

, S̄i↵̇ � Supercharges i = 1, . . . , N
Ri

j

� Internal (R�) symmetry U(N )

Algebra relations (only essential ones)

{Qi

↵

, Q̄
j↵̇

} = 2�i
j

P
↵↵̇

, P
↵↵̇

= �a

↵↵̇

P
a

{S̄
i↵̇
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j

} = 2�i
j
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a
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j
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For N = 4 we can impose Ri
i ⌘ 0. Therefore R-symmetry is su(4)

The Cartan matrix for su(4):

Kij =

0

@
2 �1 0

�1 2 �1

0 �1 2

1

A

The Chevalley basis for su(4):

[Hi, Hj ] = 0, [E+

i , E�
j ] = �ijHj , [Hi, E

±
j ] = ±KjiE

±
j

An irrep of su(4) is defined by its highest weight state |a1, a2, a3i:
E+

i

|a1, a2, a3i = 0

H
i

|a1, a2, a3i = a
i

|a1, a2, a3i , a
i

� 0

Here [a1, a2, a3] are Dynkin labels.

“Old” generators Ri

j

can be rewritten via the generators of the Chevalley basis, e.g.

R1
1 =

1

4
(3H1 + 2H2 + H3) , R1

2 = E+
1

13

1.3 Superconformal symmetry

Add new generators

Qi

↵

, Q̄
i↵̇

, S↵

i

, S̄i↵̇ � Supercharges i = 1, . . . , N
Ri

j

� Internal (R�) symmetry U(N )

Algebra relations (only essential ones)

{Qi

↵

, Q̄
j↵̇

} = 2�i
j

P
↵↵̇

, P
↵↵̇

= �a

↵↵̇

P
a

{S̄
i↵̇

, S↵

j

} = 2�i
j

K↵̇↵ , K↵̇↵ = (�̄a)↵̇↵K
a

{Qi

↵

, S�

j

} = 4�i
j

(M �

↵

� i

2
� �

↵

D) � 4� �

↵

Ri

j

[Ri

j

, Rk

l

] = �k
j

Ri

l

� �i
l

Rk

j

and

[Ri

j

, Qk

↵

] = �k
j

Qi

↵

� 1

4
�i

j

Qk

↵

[Ri

j

, S↵

k

] = ��i
k

S↵

j

+
1

4
�i

j

S↵

k

For N = 4 we can impose Ri
i ⌘ 0. Therefore R-symmetry is su(4)

The Cartan matrix for su(4):

Kij =

0

@
2 �1 0

�1 2 �1

0 �1 2

1

A

The Chevalley basis for su(4):

[Hi, Hj ] = 0, [E+

i , E�
j ] = �ijHj , [Hi, E

±
j ] = ±KjiE

±
j

An irrep of su(4) is defined by its highest weight state |a1, a2, a3i:
E+

i

|a1, a2, a3i = 0

H
i

|a1, a2, a3i = a
i

|a1, a2, a3i , a
i

� 0

Here [a1, a2, a3] are Dynkin labels.

“Old” generators Ri

j

can be rewritten via the generators of the Chevalley basis, e.g.

R1
1 =

1

4
(3H1 + 2H2 + H3) , R1

2 = E+
1

13

1.3 Superconformal symmetry

Add new generators

Qi

↵

, Q̄
i↵̇

, S↵

i

, S̄i↵̇ � Supercharges i = 1, . . . , N
Ri

j

� Internal (R�) symmetry U(N )

Algebra relations (only essential ones)

{Qi

↵

, Q̄
j↵̇

} = 2�i
j

P
↵↵̇

, P
↵↵̇

= �a

↵↵̇

P
a

{S̄
i↵̇

, S↵

j

} = 2�i
j

K↵̇↵ , K↵̇↵ = (�̄a)↵̇↵K
a

{Qi

↵

, S�

j

} = 4�i
j

(M �

↵

� i

2
� �

↵

D) � 4� �

↵

Ri

j

[Ri

j

, Rk

l

] = �k
j

Ri

l

� �i
l

Rk

j

and

[Ri

j

, Qk

↵

] = �k
j

Qi

↵

� 1

4
�i

j

Qk

↵

[Ri

j

, S↵

k

] = ��i
k

S↵

j

+
1

4
�i

j

S↵

k

For N = 4 we can impose Ri
i ⌘ 0. Therefore R-symmetry is su(4)

The Cartan matrix for su(4):

Kij =

0

@
2 �1 0

�1 2 �1

0 �1 2

1

A

The Chevalley basis for su(4):

[Hi, Hj ] = 0, [E+

i , E�
j ] = �ijHj , [Hi, E

±
j ] = ±KjiE

±
j

An irrep of su(4) is defined by its highest weight state |a1, a2, a3i:
E+

i

|a1, a2, a3i = 0

H
i

|a1, a2, a3i = a
i

|a1, a2, a3i , a
i

� 0

Here [a1, a2, a3] are Dynkin labels.

“Old” generators Ri

j

can be rewritten via the generators of the Chevalley basis, e.g.

R1
1 =

1

4
(3H1 + 2H2 + H3) , R1

2 = E+
1

13

1.3 Superconformal symmetry

Add new generators

Qi

↵

, Q̄
i↵̇

, S↵

i

, S̄i↵̇ � Supercharges i = 1, . . . , N
Ri

j

� Internal (R�) symmetry U(N )

Algebra relations (only essential ones)

{Qi

↵

, Q̄
j↵̇

} = 2�i
j

P
↵↵̇

, P
↵↵̇

= �a

↵↵̇

P
a

{S̄
i↵̇

, S↵

j

} = 2�i
j

K↵̇↵ , K↵̇↵ = (�̄a)↵̇↵K
a

{Qi

↵

, S�

j

} = 4�i
j

(M �

↵

� i

2
� �

↵

D) � 4� �

↵

Ri

j

[Ri

j

, Rk

l

] = �k
j

Ri

l

� �i
l

Rk

j

and

[Ri

j

, Qk

↵

] = �k
j

Qi

↵

� 1

4
�i

j

Qk

↵

[Ri

j

, S↵

k

] = ��i
k

S↵

j

+
1

4
�i

j

S↵

k

For N = 4 we can impose Ri
i ⌘ 0. Therefore R-symmetry is su(4)

The Cartan matrix for su(4):

Kij =

0

@
2 �1 0

�1 2 �1

0 �1 2

1

A

The Chevalley basis for su(4):

[Hi, Hj ] = 0, [E+

i , E�
j ] = �ijHj , [Hi, E

±
j ] = ±KjiE

±
j

An irrep of su(4) is defined by its highest weight state |a1, a2, a3i:
E+

i

|a1, a2, a3i = 0

H
i

|a1, a2, a3i = a
i

|a1, a2, a3i , a
i

� 0

Here [a1, a2, a3] are Dynkin labels.

