

DETECTORS: GREAT CONCEPTS AND GLORIOUS FAILURES Or: Lessons learned

Ingrid-Maria Gregor DESY/Universität Bonn EDIT School 2020

DISCLAIMER

- Designing a particle physics detector is a very complex business
- Many very nice examples exist
- Also some examples of failures

- Idea of this talk: some stuff you don't find in textbooks
- Collection of failures might give the impression of overall incompetence
 - Overwhelming majority of detectors run like a chime
 - Unbelievable effort to get large accelerators and experiments in a global effort to run so nicely
 - Even sociologists are interested in how we do this ...

Some bias in the selection of detectors and examples based on my experience, my friends and other factors ...

GREAT CONCEPTS

VI HOUET, S, C

Some examples

3

CURRENT HEP DETECTOR R&D

- Detector development is always an important topic in high energy physics
- Technical demands are constantly increasing due to new challenges in particle physics
 - higher occupancy, smaller feature size, larger trigger rates, radiation level,
- New HEP detector projects are planned for
 - Detector upgrades during different LHC phases up to HL-LHC (ATLAS, CMS, ALICE, LHCb)
 - Detector R&D for a future linear collider (ILC and CLIC)
 - Belle II (construction phase ongoing)
 - PANDA and CBM @Fair
 -

source: "CMS Particle Hunter"

HOW TO DO A PARTICLE PHYSICS EXPERIMENT ?

- Ingredients needed:
 - particle source
 - accelerator and aiming device
 - detector
 - trigger
 - recording devices
- Recipe:
 - get particles (e.g. protons, antiprotons, electrons, …)
 - accelerate them
 - collide them
 - observe and record the events
 - analyse and interpret the data
 - many people to:
 - design, build, test, operate accelerate
 - design, build, test, calibrate, operate, understand the detector
 - analyse data

typical HERA collaboration: ~400 people LHC collaborations: >2000 people

BONN Ingrid-Maria Gregor - EDIT2020 - Concepts and Failures

CONCEPTUAL DESIGN OF HEP DETECTORS

- Need detailed understanding of
 - processes you want to measure ("physics case")
 - signatures, particle energies and rates to be expected
 - background conditions
- Decide on magnetic field
 - only around tracker?
 - extending further ?
- Calorimeter choice
 - define geometry (nuclear reaction length, X0)
 - type of calorimeter (can be mixed)
 - choice of material and granularity depends also on funds

- Tracker
 - technology choice (gas and/or Si?)
 - number of layers, coverage, ...
 - pitch, thickness,
 - also here money plays a huge role

Detailed Monte Carlo Simulations need to guide the design process all the time !!

A MAGNET FOR A LHC EXPERIMENT

Wish list

- big: long lever arm for tracking
- high magnetic field
- Iow material budget or outside detector (radiation length, absorption)
- serve as mechanical support
- reliable operation
- cheap
-

BONN

ATLAS decision

- achieve a high-precision stand-alone momentum measurement of muons
- need magnetic field in muon region -> large radius magnet

CMS decision

• single magnet with the highest possible field in inner tracker (momentum resolution)

∆p_T/p_T ≈ 1/BL²

• muon detector outside of magnet

MAGNET-CONCEPTS: ATLAS -> TOROID

- Central toroid field outside the calorimeter within muonsystem: <4 T</p>
 - Closed field, no yoke
 - Complex field
- Thin-walled 2 T Solenoid-field for trackers integrated into the cryostat of the ECAL barrel

- + field always perpendicular to \overrightarrow{p}
- + relative large field over large volume
- non uniform field
- complex structure -> limited accessibility

MAGNET-CONCEPTS: CMS -> SOLENUID

- Super-conducting, 3.8 T field inside coil
- Weaker opposite field in return yoke (2T)
- Encloses trackers and calorimeter
- 13 m long, inner radius 5.9 m, I = 20 kA, weight of coil: 220 t

- + large homogeneous field inside coil
- + weak opposite field in return yoke
- + easier to access
- size limited (cost)
- relative high material budget

