Bremsstrahlung Photon Production for BPPP Study

Oleksandr Borysov

LUXE Meeting January 31, 2019

Photon-Photon collisions at LUXE

Preliminary estimates!

Target 2 m, 5 m and 12 m upstream of IP

Initial electrons distribution in phase space for Gaussian beam with $\sigma_{x,y}$ = 5um at IP.

Beam spot size on the target

• 2 m: $\sigma x = 19 \mu m$;

• 5 m: $\sigma x = 43 \mu m$;

• 12 m: $\sigma x = 100 \, \mu m$;

Number of photons

- Geant4 simulation;
- Tungsten target 1%X0 (35um) at different distance to IP;
- Gaussian beam focused on IP;
- 6.25e7 electrons;

Number of photons inside |x|<25um and |y|<25um around IP.

Within 10% scales as $N \sim \frac{1}{l^2}$

Z, (m)	Z^2	N_Gamma	Z1^2 / Z2^2	N2 / N1		Z1^2 / Z2^2	N2 / N1	
2	4	2.89E+05	6.25	5.87	0.94	36	33.2565	0.924
5	25	4.91E+04	5.76	5.66	0.98			
12	144	8675						

Geant4 simulation with different step, different physics lists, different beam

- Gaussian beam, focused on IP;
- Tungsten target 1%X0 (35um) thickness
- 5 m from IP;
- 6.25 M electrons (BX/1000);
- Production cut: 1 μm.

Number of photons inside |x|<25um and |y|<25um around IP;

Different beam settings

Different step

Different physics lists

y angular distribution for different physics lists

- Angular distribution is the widest for option_4
 physics list and the narrowest for the local
 one.
- Angular distribution explains bottom right plot on previous slide.
- Total number of photons in forward region is identical for all physics lists.

Number of photons inside |x|<1.5 m and |y|<1.5 m

Spectra for different physics lists

- Gaussian beam, focused on IP;
- Tungsten target 1%X0 (35um) thickness
- 5 m from IP;
- 6.25 M electrons (BX/1000);
- Production cut: 1 μm.

Number of photons inside |x|<25um and |y|<25um and 5GeV < Ey < 18GeV;

- The ratio between numbers with and without energy cut is identical:
- For option_0 and option_4 physics sit it is 26%-27%.

root [1] 4917.0/3864.0 (double) 1.27252 root [2] 650.0/514.0 (double) <u>1</u>.26459

Physics list comparison

100 MeV

10 TeV

Emax=

Emax=

Option 3

```
msc: for e- SubType= 10
     RangeFactor= 0.04, stepLimitType: 3, latDisplacement: 1, skin= 1, geomFactor= 2.5
     ==== EM models for the G4Region DefaultRegionForTheWorld =====
            UrbanMsc : Emin=
                                     0 eV
                                             Emax=
                                                         10 TeV Table with 220 bins Emin=
                                                                                              100 eV
                                                                                                         Emax=
                                                                                                                   10 TeV
eIoni: for e-
                  SubType= 2
     dE/dx and range tables from 10 eV to 10 TeV in 240 bins
     Lambda tables from threshold to 10 TeV, 20 bins per decade, spline: 1
     finalRange(mm)= 0.1, dRoverRange= 0.2, integral: 1, fluct: 1, linLossLimit= 0.01
     ==== EM models for the G4Region DefaultRegionForTheWorld =====
       MollerBhabha : Emin=
                                 0 eV
                                         Emax=
                                                    10 TeV
```

10 TeV

Option 4

eCoulombScattering : Emin=

```
msc: for e- SubType= 10
     RangeFactor= 0.02, stepLimitType: 3, latDisplacement: 1, skin= 1, geomFactor= 2.5
     ==== EM models for the G4Region DefaultRegionForTheWorld =====
          UrbanMsc : Emin=
                                 0 eV Emax=
                                                  100 MeV Table with 120 bins Emin=
                                                                                     100 eV
       WentzelVIUni : Emin=
                               100 MeV Emax=
                                                   10 TeV Table with 100 bins Emin=
                                                                                     100 MeV
eIoni: for e- SubType= 2
    dE/dx and range tables from 100 eV to 10 TeV in 220 bins
    Lambda tables from threshold to 10 TeV, 20 bins per decade, spline: 1
    finalRange(mm)= 0.1, dRoverRange= 0.2, integral: 1, fluct: 1, linLossLimit= 0.01
    ==== EM models for the G4Region DefaultRegionForTheWorld =====
          PenIoni : Emin=
                              0 eV
                                     Emax=
                                                1 MeV
      MollerBhabha : Emin=
                                               10 TeV deltaVI
                              1 MeV Emax=
Lambda table from 100 MeV to 10 TeV, 20 bins per decade, spline: 1
     180 < Theta(degree) < 180; pLimit(GeV^1)= 0.139531
     ==== EM models for the G4Region DefaultRegionForTheWorld =====
```

Emax=

100 MeV

Different beam size in IP

- Gaussian beam, focused on IP;
- Tungsten target 1%X0 (35um) thickness 5 m from IP;
- 6.25 M electrons (BX/1000);
- Production cut: 1 μm;
- EM standard option_0 physics list.

Number of photons inside |x|<25um and |y|<25um around IP;

Number of photons inside |x|<25um and |y|<25um and 5GeV < Ey < 18GeV;

Summary and plans

- Bremsstrahlung photons were generated in Geant4 simulation with 1%X0 tungsten target 5m and 12 m to IP and are used for BPPP simulation study.
- Number of Bremsstrahlung photons in IP area scales with the distance from the target as $1/L^2$ (within 10%).
- Number of Bremsstrahlung photons produced in Geant4 simulation was studied with different simulation parameters:
 - different step size (difference is 1% below 1um);
 - different physics lists (difference within 30%; significant contribution from multiple scattering processes);
 - different focusing (less than 1% for beam size below 20um).
- Consider a possibility of beam test study.

Electron and laser beam parameters

E_pulse, μJ	Crossing angle, rad		Laser σz, ps	N Electrons		Electron σy, mm	
3.5*10^6	0.3	10	0.035	6.25E+09	0.005	0.005	0.08

- Laser wavelength = 800.00 nm (1.5498 eV);
- Circular polarized.