“Old” generators Ri

j

can be rewritten via the generators of the Chevalley basis, e.g.

R1
1 =

1

4
(3H1 + 2H2 + H3) , R1

2 = E+
1

13

1.3 Superconformal symmetry

Add new generators

Qi

↵

, Q̄
i↵̇

, S↵

i

, S̄i↵̇ � Supercharges i = 1, . . . , N
Ri

j

� Internal (R�) symmetry U(N )

Algebra relations (only essential ones)

{Qi

↵

, Q̄
j↵̇

} = 2�i
j

P
↵↵̇

, P
↵↵̇

= �a

↵↵̇

P
a

{S̄
i↵̇

, S↵

j

} = 2�i
j

K↵̇↵ , K↵̇↵ = (�̄a)↵̇↵K
a

{Qi

↵

, S�

j

} = 4�i
j

(M �

↵

� i

2
� �

↵

D) � 4� �

↵

Ri

j

[Ri

j

, Rk

l

] = �k
j

Ri

l

� �i
l

Rk

j

and

[Ri

j

, Qk

↵

] = �k
j

Qi

↵

� 1

4
�i

j

Qk

↵

[Ri

j

, S↵

k

] = ��i
k

S↵

j

+
1

4
�i

j

S↵

k

For N = 4 we can impose Ri
i ⌘ 0. Therefore R-symmetry is su(4)

The Cartan matrix for su(4):

Kij =

0

@
2 �1 0

�1 2 �1

0 �1 2

1

A

The Chevalley basis for su(4):

[Hi, Hj ] = 0, [E+

i , E�
j ] = �ijHj , [Hi, E

±
j ] = ±KjiE

±
j

An irrep of su(4) is defined by its highest weight state |a1, a2, a3i:
E+

i

|a1, a2, a3i = 0

H
i

|a1, a2, a3i = a
i

|a1, a2, a3i , a
i

� 0

Here [a1, a2, a3] are Dynkin labels.

“Old” generators Ri

j

can be rewritten via the generators of the Chevalley basis, e.g.

R1
1 =

1

4
(3H1 + 2H2 + H3) , R1

2 = E+
1

13

1.3 Superconformal symmetry

Add new generators

Qi

↵

, Q̄
i↵̇

, S↵

i

, S̄i↵̇ � Supercharges i = 1, . . . , N
Ri

j

� Internal (R�) symmetry U(N )

Algebra relations (only essential ones)

{Qi

↵

, Q̄
j↵̇

} = 2�i
j

P
↵↵̇

, P
↵↵̇

= �a

↵↵̇

P
a

{S̄
i↵̇

, S↵

j

} = 2�i
j

K↵̇↵ , K↵̇↵ = (�̄a)↵̇↵K
a

{Qi

↵

, S�

j

} = 4�i
j

(M �

↵

� i

2
� �

↵

D) � 4� �

↵

Ri

j

[Ri

j

, Rk

l

] = �k
j

Ri

l

� �i
l

Rk

j

and

[Ri

j

, Qk

↵

] = �k
j

Qi

↵

� 1

4
�i

j

Qk

↵

[Ri

j

, S↵

k

] = ��i
k

S↵

j

+
1

4
�i

j

S↵

k

For N = 4 we can impose Ri
i ⌘ 0. Therefore R-symmetry is su(4)

The Cartan matrix for su(4):

Kij =

0

@
2 �1 0

�1 2 �1

0 �1 2

1

A

The Chevalley basis for su(4):

[Hi, Hj ] = 0, [E+

i , E�
j ] = �ijHj , [Hi, E

±
j ] = ±KjiE

±
j

An irrep of su(4) is defined by its highest weight state |a1, a2, a3i:
E+

i

|a1, a2, a3i = 0

H
i

|a1, a2, a3i = a
i

|a1, a2, a3i , a
i

� 0

Here [a1, a2, a3] are Dynkin labels.

“Old” generators Ri

j

can be rewritten via the generators of the Chevalley basis, e.g.

R1
1 =

1

4
(3H1 + 2H2 + H3) , R1

2 = E+
1

13

1.3 Superconformal symmetry

Add new generators

Qi

↵

, Q̄
i↵̇

, S↵

i

, S̄i↵̇ � Supercharges i = 1, . . . , N
Ri

j

� Internal (R�) symmetry U(N )

Algebra relations (only essential ones)

{Qi

↵

, Q̄
j↵̇

} = 2�i
j

P
↵↵̇

, P
↵↵̇

= �a

↵↵̇

P
a

{S̄
i↵̇

, S↵

j

} = 2�i
j

K↵̇↵ , K↵̇↵ = (�̄a)↵̇↵K
a

{Qi

↵

, S�

j

} = 4�i
j

(M �

↵

� i

2
� �

↵

D) � 4� �

↵

Ri

j

[Ri

j

, Rk

l

] = �k
j

Ri

l

� �i
l

Rk

j

and

[Ri

j

, Qk

↵

] = �k
j

Qi

↵

� 1

4
�i

j

Qk

↵

[Ri

j

, S↵

k

] = ��i
k

S↵

j

+
1

4
�i

j

S↵

k

For N = 4 we can impose Ri
i ⌘ 0. Therefore R-symmetry is su(4)

The Cartan matrix for su(4):

Kij =

0

@
2 �1 0

�1 2 �1

0 �1 2

1

A

The Chevalley basis for su(4):

[Hi, Hj ] = 0, [E+

i , E�
j ] = �ijHj , [Hi, E

±
j ] = ±KjiE

±
j

An irrep of su(4) is defined by its highest weight state |a1, a2, a3i:
E+

i

|a1, a2, a3i = 0

H
i

|a1, a2, a3i = a
i

|a1, a2, a3i , a
i

� 0

Here [a1, a2, a3] are Dynkin labels.