ATLAS@LHC

Example@LHC

Ingrid-Maria Gregor - EDIT2020 - Concepts and Failures

ATLAS CROSS SECTION

Example@LHC

CMS@LHC

BONN Ingrid-Maria Gregor - EDIT2020 - Concepts and Failures

CMS CROSS SECTION

Foto: CERN

THE BIG ONES AT LHC

CMS

ALICE

Ingrid-Maria Gregor - EDIT2020 - Concepts and Failures

THE H1 DETECTOR

H1 DETECTOR

Example@HERA

THE ZEUS DETECTOR

Example@HERA

ZEUS

THE DELPHI DETECTOR

DELPHI

Example@LEP

Ingrid-Maria Gregor - EDIT2020 - Concepts and Failures

THE CDF DETECTOR

Example@Tevatron

CDF

Example@Tevatron

THE BABAR DETECTOR

BABAR

AMS

AMS@ISS

PROBLEMS IN OVERALL CONCEPT

V HOLET, S, C

DO WITHOUT INNER TRACKING MAGNET

- D0 Experiment at Tevatron constructed to study protonantiproton collisions
- **Top discovery** in 1995 together with CDF experiment
- Original design for Run I: no magnet for tracking
 - "Focussing on parton jets for deciphering the underlying physics than emphasis on individual final particle after hadronisation"
 - Very compact tracking system
 - Uranium-liquid argon calorimeter for identification of electrons, photons, jets and muons
- Effect of low momentum charged particles greatly underestimated resulting in analysis difficulties.

Run II system included a silicon microstrip tracker and a scintillating-fibre tracker located within a 2 T solenoidal magnet.

ZEUS TRD

BONN

TRD see Christoph on Feb 24

- Zeus Transition Radiation detector for electron identification.
- Aim: h/e rejection ratio of about 10⁻² for electron tracks embedded in jets (1 - 30 GeV/c).
- However central tracking detector (wire chamber) had 2cm end-plate for wire fixation
 - Electrons 100% probability to shower and thus were not present in showers anymore
- Reason for mishap: no proper Monte Carlo simulation tools available at time of detector design

Simulate everything incl. ALL cables and mechanics

TRD used for Here Run I Replaced by Straw Tube Tracker for Run II

HERA-B

Would be a full lecture by itself

- → HERA-B started as a search for CP violation in B→J/ ψ K_s⁰.
 - Fixed target hadronic b-factory
- Bad surprises:
 - Inner tracker: Microstrip gas chamber breakdowns occurred at the intolerable high rate of a few sparks per hour
 - Outer tracker: rapid ageing of chambers due to radiation environment
 - Additional R&D required for the tracking system: two year delay.
- In the mean time Belle and BaBar measured CB violation in B meson decays (ICHEP 2000)
- Decided to ramp Hera-B slowly down

Frontier detector technology: microstrip gas chambers

http://www-hera-b.desy.de/general/info/CERN-Seminar.pdf

REASONS

- Very challenging particle physics experiment
 - Particle flux in detector
 - Radiation damage
 - Event rate
 - Data throughput

03/03/03 06:10

Comment from SG, UH Arriving at Hall West at 6:00, we don't see anybody around. The control room is dark and locked, and the HERA display announces "SHUTDOWN" (sounds a bit like Genesis 1,1, but that was a beginning...)

03/03/03 07:16 8

Comment from Bernhard Schmidt ... in fact, at 6:45 the darkness was quite complete. And nobody around to say goodbye ... Sleep well, old lady ;-)

Not all bad

- More than 100 Phd theses
- Most technical challenges solved
- CMS changed tracking design

- Hera-B was a "flip/flop" experiment
 - Only one physics measurement: CP violation in B decays
 - No backup plan for reduced requirements
- Schedule from the start very tight in light of a challenging project
 - Hera-B: LHC detector prototype ! B-factories (e⁺e⁻) BarBar (SLAC) and BELLE (KEK) in construction
 - Competing with B-factories: HERA-B without a chance

2002 : CP-Verletzung mit > 5 σ gemessen

LIQUID SCINTILLATOR CALORIMETER UA

- UA1 experiment at SPS to discover the W and Z boson
 - Very successful experiment per say

- UA1 decided to built a Uranium-Liquid scintillator calorimeter
 - Uranium: Compact enough to replace the lead-scintillator calorimeter.
 - Liquid-scintillator: tetramethylpentane (TMP) at room temperature (no cryo)
 - Challenging calorimeter concept and cost intensive ...
- Unfortunately severe difficulties were encountered in the production of clean and planar boxes filled with TMP and the project was cancelled.

see Stefan on Feb 28

BONN

http://www.roma1.infn.it/~lacava/UA1_Experiment.pdf

http://cdsweb.cern.ch/record/197057/files/198905600.pdf

Ingrid-Maria Gregor - EDIT2020 - Concepts and Failures

UNEXPECTED IRRADIATION FAILURE

VI FIDET, S, C

PROBLEM: RADIATION DAMAGE

see Poris on Feb 17 and Norbert on Feb 19

- Radiation damages the silicon on atomic level significantly leading to macroscopic effects.
- Surface effects: Generation of charge traps due to ionising energy loss — Total ionising dose, TID (problem for sensors and readout electronics).
 - Cumulative long term trapping of positive charge
 - Increase of leakage current and oxide breakdown


```
STI = shallow trench interface
```

- Bulk effects: displacement damage and build up of crystal defects due to non ionising energy loss (NIEL) (main problem for sensors).
 - Unit: 1MeV equivalent n/cm²

Defects composed of: Vacancies and Interstitials

Compound defects with impuritie possible!