“Old” generators Ri

j

can be rewritten via the generators of the Chevalley basis, e.g.

R1
1 =

1

4
(3H1 + 2H2 + H3) , R1

2 = E+
1

13

1.3 Superconformal symmetry

Add new generators

Qi

↵

, Q̄
i↵̇

, S↵

i

, S̄i↵̇ � Supercharges i = 1, . . . , N
Ri

j

� Internal (R�) symmetry U(N )

Algebra relations (only essential ones)

{Qi

↵

, Q̄
j↵̇

} = 2�i
j

P
↵↵̇

, P
↵↵̇

= �a

↵↵̇

P
a

{S̄
i↵̇

, S↵

j

} = 2�i
j

K↵̇↵ , K↵̇↵ = (�̄a)↵̇↵K
a

{Qi

↵

, S�

j

} = 4�i
j

(M �

↵

� i

2
� �

↵

D) � 4� �

↵

Ri

j

[Ri

j

, Rk

l

] = �k
j

Ri

l

� �i
l

Rk

j

and

[Ri

j

, Qk

↵

] = �k
j

Qi

↵

� 1

4
�i

j

Qk

↵

[Ri

j

, S↵

k

] = ��i
k

S↵

j

+
1

4
�i

j

S↵

k

For N = 4 we can impose Ri
i ⌘ 0. Therefore R-symmetry is su(4)

The Cartan matrix for su(4):

Kij =

0

@
2 �1 0

�1 2 �1

0 �1 2

1

A

The Chevalley basis for su(4):

[Hi, Hj ] = 0, [E+

i , E�
j ] = �ijHj , [Hi, E

±
j ] = ±KjiE

±
j

An irrep of su(4) is defined by its highest weight state |a1, a2, a3i:
E+

i

|a1, a2, a3i = 0

H
i

|a1, a2, a3i = a
i

|a1, a2, a3i , a
i

� 0

Here [a1, a2, a3] are Dynkin labels.

“Old” generators Ri

j

can be rewritten via the generators of the Chevalley basis, e.g.

R1
1 =

1

4
(3H1 + 2H2 + H3) , R1

2 = E+
1

13

Now we see that, e.g.,
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, [H2,3, Q
1
↵

] = [E+
i

, Q1
↵

] = 0

i.e. Q1
↵

is the hws of irrep [1, 0, 0].

Superconformal primary state

|hwsi = |�; s
1

, s
2

; a
1

, a
2

, a
3

i

� �! Conformal dimension

s1, s2 �! Lorentz spins

a1, a2, a3 �! Dynkin labels of the su(4) irrep

K
a

|hwsi = 0 , S↵

i

|hwsi = S̄
i↵̇|hwsi = 0 , D|hwsi = i�|hwsi

Complete basis is generated from the ordered span
Y

i,j,↵,↵̇

(Qi

↵

)ni↵(Q̄
j↵̇

)n̄j↵̇ |hwsi

Dimension of a generic long multiplet

dim = 216dim(a1, a2, a3)(2s1 + 1)(2s2 + 1)

The space of states can be expanded into irreps of the Lorenz and su(4) algebras.

The superconformal algebra is the psu(2, 2|4) Lie superalgebra

1.3.1 Chevalley basis and Dynkin diagram

The most elegant way to describe the algebra psu(2, 2|4) is to use the Cartan subalgebra and
the corresponding simple roots. As we have already mentioned, the algebra su(2, 2|4) has
a realization in terms of 8 ⇥ 8 supermatrices with zero supertrace. Thus, its rank is equal
to seven.2 Let Hi with i = 1, . . . , 7 be the Cartan generators and E±

i be the corresponding
simple positive and negative root vectors. The elements Hi, E

±
j give a Chevalley basis for

sl(2, 2|4) provided they obey the following Lie algebra relations

[Hi, Hj ] = 0 , [E+

i , E�
j ] = �ijHj , [Hi, E

±
j ] = ±aijE

±
j . (1.5)

Here aij are the elements of the Cartan matrix which is also used to define the associ-
ated Dynkin graph. Equations (1.5) should be also supplemented with the so-called Serre
relations; we will not give them here.

2Speaking about root system we will always have in mind the complexified superalgebra sl(2, 2|4) of which
su(2, 2|4) is a non-compact real form.
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Chevalley basis

The root vectors can be of two types depending on their grading: bosonic (even) and
fermionic (odd). For a superalgebra a choice of the simple roots and therefore of the
corresponding Dynkin graph is not unique. Later on we will remark on the origin of this
non-uniqueness.

Now we will give an explicit realization of the Chevalley basis in terms of 8⇥ 8 matrices
which is suitable for study field-theoretic representations of su(2, 2|4). First of all we will
pick up the following five Cartan generators
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Here H
3,4,5 form the Cartan subalgebra of su(4), while H

1

and H
7

are the Cartan generators
of su(2) ⇥ su(2) ⇢ su(2, 2). These are in total only five generators and we need two more,
H

2,6. We will make the following choice

H
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Note that the generators have vanishing supertrace and, therefore, indeed belong to su(2, 2|4).
With such a choice the commuting subalgebra the Cartan matrix is symmetric and is simply
given by the supertrace formula
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. (1.7)

Here the 3 ⇥ 3 matrix block in the middle of the matrix in eq.(1.7) is nothing else as the
Cartan matrix for su(4). Our specific choice of the Cartan subalgebra leads to the fact that
there are five bosonic simple roots and two fermionic. The corresponding Dynkin graph is

The Dynkin graph. The hatched

roots are fermionic and null.

This realization of the Chevalley basis with two fermionic roots appeared in [?] and it was
also used in [?] to construct the Bethe ansatz equations for psu(2, 2|4) where it was called
“the beauty”.

So far we have introduced the seven Cartan generators H
1

, . . . H
7

. However, using our
matrix realization one can easily check that they satisfy the following relation

H
1

+ 2H
2

+ H
3

� H
5

� 2H
6

� H
7

= I
8⇥8

, (1.8)
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Here the 3 ⇥ 3 matrix block in the middle of the matrix in eq.(1.7) is nothing else as the
Cartan matrix for su(4). Our specific choice of the Cartan subalgebra leads to the fact that
there are five bosonic simple roots and two fermionic. The corresponding Dynkin graph is

The Dynkin graph. The hatched

roots are fermionic and null.

This realization of the Chevalley basis with two fermionic roots appeared in [?] and it was
also used in [?] to construct the Bethe ansatz equations for psu(2, 2|4) where it was called
“the beauty”.

15

The root vectors can be of two types depending on their grading: bosonic (even) and
fermionic (odd). For a superalgebra a choice of the simple roots and therefore of the
corresponding Dynkin graph is not unique. Later on we will remark on the origin of this
non-uniqueness.

Matrix realization

Now we will give an explicit realization of the Chevalley basis in terms of 8 ⇥ 8 matrices
which is suitable for study field-theoretic representations of su(2, 2|4). First of all we will
pick up the following five Cartan generators

H
3

=

 

04⇥4
�1

1

0

0

!

, H
4

=

 

04⇥4
0

�1

1

0

!

, H
5

=

 

04⇥4
0

0

�1

1

!

H
1

=

 

1

�1

0

0

04⇥4

!

, H
7

=

 

0

0

1

�1

04⇥4

!

.

Here H
3,4,5 form the Cartan subalgebra of su(4), while H

1

and H
7

are the Cartan generators
of su(2) ⇥ su(2) ⇢ su(2, 2). These are in total only five generators and we need two more,
H

2,6. We will make the following choice

H
2

=

0

B

B

@

0

1

0

0

1

0

0

0

1

C

C

A

, H
6

=

0

B

B

@

0

0

�1

0

0

0

0

�1

1

C

C

A

. (1.6)

Note that the generators have vanishing supertrace and, therefore, indeed belong to su(2, 2|4).
With such a choice the commuting subalgebra the Cartan matrix is symmetric and is simply
given by the supertrace formula

aij = �str(HiHj) =) a =

0

B

@

�2 +1 0 0 0 0 0

+1 0 �1 0 0 0 0

0 �1 +2 �1 0 0 0

0 0 �1 +2 �1 0 0

0 0 0 �1 +2 �1 0

0 0 0 0 �1 0 +1

0 0 0 0 0 +1 �2

1

C

A

. (1.7)

Here the 3 ⇥ 3 matrix block in the middle of the matrix in eq.(1.7) is nothing else as the
Cartan matrix for su(4). Our specific choice of the Cartan subalgebra leads to the fact that
there are five bosonic simple roots and two fermionic. The corresponding Dynkin graph is

The Dynkin graph. The hatched

roots are fermionic and null.

This realization of the Chevalley basis with two fermionic roots appeared in [?] and it was
also used in [?] to construct the Bethe ansatz equations for psu(2, 2|4) where it was called
“the beauty”.

15

The root vectors can be of two types depending on their grading: bosonic (even) and
fermionic (odd). For a superalgebra a choice of the simple roots and therefore of the
corresponding Dynkin graph is not unique. Later on we will remark on the origin of this
non-uniqueness.

Matrix realization

Now we will give an explicit realization of the Chevalley basis in terms of 8 ⇥ 8 matrices
which is suitable for study field-theoretic representations of su(2, 2|4). First of all we will
pick up the following five Cartan generators

H
3

=

 

04⇥4
�1

1

0

0

!

, H
4

=

 

04⇥4
0

�1

1

0

!

, H
5

=

 

04⇥4
0

0

�1

1

!

H
1

=

 

1

�1

0

0

04⇥4

!

, H
7

=

 

0

0

1

�1

04⇥4

!

.

Here H
3,4,5 form the Cartan subalgebra of su(4), while H

1

and H
7

are the Cartan generators
of su(2) ⇥ su(2) ⇢ su(2, 2). These are in total only five generators and we need two more,
H

2,6. We will make the following choice

H
2

=

0

B

B

@

0

1

0

0

1

0

0

0

1

C

C

A

, H
6

=

0

B

B

@

0

0

�1

0

0

0

0

�1

1

C

C

A

. (1.6)

Note that the generators have vanishing supertrace and, therefore, indeed belong to su(2, 2|4).
With such a choice the commuting subalgebra the Cartan matrix is symmetric and is simply
given by the supertrace formula

aij = �str(HiHj) =) a =

0

B

@

�2 +1 0 0 0 0 0

+1 0 �1 0 0 0 0

0 �1 +2 �1 0 0 0

0 0 �1 +2 �1 0 0

0 0 0 �1 +2 �1 0

0 0 0 0 �1 0 +1

0 0 0 0 0 +1 �2

1

C

A

. (1.7)

Here the 3 ⇥ 3 matrix block in the middle of the matrix in eq.(1.7) is nothing else as the
Cartan matrix for su(4). Our specific choice of the Cartan subalgebra leads to the fact that
there are five bosonic simple roots and two fermionic. The corresponding Dynkin graph is

The Dynkin graph. The hatched

roots are fermionic and null.

This realization of the Chevalley basis with two fermionic roots appeared in [?] and it was
also used in [?] to construct the Bethe ansatz equations for psu(2, 2|4) where it was called
“the beauty”.

15

The root vectors can be of two types depending on their grading: bosonic (even) and
fermionic (odd). For a superalgebra a choice of the simple roots and therefore of the
corresponding Dynkin graph is not unique. Later on we will remark on the origin of this
non-uniqueness.