- Transient effects: Radiation induced errors in microelectronic circuits
 - caused by passing charged particles leaving behind a wake of electron-hole pairs
 - single event upsets, single event latch-ups, ….

Generations of scientists worked on understanding failures connected to radiation damage and how to mitigated the effects - however ...

ATLAS BARREL TRT

see Christoph R. on Feb 24

- Gas mixture: 70% Xe + 20 CF_4 + 10% CO_2
- Observed: destruction of glass joint between long wires after 0.3 0.4 integrated charge (very soon after start up)

At high irradiation C₄F turns partially into HF,F,F2 (hydrofluoric acid)

-> attaches Si-based materials in the detector

Changed gas mixture, after ~10 years of R&D with old mixture

during production

Ingrid-Maria Gregor - EDIT2020 - Concepts and Failures

CMS DC-DC CONVERTER

- During 2017 new pixel detector installed in CMS with DC-DC converter for powering
 - After a few months, about 5% of the deployed converters failed.
 - During winter shutdown another about 35% of the converters were found affected by a damage mechanism.
- Extremely difficult to identify problem over months multiple tests conducted
- Found strong correlation between radiation background and failures, as well as the functional sequence necessary for the damage to happen.
 - Damage caused by TID radiation damage opening a source-drain leakage current in **one** transistor in Feast2.1 chip
 - High-voltage transistors can not be designed in an enclosed layout to prevent this problem

DC-DC in a nutshell:

transfer energy into detector with higher voltage/lower current and transform just before the load to operation voltage

Feast2

Consequences for operation
lower input voltage helps
stop disabling the output

https://project-dcdc.web.cern.ch/project-dcdc/public/Documents/ExecutiveSummary2018.pdf https://instrumentationseminar.desy.de/sites2009/site_instrumentationseminar/content/e70397/e282395/e287407/20190614_pixelphase1JIS.pdf

ATLAS IBL TID BUMP

- Steep increase in power consumption of IBL during operation increasing the temperature
- Effect of total ionising dose on front-end chip FE-I4B
- Caused by the effect of TID on NMOS transistors:
 - Leakage current was induced by positive charge trapped in the bulk of the shallow trench isolation (STI)
 - Temperature and voltage depending

Mitigation plan:

- Operating temperature was increased from −10 ∘C to and 10 ∘C then decreased to 5 ∘C.
- Digital supply-voltage was decreased to from 1.2 V 1.0 V until TID approached more than 4 MRad.

"LOW TECH" FAILURES

WHIDET, S, C

600

WHAT IS "LOW" TECH ?

- In particle physics experiments almost everything is high tech
 - Need extreme reliability
 - Radiation tolerance
 - Precision
 - Mostly running longer than originally planned

- However some areas considered as "low tech" and people (and funding agencies) don't like to invest research money into those areas
 - Cables for powering
 - Power plants
 - Cooling
 - Data transfer (optical and electrical)
 - Non sensitive materials (mechanics)
 - Glues

what are other words for low-tech? simple, unsophisticated, basic, dolly, foolproof, onefold, elementary, simpler, crude, rudimentary

For particle physics experiments this is not true !

WIRE-BONDS AND WIRE BREAKAGE

V HOET, S, C

PROBLEMS WITH WIRE BONDS (CDF, DO)

- Very important connection technology for tracking detectors: wire bonds:
 - 17-20 um small wire connection -> terrible sensitive
- Observation: During synchronous readout conditions, loss of modules (no data, Drop in current)

- Tests revealed:
 - Bonds start moving due to Lorentz Force in magnetic field
 - Wire resonance in the 20 kHz range
 - Current is highest during data readout
 - Already a few kicks are enough to get the bond excited

Implemented "Ghostbuster" system which avoids long phases with same readout frequency

during running

DPAL MVD 1994

- OPAL MVD ran for a short while without cooling water flow.
- Temperature of the detector rose to over 100°C.
 - Most of the modules to fail or to be partially damaged.
- Chain of problem causing damage:

- MVD expert modified the control/monitoring software between consecutive data taking runs.
- Inserted bug which stopped software in a state with cooling water off but with the low voltage power on.
- Stopped software also prevented the monitoring of the temperature from functioning
- Should have been prevented by additional interlock but that was also disabled....