Matrix realization

Now we will give an explicit realization of the Chevalley basis in terms of 8 ⇥ 8 matrices
which is suitable for study field-theoretic representations of su(2, 2|4). First of all we will
pick up the following five Cartan generators

H
3

=

 

04⇥4
�1

1

0

0

!

, H
4

=

 

04⇥4
0

�1

1

0

!

, H
5

=

 

04⇥4
0

0

�1

1

!

H
1

=

 

1

�1

0

0

04⇥4

!

, H
7

=

 

0

0

1

�1

04⇥4

!

.

Here H
3,4,5 form the Cartan subalgebra of su(4), while H

1

and H
7

are the Cartan generators
of su(2) ⇥ su(2) ⇢ su(2, 2). These are in total only five generators and we need two more,
H

2,6. We will make the following choice

H
2

=

0

B

B

@

0

1

0

0

1

0

0

0

1

C

C

A

, H
6

=

0

B

B

@

0

0

�1

0

0

0

0

�1

1

C

C

A

. (1.6)

Note that the generators have vanishing supertrace and, therefore, indeed belong to su(2, 2|4).
With such a choice the commuting subalgebra the Cartan matrix is symmetric and is simply
given by the supertrace formula

aij = �str(HiHj) =) a =

0

B

@

�2 +1 0 0 0 0 0

+1 0 �1 0 0 0 0

0 �1 +2 �1 0 0 0

0 0 �1 +2 �1 0 0

0 0 0 �1 +2 �1 0

0 0 0 0 �1 0 +1

0 0 0 0 0 +1 �2

1

C

A

. (1.7)

Here the 3 ⇥ 3 matrix block in the middle of the matrix in eq.(1.7) is nothing else as the
Cartan matrix for su(4). Our specific choice of the Cartan subalgebra leads to the fact that
there are five bosonic simple roots and two fermionic. The corresponding Dynkin graph is

The Dynkin graph. The hatched

roots are fermionic and null.

This realization of the Chevalley basis with two fermionic roots appeared in [?] and it was
also used in [?] to construct the Bethe ansatz equations for psu(2, 2|4) where it was called
“the beauty”.

15

The root vectors can be of two types depending on their grading: bosonic (even) and
fermionic (odd). For a superalgebra a choice of the simple roots and therefore of the
corresponding Dynkin graph is not unique. Later on we will remark on the origin of this
non-uniqueness.

Matrix realization

Now we will give an explicit realization of the Chevalley basis in terms of 8 ⇥ 8 matrices
which is suitable for study field-theoretic representations of su(2, 2|4). First of all we will
pick up the following five Cartan generators

H
3

=

 

04⇥4
�1

1

0

0

!

, H
4

=

 

04⇥4
0

�1

1

0

!

, H
5

=

 

04⇥4
0

0

�1

1

!

H
1

=

 

1

�1

0

0

04⇥4

!

, H
7

=

 

0

0

1

�1

04⇥4

!

.

Here H
3,4,5 form the Cartan subalgebra of su(4), while H

1

and H
7

are the Cartan generators
of su(2) ⇥ su(2) ⇢ su(2, 2). These are in total only five generators and we need two more,
H

2,6. We will make the following choice

H
2

=

0

B

B

@

0

1

0

0

1

0

0

0

1

C

C

A

, H
6

=

0

B

B

@

0

0

�1

0

0

0

0

�1

1

C

C

A

. (1.6)

Note that the generators have vanishing supertrace and, therefore, indeed belong to su(2, 2|4).
With such a choice the commuting subalgebra the Cartan matrix is symmetric and is simply
given by the supertrace formula

aij = �str(HiHj) =) a =

0

B

@

�2 +1 0 0 0 0 0

+1 0 �1 0 0 0 0

0 �1 +2 �1 0 0 0

0 0 �1 +2 �1 0 0

0 0 0 �1 +2 �1 0

0 0 0 0 �1 0 +1

0 0 0 0 0 +1 �2

1

C

A

. (1.7)

Here the 3 ⇥ 3 matrix block in the middle of the matrix in eq.(1.7) is nothing else as the
Cartan matrix for su(4). Our specific choice of the Cartan subalgebra leads to the fact that
there are five bosonic simple roots and two fermionic. The corresponding Dynkin graph is

The Dynkin graph. The hatched

roots are fermionic and null.

This realization of the Chevalley basis with two fermionic roots appeared in [?] and it was
also used in [?] to construct the Bethe ansatz equations for psu(2, 2|4) where it was called
“the beauty”.

15

The root vectors can be of two types depending on their grading: bosonic (even) and
fermionic (odd). For a superalgebra a choice of the simple roots and therefore of the
corresponding Dynkin graph is not unique. Later on we will remark on the origin of this
non-uniqueness.

Matrix realization

Now we will give an explicit realization of the Chevalley basis in terms of 8 ⇥ 8 matrices
which is suitable for study field-theoretic representations of su(2, 2|4). First of all we will
pick up the following five Cartan generators

H
3

=

 

04⇥4
�1

1

0

0

!

, H
4

=

 

04⇥4
0

�1

1

0

!

, H
5

=

 

04⇥4
0

0

�1

1

!

H
1

=

 

1

�1

0

0

04⇥4

!

, H
7

=

 

0

0

1

�1

04⇥4

!

.

Here H
3,4,5 form the Cartan subalgebra of su(4), while H

1

and H
7

are the Cartan generators
of su(2) ⇥ su(2) ⇢ su(2, 2). These are in total only five generators and we need two more,
H

2,6. We will make the following choice

H
2

=

0

B

B

@

0

1

0

0

1

0

0

0

1

C

C

A

, H
6

=

0

B

B

@

0

0

�1

0

0

0

0

�1

1

C

C

A

. (1.6)

Note that the generators have vanishing supertrace and, therefore, indeed belong to su(2, 2|4).
With such a choice the commuting subalgebra the Cartan matrix is symmetric and is simply
given by the supertrace formula

aij = �str(HiHj) =) a =

0

B

@

�2 +1 0 0 0 0 0

+1 0 �1 0 0 0 0

0 �1 +2 �1 0 0 0

0 0 �1 +2 �1 0 0

0 0 0 �1 +2 �1 0

0 0 0 0 �1 0 +1

0 0 0 0 0 +1 �2

1

C

A

. (1.7)

Here the 3 ⇥ 3 matrix block in the middle of the matrix in eq.(1.7) is nothing else as the
Cartan matrix for su(4). Our specific choice of the Cartan subalgebra leads to the fact that
there are five bosonic simple roots and two fermionic. The corresponding Dynkin graph is

The Dynkin graph. The hatched

roots are fermionic and null.

This realization of the Chevalley basis with two fermionic roots appeared in [?] and it was
also used in [?] to construct the Bethe ansatz equations for psu(2, 2|4) where it was called
“the beauty”.

15

Matrix realization



So far we have introduced the seven Cartan generators H
1

, . . . H
7

. However, using our
matrix realization one can easily check that they satisfy the following relation

H
1

+ 2H
2

+ H
3

� H
5

� 2H
6

� H
7

=
8⇥8

, (1.8)

which is a central element of the su(2, 2|4) algebra. Thus, dealing with representations of
psu(2, 2|4) one has to impose the constraint on the eigenvalues of the Cartan generators

H
1

+ 2H
2

+ H
3

= H
5

+ 2H
6

+ H
7

. (1.9)

1.3.2 Representations

As usual, the highest weight representations of su(2, 2|4) are describe by the specifying
the highest weight vector |hwsi in the Hilbert space of a representation. This vector is
annihilated by all positive roots

E+

i |hwsi = 0 (1.10)

and is an eigenstate of all Cartan generators with non-negative integer eigenvalues. As is
clear from the construction above, the positive roots span contains the generators Kµ of
special conformal transformations and also the conformal supercharges Si

↵ and S̄i↵̇. Thus,
the definition of the highest weight state is equivalent to the definition of the primary state:

Kµ|hwsi = Si
↵|hwsi = S̄i↵̇|hwsi = 0 . (1.11)

The eigenvalues of the three Cartan generators H
3,4,5 are precisely the Dynkin labels

[q
1

, p, q
2

] of the corresponding representation of the su(4) subalgebra. The eigenvalues of
H

1

and H
7

taken with the “ � ” sign are the Dynkin labels s
1

and s
2

of a representation
of su(2, 2) respectively. Finally, the eigenvalue of the dilatation generator is called the
conformal weight �. Finally, to describe the states of free theory one can also use the
eigenvalue of the hypercharge B. Thus, to the highest weight we associate the labels

|hwsi ⌘ [�; s
1

, s
2

; q
1

, p, q
2

; B] .

These parametrization of the highest weight summarize compactly the action of the Cartan
generators

H
1

|hwsi = �s
1

|hwsi ,

H
2

|hwsi =
1

2

⇣

� � 3

2
q
1

� p � 1

2
q
2

+ s
1

⌘

|hwsi ,

H
3

|hwsi = q
1

|hwsi ,

H
4

|hwsi = p |hwsi ,

H
5

|hwsi = q
2

|hwsi ,

H
6

|hwsi =
1

2

⇣

� � 1

2
q
1

� p � 3

2
q
2

+ s
2

⌘

|hwsi ,

H
7

|hwsi = �s
2

|hwsi .

Here to find the eigenvalues of H
2,6 we used the formulae (??) and (??), and taken into

account that for psu(2, 2|4) the central charge is zero.
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For matrix generators

central element

So far we have introduced the seven Cartan generators H
1

, . . . H
7

. However, using our
matrix realization one can easily check that they satisfy the following relation

H
1

+ 2H
2

+ H
3

� H
5

� 2H
6

� H
7

=
8⇥8

, (1.8)

which is a central element of the su(2, 2|4) algebra. Thus, dealing with representations of
psu(2, 2|4) one has to impose the constraint on the eigenvalues of the Cartan generators

H
1

+ 2H
2

+ H
3

= H
5

+ 2H
6

+ H
7

. (1.9)

Representations of psu(2, 2|4) are those of su(2, 2|4) for which the central charge vanishes

1.3.2 Representations

As usual, the highest weight representations of su(2, 2|4) are describe by the specifying
the highest weight vector |hwsi in the Hilbert space of a representation. This vector is
annihilated by all positive roots

E+

i |hwsi = 0 (1.10)

and is an eigenstate of all Cartan generators with non-negative integer eigenvalues. As is
clear from the construction above, the positive roots span contains the generators Kµ of
special conformal transformations and also the conformal supercharges Si

↵ and S̄i↵̇. Thus,
the definition of the highest weight state is equivalent to the definition of the primary state:

Kµ|hwsi = Si
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and s
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eigenvalue of the hypercharge B. Thus, to the highest weight we associate the labels
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Here to find the eigenvalues of H
2,6 we used the formulae (??) and (??), and taken into

account that for psu(2, 2|4) the central charge is zero.
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The bilinear form on the Cartan subalgebra b

hh, h0i = �Str(hh0)

allows one to identify the dual space b

⇤ with b. Below we will give an expression for
all positive roots and the generators of the corresponding root spaces. The bosonic
roots of su(4) are

H
3

! E+

3

, H
3

+H
4

! [E+

3

,E+

3

],
H

4

! E+

4

, H
4

+H
5

! [E+

4

,E+

5

],
H

5

! E+

5

, H
3

+H
4

+H
5

! [E+

5

, [E+

3

,E+

4

]] .