Lucky outcome:

- Damage was mostly melted wire bonds
- Detector could be fixed in winter shutdown

Mitigation plan:

- new and more rigorous interlock system that could not be in a disabled state during data taking conditions.
- rule was implemented that prohibited software modifications between consecutive data taking runs.

ATLAS IBL - WIRE BOND CORROSION

- Additional pixel layer for ATLAS installed in 2015
- Five months **before** installation: corrosion residues observed at wire-bonds after cold tests (-25 C)
 - Severe damage of many wire-bonds
- Residue showed traces of chlorine: catalyst of a reaction between Aluminium (wire-bonds) and H₂O (in air)
- Origin of chlorine in system never fully understood

Stave 08

Signal A = SE2

BONN Ingrid-Maria Gregor - EDIT2020 - Concepts and Failures

Vac-Low PC-Std. 10 kV

50 µm

MORE WIRE BOND WRECKAGE

- During CMS strip tracker production quality assurance applied before and after transport
 - Quality of wires is tested by pull tests (measured in g)
- Wire bonds were weaker after transport with plane
- Random 3.4 g NASA vibration test could reproduce same problem
- Problem observed during production -> improved by adding a glue layer
- No further problems during production

Ingrid-Maria Gregor - EDIT2020 - Concepts and Failures

WIRES H1 CENTRAL JET CHAMBER

- Outer tracker of H1@HERA spontaneously broken wires in CJC1 observed during first shutdown (Dec 92)
- Observation / possible reason:
 - All wires broken close to wire ends
 - Remnants from gilding process of wire feed through
 - Sharp edges cause damage of gold layer on wires
 - Lead to complex chemical reactions
 - H induced brittle fracture
 - Replaced broken wires during next shutdown
 - New design of crimp tube:
 - replace brass inserts in wire feed through by jewels
 - better quality control

Ingrid-Maria Gregor - EDIT2020 - Concepts and Failures

http://www.desy.de/agingworkshop/trans/ps/niebuhr.pdf

WIRES H1 CENTRAL JET CHAMBER

during running

BONN

Ingrid-Maria Gregor - EDIT2020 - Concepts and Failures

- Sense Wire Deposits in outer jet chamber CJC2
- Observation / possible reason:
 - y dependence implies most likely gas impurity
 - Source of contamination not clear
 - Problem was not observed in CJC1 which had the same gas system
 - Only difference: gas ring

Sample wire with substantial deposit

Consequences:

- sense wires replaced
- changes in gas distribution
- increased gas flow

NOMAD DETECTOR

- NOMAD (neutrino oscillation magnetic detector) experiment which took data in the CERN wide-band neutrino beam from 1995 to 1998
- Drift-chambers: glued strip bands with adhesive technique and carefully tested this method
- After several weeks of operation suffered from short circuits in many chambers
 - Honeycomb material developed gas bubbles and came apart
 - Probably due to the moisture gradient between the outside of the chamber and the dry gas in the drift gap

during commissioning

Repaired 25 chambers with different glue technique.

https://www.sciencedirect.com/science/article/pii/S0168900201013717

JADE@PETRA

during commissioning

- Going back to 1978 …
- One of the Petra experiments (besides MARK J, PLUTO, TASSO, CELLO)
- During beam commissioning the Petra beam was dumped directly into the central jet chamber
 - too high beam current
 - damaging a number of cells
- Chambers had to be taken out and repaired

Reinstallation and commissioning still in time to be part of t gluon discovery in 1979

COOLING DAMAGES

VI FIDET, S, C

CCC P

COOLING OF ZEUS STRAW TUBE TRACKER (STT)

- After an upgrade of the on-board electronics, the STT caused instabilities of the insulation vacuum of the ZEUS Magnet
- FDET cooling is insufficient (thermal contact between electronics and cooling)
 - Heating of inner cylinder of solenoid (1 kW cooling power missing)

Solution
Winter Shutdown 2005/06: removal of STT with special Jig
Add cooling on STT

Exchange and re-tighten all screws of the end-flange of the ZEUS magnet

CMS WATER LEAK

- In October 2009 a sever water leak was observed in the CMS experiment
- An initially small leak dramatically worsened, about 100 litres of water were released affecting several subsystems.

- Cause: Stress corrosion phenomenon due to
 - geometry of the bushing (very thin section)
 - probable over-tightening
 - type of alloy used, particularly susceptible to stress corrosion cracking

during commissioning

Repair during winter shutdown:

396 bushings changed and some collateral damage repaired

WATER DAMAGE IN TRACKER ...