The bosonic positive roots of su(2, 2) are

H
1

! E+

1

, H
7

! E+

7

together with
P

6

i=2

H
i

! {E+

2

, [E+

3

, [E+

4

, [E+

5

,E+

6

]]]} ,P
7

i=2

H
i

! {E+

2

, [E+

3

, [E+

4

, [E+

5

, [E+

6

,E+

7

]]]]} ,P
6

i=1

H
i

! [E+

1

, {E+

2

, [E+

3

, [E+

4

, [E+

5

,E+

6

]]}] ,P
7

i=1

H
i

! [E+

1

, {E+

2

, [E+

3

, [E+

4

, [E+

5

, [E+

6

,E+

7

]]}] .
There are also 16 (supercharges) fermionic positive roots
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3.3 Representations

As usual, the highest weight representations of su(2, 2|4) are describe by the specifying
the highest weight vector |hwsi in the Hilbert space of a representation. This vector
is annihilated by all positive roots

E+
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|hwsi = 0 (27)
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Returning back to our original realization we note that the generators H
2

and H
6

can be also used to restore the third Cartan generator H of su(2, 2):

H =

 
0

1
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0

04⇥4

!

Indeed, it is expressible via H
2,6

and the Cartan generators of su(4) as follows

H = H
2

+H
3

+H
4

+H
5

+H
6

. (15)

So far we have introduced the seven Cartan generators H
1

, . . .H
7

. However, using our
matrix realization one can easily check that they satisfy the following relation

H
1
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2

+H
3

� H
5

� 2H
6

� H
7

= I
8⇥8

, (16)

which is a central element of the su(2, 2|4) algebra. Thus, dealing with representations
of psu(2, 2|4) one has to impose the constraint on the eigenvalues of the Cartan
generators

H
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+H
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5
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6
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7

. (17)

There is another useful u(1) subalgebra called the dilatation subalgebra. It is
generated by an element D:
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!
. (18)

Again, this element is not new, rather it is expressible as
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2
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2
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The normalization of the dilatation generator is chosen in such a fashion that both
negative simple fermionic root vectors are eigenstates of D with the same positive

eigenvalue
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Finally, we note that one can introduce one more u(1) generator B which, however,
does not belong to su(2, 2|4):
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!
.

It is called the hypercharge and it distinguishes the fermionic root vectors
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. (21)

15

Returning back to our original realization we note that the generators H
2

and H
6

can be also used to restore the third Cartan generator H of su(2, 2):

H =

 
0

1

�1

0

04⇥4

!

Indeed, it is expressible via H
2,6

and the Cartan generators of su(4) as follows

H = H
2

+H
3

+H
4

+H
5

+H
6

. (15)

So far we have introduced the seven Cartan generators H
1

, . . .H
7

. However, using our
matrix realization one can easily check that they satisfy the following relation

H
1

+ 2H
2

+H
3

� H
5

� 2H
6

� H
7

= I
8⇥8

, (16)

which is a central element of the su(2, 2|4) algebra. Thus, dealing with representations
of psu(2, 2|4) one has to impose the constraint on the eigenvalues of the Cartan
generators

H
1

+ 2H
2

+H
3

= H
5

+ 2H
6

+H
7

. (17)

There is another useful u(1) subalgebra called the dilatation subalgebra. It is
generated by an element D:

D = 1

2

 
1

1

�1

�1

04⇥4

!
. (18)

Again, this element is not new, rather it is expressible as

D =
6X

i=2

H
i

+
1

2
(H

1

+H
7

) = H +
1

2
(H

1

+H
7

) . (19)

The normalization of the dilatation generator is chosen in such a fashion that both
negative simple fermionic root vectors are eigenstates of D with the same positive

eigenvalue

[D,E�
2

] = 1

2

E�
2

, [D,E�
6

] = 1

2

E�
6

. (20)

Finally, we note that one can introduce one more u(1) generator B which, however,
does not belong to su(2, 2|4):

B = 1

2

 
1

1

1

1

04⇥4

!
.

It is called the hypercharge and it distinguishes the fermionic root vectors

[B,E�
2

] = 1

2

E�
2

, [B,E�
6

] = �1

2

E�
6

. (21)

15

�!
C = 1

2

I
8⇥8

. Indeed, the following relations hold

H
2

=
1

2
D +

1

2
C� 3

4
H

3

� 1

2
H

4

� 1

4
H

5

� 1

2
H

1

, (25)

H
6

=
1

2
D� 1

2
C� 1

4
H

3

� 1

2
H

4

� 3

4
H

5

� 1

2
H

7

. (26)
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3.3 Representations

As usual, the highest weight representations of su(2, 2|4) are describe by the specifying
the highest weight vector |hwsi in the Hilbert space of a representation. This vector
is annihilated by all positive roots

E+

i

|hwsi = 0 (27)
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Representations of psu(2, 2|4) are those of su(2, 2|4) for which the central charge vanishes

1.3.2 Representations

As usual, the highest weight representations of su(2, 2|4) are describe by the specifying
the highest weight vector |hwsi in the Hilbert space of a representation. This vector is
annihilated by all positive roots

E+

i |hwsi = 0 (1.10)

and is an eigenstate of all Cartan generators with non-negative integer eigenvalues. As is
clear from the construction above, the positive roots span contains the generators Kµ of
special conformal transformations and also the conformal supercharges Si

↵ and S̄i↵̇. Thus,
the definition of the highest weight state is equivalent to the definition of the primary state:

Kµ|hwsi = Si
↵|hwsi = S̄i↵̇|hwsi = 0 . (1.11)

The eigenvalues of the three Cartan generators H
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] of the corresponding representation of the su(4) subalgebra. The eigenvalues of
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and H
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taken with the “ � ” sign are the Dynkin labels s
1

and s
2

of a representation
of su(2, 2) respectively. Finally, the eigenvalue of the dilatation generator is called the
conformal weight �. Finally, to describe the states of free theory one can also use the
eigenvalue of the hypercharge B. Thus, to the highest weight we associate the labels

|hwsi ⌘ [�; s
1

, s
2

; q
1

, p, q
2

; B] .