- H1@HERA FST in 2004
- Imperfect crimp + hardening of plastic (age, irradiation) => water leak
- Water condensation => damage
- Tracker segment had to be rebuilt

ATLAS PIXEL TUBE CORROSION

during production

- Cooling tube of current pixel layers were supposed to be very light in material
 - Bare pipe material (AI)
 - Ni plating used to allow for brazing of the pipe fittings
 - No proper drying procedure \rightarrow water
- Water triggered corrosion process in the aluminium pipes.
 - Corrosion was due to galvanic process where water and traces of halogen (like CI) acted as electrolyte.
 - Effect of the galvanic corrosion led in some cases to holes in the pipe.

Six months delay in schedule

- Repair the 43 loaded staves with a pipe-inside-the-pipe
- Production of new staves with new Al compound and laser welding
- Repair of bare staves (~100)

ZEUS CALORIMETER - ONE MORE WATER LEAK

- Micro hole in copper hose led to water in the digital card crates
- Four crates were affected, but only seven cards were really showing traces of water

Where ever you chose to cool with a liquid - it will leak one day !

Of course this all happened on a Saturday morning at 5am

OTHER PROBLEMS AND FAMOUS PROBLEMS

ATLAS IBL STAVE BOW

during commissioning

see Petra on Feb 25

- Distortion depending on the operating temperature was observed.
- Caused by a mismatch between the coefficients of thermal expansion (CTE) of a bare stave made with the carbon foam and the flex attached on the bare stave.
- Maximum more than 300 µm at -20 °C with respect to the nominal position at the room temperature.

Mitigated by temperature control at the level of 0.2 K and the regular alignment correction in the offline reconstruction

CABLE PROBLEM WITH PRESS COVERAGE

- Oscillation Project with Emulsion-tRacking Apparatus OPERA: instrument for detecting tau neutrinos from muon neutrino oscillations
- In 2011 they observed neutrinos appearing to travel faster than light.
 - Very controversial paper also within collaboration

The top 10 biggest science stories of the decade

- Kink from a GPS receiver to OPERA master clock was loose
 - Increased the delay through the fibre resulting in decreasing the reported flight time of the neutrinos by 73 ns,
 - making them seem faster than light.

After finding the problem, the difference between the measured and expected arrival time of neutrinos was approximately 6.5 ± 15 ns.

MAYBE MOST FAMOUS DAMAGE

- Underground water Cherenkov detector with 50,000 tons of ultrapure water as target material
- Nov 2001: One PMT imploded creating shock wave destroying about 7700 of PMTs

- Detector was partially restored by redistributing the photomultiplier tubes which did not implode.
- Eventually added new reinforced PMTs

during commissioning

CONCLUSIONS

- Large detectors are typically build up in layers
 - Inner tracking: momentum measurement using a B-field
 - Outside calorimeter: energy measurement by total absorption
 - Many factors play a role in the overall concept
- Many different technologies:
 - Gas- and semiconductors (light material) for tracking
 - Sampling and Homogeneous calorimeters for energy measurement
- A lot of effort and good ideas are put into the main detecting technologies to develop cutting-edge detectors for the next generation particle physics experiments

BUT: the devil sits in the details

LESSONS LEARNED ?

- Spend enough time on simulating all aspects of your detector with ALL materials implemented
- Don't underestimate the "low tech"
 - Cables
 - Cooling
 - Mechanics including FEA
 - Radiation damage of non-sensitive materials
 -

.

- Make sure the overall timeline is not completely crazy (tough job)
- When mixing materials ask a chemist once in a while
- Better is the enemy of good enough (Marty Breidenbach)

Solving and preventing theses kind of problems is also part of the fascination of detector physics!!

info@mool.in

"To succeed planning alone is insufficient. One must improvise as well."

Isaac Asimov

TID BUMP

Surface effects: Generation of charge traps due to ionising energy loss (Total ionising dose, TID) (main problem for electronics).

- The leakage current is the sum of different mechanisms involving:
 - the creation/trapping of charge (by radiation)
 - its passivation/de-trapping (by thermal excitation)
- These phenomena are dose rate and temperature dependent!
- Charge trapped in the STI oxide
 - +Q charge
 - Fast creation
 - Annealing already at T_{amb}
- Interface states at STI-Silicon interface
 - -Q for NMOS, +Q for PMOS
 - Slow creation
 - Annealing starts at 80-100C

STI = shallow trench interface

irradiation

irradiation

STI

not to