These parametrization of the highest weight summarize compactly the action of the Cartan
generators
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So far we have introduced the seven Cartan generators H
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psu(2, 2|4) one has to impose the constraint on the eigenvalues of the Cartan generators
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Representations of psu(2, 2|4) are those of su(2, 2|4) for which the central charge vanishes

1.3.2 Representations

As usual, the highest weight representations of su(2, 2|4) are describe by the specifying
the highest weight vector |hwsi in the Hilbert space of a representation. This vector is
annihilated by all positive roots

E+

i |hwsi = 0 (1.10)

and is an eigenstate of all Cartan generators with non-negative integer eigenvalues. As is
clear from the construction above, the positive roots span contains the generators Kµ of
special conformal transformations and also the conformal supercharges Si

↵ and S̄i↵̇. Thus,
the definition of the highest weight state is equivalent to the definition of the primary state:

Kµ|hwsi = Si
↵|hwsi = S̄i↵̇|hwsi = 0 . (1.11)

The eigenvalues of the three Cartan generators H
3,4,5 are precisely the Dynkin labels

[q
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2

] of the corresponding representation of the su(4) subalgebra. The eigenvalues of
H
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7

taken with the “ � ” sign are the Dynkin labels s
1

and s
2

of a representation
of su(2, 2) respectively. Finally, the eigenvalue of the dilatation generator is called the
conformal weight �. Finally, to describe the states of free theory one can also use the
eigenvalue of the hypercharge B. Thus, to the highest weight we associate the labels

|hwsi ⌘ [�; s
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; B] .

These parametrization of the highest weight summarize compactly the action of the Cartan
generators
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Here to find the eigenvalues of H
2,6 we used the formulae (??) and (??), and taken into

account that for psu(2, 2|4) the central charge is zero.

A standard way to construct a representation (the Verma module) is to pick up a highest
weight state and act on it with the generators corresponding to simple roots:

|{ni}i = (E�
1

)n1 . . . (E�
7

)n7 |hwsi . (1.12)

For fixed values of n
1

, . . . , n
7

there are many such states which di↵er by di↵erent orderings
of the simple negative root vectors. However, all these states have the one and the same
weights. The weights of the vector (1.12) are easily computed by using the algebra relations
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Note that only the second and the six roots increase the dimension:

D|{ni}i = 1

2

(2� + n
2
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6

)|nii .

In particular, anti-commutator of two fermionic negative roots corresponds to the action of a
derivative. The module infinite-dimensional. However its bosonic submodule corresponding
to representation of su(2, 2) is finite-dimensional and, as the consequence, non-unitary.
Indeed, we have

E+
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where i = 1, 7 and aii are the elements of the Cartan matrix. Since all aii = �2 for ni = si+1
the corresponding states are singular as they are annihilated by all E+

j and, therefore, the
submodule is finite-dimensional. Non-compactness of su(2, 2) implies necessarily that this
representation is non-unitary. Of course, the su(4) submodule is finite-dimensional and
unitary.

Finally we note that not all only the highest weight but all the states in the module
have vanishing central charge. Indeed, summing up we find

(�H
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3

+ H
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6
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7

)|nii = 0 .

There are special representations that contain less states than representations of generic
type. The highest weight of such representations obey additional constraints.
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Verma module



Unitarity

Now we briefly discuss the unitarity requirements.

There are three series of unitary irreducible representations of the superconfrormal algebra
which are usually called A), B) and C). They are formulated as follows

• Series A)

� � 2 + s
1

+
3

2
q
1

+ p +
1

2
q
2

, (1.14)

� � 2 + s
2

+
1

2
q
1

+ p +
3

2
q
2

(1.15)

These two conditions must be simulteniously satisfied which implies

� � 2 + s
1

+ s
2

+ q
1

+ p + q
2

. (1.16)

• Series B)
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3

2
q
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2
q
2

, s
1

= 0 (1.17)

� =
1

2
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+ p +
3

2
q
2

, s
2

= 0 (1.18)

• Series C)

� = p + 2q , q ⌘ q
1

= q
2

, s
1

= 0 = s
2

. (1.19)

The series A) provides a bound for the conformal dimension �. The series B) contains
1

8

-BPS excitations and the series C) comprises 1

4

-BPS and 1

2

-BPS operators. Note that the
series C) contains only spinless states.

Reducibility

Generically the Verma module provides an irreducible representation of psu(2, 2|4). How-
ever, for special values of the Dynkin labels the multiplet built on the corresponding highest
weight becomes reducible. The reducibility conditions have been found by V.Kac@@@@@@.
To formulate it we introduce an element ⇢

⇢ = ⇢
b

� ⇢
f

, ⇢
b

= 1

2

X

↵2�+

b

↵ , ⇢
f

= 1

2

X

↵2�+

f

↵ . (1.20)

Using the expressions for the positive roots found in Sect.? we can easily see that

⇢ = 1

2

(H
1

+ 4H
2

+ H
3

+ H
4

+ H
5

+ 4H
6

+ H
7

) ,

and also
h⇢, Hii = (�1, 0, 1, 1, 1, 0, �1) .
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which are usually called A), B) and C). They are formulated as follows
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• Series C)
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The series A) provides a bound for the conformal dimension �. The series B) contains
1

8

-BPS excitations and the series C) comprises 1

4

-BPS and 1

2

-BPS operators. Note that the
series C) contains only spinless states.

Reducibility

Generically the Verma module provides an irreducible representation of psu(2, 2|4). How-
ever, for special values of the Dynkin labels the multiplet built on the corresponding highest
weight becomes reducible. The reducibility conditions have been found by V.Kac@@@@@@.
To formulate it we introduce an element ⇢
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Multiply by v and get

�
Z 1

0

t⇢(t)dt

t � v
= vf(v) + c . (4.156)

Multiply by dv/
p

v(u � v) and integrate from 0 to u < b

Z u

0

dv
p

v(u � v)
�
Z 1

0

t⇢(t)dt

t � v
=

Z u

0

dv
p

vf(v)p
u � v

+ c

Z u

0

dv
p

v(u � v)
.

By using this general formula reconstruct the solution of the one-loop Bethe equation

[q1, p, q2]
| {z }

SU(4)

()

J1 = 1
2(q1 + 2p + q2)

J2 = 1
2(q1 + q2)

J3 = 1
2(q2 � q3)

| {z }

SO(6)

(4.156)
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